The timescale for galaxies within merging dark matter halos to merge with each other is an important ingredient in galaxy formation models. Accurate estimates of merging timescales are required for predictions of astrophysical quantities such as black hole binary merger rates, the build-up of stellar mass in central galaxies, and the statistical properties of satellite galaxies within dark matter halos. In this paper, we study the merging timescales of extended dark matter halos using N-body simulations. We compare these results to standard estimates based on the Chandrasekhar theory of dynamical friction. We find that these standard predictions for merging timescales, which are often used in semi-analytic galaxy formation models, are systematically shorter than those found in simulations. The discrepancy is approximately a factor of 1.7 for M_sat/M_host approx 0.1 and becomes larger for more disparate satellite-to-host mass ratios, reaching a factor of ~3.3 for M_sat/M_host approx 0.01. Based on our simulations, we propose a new, easily implementable fitting formula that accurately predicts the timescale for an extended satellite to sink from the virial radius of a host halo down to the halo's center for a wide range of M_sat/M_host and orbits. To highlight one concrete application of our results, we show that merging timescales often used in the literature overestimate the growth of stellar mass by satellite accretion by approx 40%, with the extra mass gained in low mass ratio mergers.
We present a new multi-component spectral energy distribution (SED) decomposition method and use it to analyze the ultraviolet to millimeter wavelength SEDs of a sample of dusty infrared-luminous galaxies. SEDs are constructed from spectroscopic and photometric data obtained with the Spitzer Space Telescope, in conjunction with photometry from the literature. Each SED is decomposed into emission from populations of stars, an AGN accretion disk, PAHs, atomic and molecular lines, and distributions of graphite and silicate grains. Decompositions of the SEDs of the template starburst galaxies NGC7714 and NGC2623 and the template AGNs PG0804+761 and Mrk463 provide baseline properties to aid in quantifying the strength of star-formation and accretion in the composite systems NGC6240 and Mrk1014. We find that obscured radiation from stars is capable of powering the total dust emission from NGC6240, although we cannot rule out a contribution from a deeply embedded AGN visible only in X-rays. The decomposition of Mrk1014 is consistent with ~65% of its power emerging from an AGN and ~35% from star-formation. We suggest that many of the variations in our template starburst SEDs may be explained in terms of the different mean optical depths through the clouds of dust surrounding the young stars within each galaxy. Prompted by the divergent far-IR properties of our template AGNs, we suggest that variations in the relative orientation of their AGN accretion disks with respect to the disks of the galaxies hosting them may result in different amounts of AGN-heated cold dust emission emerging from their host galaxies. We estimate that 30-50% of the far-IR and PAH emission from Mrk1014 may originate from such AGN-heated material in its host galaxy disk.
Extragalactic Cepheids are the basic rungs of the cosmic distance scale. They are excellent standard candles, although their luminosities and corresponding distance estimates can be affected by the particular properties of the host galaxy. Therefore, the accurate analysis of the Cepheid population in other galaxies, and notably in the Andromeda Galaxy (M31), is crucial to obtaining reliable distance determinations. We obtained accurate photometry (in B and V passbands) of 416 Cepheids in M31 over a five year campaign within a survey aimed at the detection of eclipsing binaries. The resulting Cepheid sample is the most complete in M31 and has almost the same period distribution as the David Dunlap Observatory sample in the Milky Way. The large number of epochs (~250 per filter) has permitted the characterisation of the pulsation modes of 356 Cepheids, with 281 of them pulsating in the fundamental mode and 75 in the first overtone. The period-luminosity relationship of the fundamental mode Cepheids has been studied and a new approach has been used to estimate the effect of blending. We find that the blending contribution is as important as the metallicity correction when computing Cepheid distance determinations to M31 (~0.1 mag). Since large amplitude Cepheids are less affected by blending, we have used those with an amplitude A_V>0.8 mag to derive a distance to M31 of (m-M)_0=24.32+/-0.12 mag.
We examine how coupled dark matter and dark energy modify the development of Zel'dovich pancakes. We study how the various effects of these theories, such as a fifth force in the dark sector and a modified particle Hubble drag, produce variations in the redshifts of caustic formation and the present-day density profiles of pancakes. We compare our results in direct simulation to a perturbation theory approach for the dark energy scalar field. We determine the range of initial scalar field amplitudes for which perturbation theory is accurate in describing the development of the pancakes. Notably, we find that perturbative methods which neglect kinetic terms in the scalar field equation of motion are not valid for all small perturbations, but only for a limited range of amplitudes. We also examine whether models that have been tuned to match the constraints of current observations can produce new observable effects in the nonlinear structure of pancakes. Our results suggest that a fully realistic three-dimensional simulation will produce significant new observable features, such as modifications to the mass function and halo radial density profile shapes, that can be used to distinguish these models from standard concordance cosmology and from each other.
Tiny interstellar dust grains causing the polarization of light from the nearest stars are deflected sideways in the outer heliosheath regions, along with the interstellar magnetic field. Observations of optical polarization of stars beyond the heliosphere nose, suggest the direction of the upwind interstellar magnetic field is relatively constant. The polarizations of nearby stars and offset angle between HeI and HeI flowing into the heliosphere have position angles in galactic coordinates of 35- 40 deg, indicating a local magnetic field direction inclined by ~55 deg and ~65 deg, respectively, with respect to the galactic and ecliptic planes. The hot and cold poles of the measured Cosmic Microwave Background (CMB) dipole moment are nearly symmetric around the heliosphere nose direction, and the v^{22} quadrupole vector is directed towards the heliosphere nose. The area vectors of the CMB quadrupole and ocotopole moments are directed towards the band perpendicular to the ecliptic plane formed by the alternate locations for the 3 kHz emissions detected by Voyagers 1 and 2. In the upwind direction, the position angle of the null plane separating the CMB dipole hot and cold poles is nearly aligned with the interstellar magnetic field direction at the Sun. Heliospheric foreground contamination of the low-$\ell$ CMB modes now requires detailed study.
We consider the signature and detectability of gravitational microlensing by cosmic strings. Because of the simple image configuration such events will have a characteristic light curve, in which a source would appear to brighten by exactly a factor of two, before reverting to its original apparent brightness. We calculate the optical depth and event rate, and conclude that current predictions and limits on the total length of strings on the sky imply optical depths of $\la 10^{-8}$ and event rates of fewer than one event per 10^9 sources per year. Disregarding those predictions but replacing them with limits on the density of cosmic strings from the CMB fluctuation spectrum, leaves only a small region of parameter space (in which the sky contains about 3 x10^5 strings with deficit angle of order 0.3 milli-arcseconds) for which a microlensing survey of exposure 10^7 source-years, spanning a 20--40-year period, might reveal the presence of cosmic strings.
We describe the diffusion and random velocities of solid particles due to stochastic forcing by turbulent gas. We include the orbital dynamics of Keplerian disks, both in-plane epicycles and vertical oscillations. We obtain a new result for the diffusion of solids. The Schmidt number (ratio of gas to particle diffusivity) is Sc = 1 + (Omega t_stop)^2, in terms of the particle stopping time, t_stop, and the orbital frequency, Omega. The standard result, Sc = 1 + t_stop/t_eddy, in terms of the eddy turnover time, t_eddy, is shown to be incorrect. The main difference is that Sc rises quadratically, not linearly, with stopping time. Consequently, particles larger than ~ 10 cm in protoplanetary disks will suffer less radial diffusion and will settle closer to the midplane. Such a layer of boulders would be more prone to gravitational collapse. Our predictions of RMS speeds, vertical scale height and diffusion coefficients will help interpret numerical simulations. We confirm previous results for the vertical stirring of particles (scale heights and random velocities), and add a correction for arbitrary ratios of eddy to orbital times. The particle layer becomes thinner for t_eddy > 1/Omega, with the strength of turbulent diffusion held fixed. We use two analytic techniques -- the Hinze-Tchen formalism and the Fokker-Planck equation with velocity diffusion -- with identical results when the regimes of validity overlap. We include simple physical arguments for the scaling of our results.
We present the high resolution spectra of the D type symbiotic stars V1016
Cygni and HM Sagittae obtained with the Bohyunsan Optical Echelle Spectrograph
(BOES), and investigate the double-peaked asymmetric profiles of the Raman
scattered O VI 6825. By adopting a wind accretion disk model, we assume that
the O VI emission region is described by a Keplerian thin disk. The Raman
scattering occurs in a neutral region near the giant, taking in the form of a
slow stellar wind, part of which is ionized by the strong UV radiation from the
hot white dwarf. Using a Monte Carlo technique, we compute the line profiles
that are modulated by the slow spherical stellar wind from the giant component
with the ionization front approximated by a hyperboloid. In order to account
for the asymmetry and the existence of a central dip in the profiles, we add an
O VI resonance scattering region between the hot white dwarf and the giant star
which hinders the incidence of slightly blue O VI photons upon the H I region.
Overall good fits to the observed data are obtained from our model, which lends
support to the accretion disk emission model in these objects. The best fitting
parameters for V1016 Cyg are $v_o=30{\rm km s^{-1}}$,
$v_\infty=11{\rm km s^{-1}}$, and $v_{c}=10{\rm km s^{-1}}$, where $v_o$,
$v_\infty$ and $v_{c}$ are the velocity of the outer disk rim, the terminal
velocity of the giant wind, and the velocity component of the resonance
scattering O VI region along the binary axis, respectively. Similar fitting
parameters $v_o=27{\rm km s^{-1}}$, $v_\infty=10{\rm km s^{-1}}$ and
$v_{c}=9{\rm km s^{-1}}$ are obtained for HM Sge. We also investigate the
effect of a hot spot in a disk that is well known in accretion disks in
cataclysmic variables.
We present multi-wavelength, high spatial resolution imaging of the IRS 7 region in the R Corona Australis molecular cloud. Our observations include 1.1 mm continuum and HCO^+ J = $3 \to 2$ images from the SMA, ^{12}CO J = $3 \to 2$ outflow maps from the DesertStar heterodyne array receiver on the HHT, 450 $\mu$m and 850 $\mu$m continuum images from SCUBA, and archival Spitzer IRAC and MIPS 24 \micron images. The accurate astrometry of the IRAC images allow us to identify IRS 7 with the cm source VLA 10W (IRS 7A) and the X-ray source X_W. The SMA 1.1 mm image reveals two compact continuum sources which are also distinguishable at 450 $\mu$m. SMA 1 coincides with X-ray source CXOU J190156.4-365728 and VLA cm source 10E (IRS 7B) and is seen in the IRAC and MIPS images. SMA 2 has no infrared counterpart but coincides with cm source VLA 9. Spectral energy distributions constructed from SMA, SCUBA and Spitzer data yield bolometric temperatures of 83 K for SMA 1 and $\leq$70 K for SMA 2. These temperatures along with the submillimeter to total luminosity ratios indicate that SMA 2 is a Class 0 protostar, while SMA 1 is a Class 0/Class I transitional object (L=$17\pm6$ \Lsun). The ^{12}CO J = $3 \to 2$ outflow map shows one major and possibly several smaller outflows centered on the IRS 7 region, with masses and energetics consistent with previous work. We identify the Class 0 source SMA 2/VLA 9 as the main driver of this outflow. The complex and clumpy spatial and velocity distribution of the HCO^+ J = $3 \to 2$ emission is not consistent with either bulk rotation, or any known molecular outflow activity.
We investigate the model of magnetized cosmology, and simplify the exact solutions on the perfect-fluid. We show that large-scale magnetic components of cosmological fields have mathematical connection to the angular-momentum. In the general case where cosmologies are generalized by magnetic components, it introduces some mathematical solutions for gravitational fields in a manner similar to Dirac's symmetrization of electromagnetic fields. We interpret the astrophysical bipolar outflow, accretion disk, and galaxy rotation curve as consequences of the magnetic components of gravitational fields while cosmic effects are provided according to the symmetrized formulism.
In this paper, we describe the architecture and performance of the GraCCA system, a Graphic-Card Cluster for Astrophysics simulations. It consists of 16 nodes, with each node equipped with 2 modern graphic cards, the NVIDIA GeForce 8800 GTX. This computing cluster provides a theoretical performance of 16.2 TFLOPS. To demonstrate its performance in astrophysics computation, we have implemented a parallel direct N-body simulation program with shared time-step algorithm in this system. Our system achieves a measured performance of 7.1 TFLOPS and a parallel efficiency of 90% for simulating a globular cluster of 1024K particles. In comparing with the GRAPE-6A cluster at RIT (Rochester Institute of Technology), the GraCCA system achieves a more than twice higher measured speed and an even higher performance-per-dollar ratio. Moreover, our system can handle up to 320M particles and can serve as a general-purpose computing cluster for a wide range of astrophysics problems.
The current classification system of M stars on the main sequence distinguishes three metallicity classes (dwarfs - dM, subdwarfs - sdM, and extreme subdwarfs - esdM). The spectroscopic definition of these classes is based on the relative strength of prominent CaH and TiO molecular absorption bands near 7000A, as quantified by three spectroscopic indices (CaH2, CaH3, and TiO5). We re-examine this classification system in light of our ongoing spectroscopic survey of stars with proper motion \mu > 0.45 "/yr, which has increased the census of spectroscopically identified metal-poor M stars to over 400 objects. Kinematic separation of disk dwarfs and halo subdwarfs suggest deficiencies in the current classification system. Observations of common proper motion doubles indicates that the current dM/sdM and sdM/esdM boundaries in the [TiO5,CaH2+CaH3] index plane do not follow iso-metallicity contours, leaving some binaries inappropriately classified as dM+sdM or sdM+esdM. We propose a revision of the classification system based on an empirical calibration of the TiO/CaH ratio for stars of near solar metallicity. We introduce the parameter \zeta_{TiO/CaH} which quantifies the weakening of the TiO bandstrength due to metallicity effect, with values ranging from \zeta_{TiO/CaH}=1 for stars of near-solar metallicity to \zeta_{TiO/CaH}~0 for the most metal-poor (and TiO depleted) subdwarfs. We redefine the metallicity classes based on the value of the parameter \zeta_{TiO/CaH}; and refine the scheme by introducing an additional class of ultra subdwarfs (usdM). We introduce sequences of sdM, esdM, and usdM stars to be used as formal classification standards.
It is shown that the existence of the cosmic kinematic fast dynamos in Bianchi type IX rotating cosmological models, faces severe difficulties, due to the fact that in these models rotation increases without bounds, which is strictly forbidden by CMB astronomical date which imposes strong bounds on its rotation with respect with its rapid expansion. The only way out of this difficulty is to assume that at least one of the expansion directions of this anisotropic universe decays as fast as the amplification rate of primordial magnetic fields. A solution is found where only one direction of the anisotropic universe expands while the other two remain constants. We compute an amplification of the seed magnetic field in the case where Bianchi IX degenerates into de Sitter metric, fields amplify from 10^{-6}G to 10^{-5}G in spiral galaxies for a cosmological constant of the order $|{\Lambda}|<10^{33}s^{-2}$ and considering that the age of universe of the order of 10^{10}yrs. Another example is given by the ABC chaotic flows in the pseudo-Riemannian spacetime representing the Kasner anisotropic nonsingular universe.
The early evolution of dense star clusters is possibly dominated by close interactions between stars, and physical collisions between stars may occur quite frequently. Simulating a stellar collision event can be an intensive numerical task, as detailed calculations of this process require hydrodynamic simulations in three dimensions. We present a computationally inexpensive method in which we approximate the merger process, including shock heating, hydrodynamic mixing and mass loss, with a simple algorithm which is based on conservation laws and a basic qualitative understanding of the hydrodynamics of stellar mergers. The algorithm is based on Archimedes' principle, which dictates the distribution of the fluid in stable equilibrium situation. We calibrate and apply the method to mergers of massive stars, as these are expected to occur in young and dense star clusters. We find that mergers between spectral type B stars ($\sim$10\msun) result in substantial mixing, whereas mergers between stars of different spectral type, such as type O and B stars (10-40\msun), are subject to relatively little mixing.
The recent (December 2004) discovery of the sixth accretion-powered millisecond X-ray pulsar IGR J00291+5934 provides a very good chance to deepen our knowledge of such systems. Although these systems are well studied at high energies, poor informations are available for their optical/NIR counterparts during quiescence. Up to now, only for SAX J1808.4-3658, the first discovered system of this type, we have a secure multiband detection of its optical counterpart in quiescence. Among the seven known system IGR J00291+5934 is the one that resembles SAX J1808.4-3658 more closely. With the Italian 3.6 m TNG telescope, we have performed deep optical and NIR photometry of the field of IGR J00291+5934 during quiescence in order to look for the presence of a variable counterpart. We present here the first multiband ($VRIJH$) detection of the optical and NIR counterpart of IGR J00291+5934 in quiescence as well as a deep upper limit in the $K-$band. We obtain an optical light curve that shows variability consistent with a sinusoidal modulation at the known 2.46 hr orbital period and present evidence for a strongly irradiated companion.
We compute the pair annihilation cross section of light dark matter scalar particles into two photons, and discuss the detectability of the monochromatic line associated with these annihilations.
The impact of HST photometry and European astronomy in studies concerning the star formation histories of resolved galaxies is described. Our current knowledge of the star formation history of systems within 10-20 Mpc, as derived from the colour-magnitude diagrams of their resolved stellar populations, is reviewed, as well as the impact of these results on our understanding of galaxy evolution.
Water is predicted to be among, if not the most abundant molecular species after hydrogen in the atmospheres of close-in extrasolar giant planets (hot-Jupiters) Several attempts have been made to detect water on an exoplanet, but have failed to find compelling evidence for it or led to claims that should be taken with caution. Here we report an analysis of recent observations of the hot-Jupiter HD189733b taken during the transit, where the planet passed in front of its parent star. We find that absorption by water vapour is the most likely cause of the wavelength-dependent variations in the effective radius of the planet at the infrared wavelengths 3.6, 5.8 and 8 microns. The larger effective radius observed at visible wavelengths may be due to either star variability or the presence of clouds/hazes. We explain the most recent thermal infrared observations of the planet during secondary transit behind the star, reporting a non-detection of water on HD189733b, as being a consequence of the nearly isothermal vertical profile of the planet.s atmosphere. Our results show that water is detectable on extrasolar planets using the primary transit technique and that the infrared should be a better wavelength region than the visible, for such searches.
We present N-body simulations of unstable spiral modes in a dynamically cool collisionless disc. We show that spiral modes grow in a thin collisionless disk in accordance with the analytical perturbation theory. We use the particle-mesh code SUPERBOX with nested grids to follow the evolution of unstable spirals that emerge from an unstable equilibrium state. We use a large number of particles (up to 40 million particles) and high-resolution spatial grids in our simulations (128^3 cells). These allow us to trace the dynamics of the unstable spiral modes until their wave amplitudes are saturated due to nonlinear effects. In general, the results of our simulations are in agreement with the analytical predictions. The growth rate and the pattern speed of the most unstable bar-mode measured in N-body simulations agree with the linear analysis. However the parameters of secondary unstable modes are in lesser agreement because of the still limited resolution of our simulations.
In order to determine the circumstances under which isolated SNRs are capable of rising into and enriching the thick disk and galactic halo, simulations of supernova remnants are performed with the FLASH magnetohydrodynamic code. We performed simulations in which the interstellar magnetic field is parallel to or perpendicular to the galactic plane as well as a simulation without a magnetic field. The ambient gas density distribution and gravitational potential are based on observations of our galaxy. We evolve the remnants to ages of roughly 10,000,000 years. For our simulation without a magnetic field, we compare the evolution of the hot bubble's velocity with the velocity evolution calculated from the buoyant and drag accelerations. We found surprisingly small vertical velocities of the hot gas, from which we estimated the drag coefficient to be ten for the non-magnetic simulation. Although we found little buoyant motion of the hot gas during the remnant's lifetime, we found rapid vertical motion of the associated cool dense gas near the end of the remnants life. This motion deformed the remnant into a mushroom cloud structure similar to those found in previous simulations. The simulation in which we have a 4 micro-Gauss magnetic field parallel to the galactic mid-plane shows a dramatically elongated bubble parallel to the magnetic field. The magnetic field pins the supernova remnant preventing it from rising. In the simulation with the 4 micro-Gauss magnetic field perpendicular to the midplane the hot bubble rises more, indicating that having the magnetic field in the same direction as the gravitational force enhances the rise of the bubble.
This Letter analyzes 3-dimensional simulations of Kerr black hole magnetospheres that obey the general relativistic equations of perfect magnetohydrodynamics (MHD). Particular emphasis is on the event horizon magnetosphere (EHM) which is defined as the the large scale poloidal magnetic flux that threads the event horizon of a black hole (This is distinct from the poloidal magnetic flux that threads the equatorial plane of the ergosphere, which forms the ergospheric disk magnetosphere). Standard MHD theoretical treatments of Poynting jets in the EHM are predicated on the assumption that the plasma comprising the boundaries of the EHM plays no role in producing the Poynting flux. The energy flux is electrodynamic in origin and it is essentially conserved from the horizon to infinity, this is known as the Blandford-Znajek (B-Z) mechanism. To the contrary, within the 3-D simulations, the lateral boundaries are strong pistons for MHD waves and actually inject prodigious quantities of Poynting flux into the EHM. At high black hole spin rates, strong sources of Poynting flux adjacent to the EHM from the ergospheric disk will actually diffuse to higher latitudes and swamp any putative B-Z effects. This is in contrast to lower spin rates, which are characterized by much lower output powers and modest amounts of Poynting flux are injected into the EHM from the accretion disk corona.
We present broad-band 24, 70 and 160 micron photometry, 5-35 micron and 55-90 micron spectra of the eruptive variable V4332 Sgr from Spitzer observations. The distinguishing feature of the 5-35 micron spectrum is an unusually broad absorption feature near 10 micron at the position generally associated with silicate-rich dust. Through radiative transfer modeling, we show that this broad feature cannot arise from silicates alone but requires the inclusion of alumina (Al2O3) as a dust condensate. The case for including Al2O3 is strengthened further by the presence of the AlO radical, a potentially important molecule in forming Al2O3. The present detection indicates that porous alumina manifests itself through a broadening of the 9.7 micron silicate feature and additionally displays, on the shoulder of the silicate feature, a component at ~11.5 micron. We discuss how further observations of V4332 Sgr may have the potential of verifying some general predictions of the dust condensation process.
The skeleton formalism aims at extracting and quantifying the filamentary structure of the universe is generalized to 3D density fields; a numerical method for computating a local approximation of the skeleton is presented and validated here on Gaussian random fields. This method manages to trace well the filamentary structure in 3D fields such as given by numerical simulations of the dark matter distribution on large scales and is insensitive to monotonic biasing. Two of its characteristics, namely its length and differential length, are analyzed for Gaussian random fields. Its differential length per unit normalized density contrast scales like the PDF of the underlying density contrast times the total length times a quadratic Edgeworth correction involving the square of the spectral parameter. The total length scales like the inverse square smoothing length, with a scaling factor given by 0.21 (5.28+ n) where n is the power index of the underlying field. This dependency implies that the total length can be used to constrain the shape of the underlying power spectrum, hence the cosmology. Possible applications of the skeleton to galaxy formation and cosmology are discussed. As an illustration, the orientation of the spin of dark halos and the orientation of the flow near the skeleton is computed for dark matter simulations. The flow is laminar along the filaments, while spins of dark halos within 500 kpc of the skeleton are preferentially orthogonal to the direction of the flow at a level of 25%.
We review the recent data on the knot HST-1 in the M87 jet in the context of typical blazar behavior. In particular we discuss the wide-band flare of 2005 which peaked at a factor of 50 to 80 times the intensity observed in 2000; the superluminal radio features; and the arguments that support the hypothesis that HST-1 was the source of the excess TeV emission found by H.E.S.S. in 2005. To the extent that M87 can be classified as a blazar, perhaps observed at a somewhat larger angle to the line of sight compared to most blazars, all of these blazar properties originate at a distance greater than 100 pc from the nucleus, and thus cannot be associated with the location of the 'launching of the jet'.
We present several cases of optical observations during gamma-ray bursts (GRBs) which resulted in prompt limits but no detection of optical emission. These limits constrain the prompt optical flux densities and the optical brightness relative to the gamma-ray emission. The derived constraints fall within the range of properties observed in GRBs with prompt optical detections, though at the faint end of optical/gamma flux ratios. The presently accessible prompt optical limits do not require a different set of intrinsic or environmental GRB properties, relative to the events with prompt optical detections.
We present deep HST ACS images of the post-starburt shell galaxy AM 0139-655. We find evidence for the presence of three distinct globular cluster subpopulations associated with this galaxy: a centrally concentrated young population (~ 0.4 Gyr), an intermediate age population (~ 1 Gyr) and an old, metal-poor population similar to that seen around normal galaxies. The g-I color distribution of the clusters is bimodal with peaks at 0.85 and 1.35. The redder peak at g-I=1.35 is consistent with the predicted color for an old metal-poor population. The clusters associated with the peak at g-I=0.85 are centrally concentrated and interpreted as a younger and more metal-rich population. We suggest that these clusters have an age of ~ 0.4 Gyr and solar metallicity based on a comparison with population synthesis models. The luminosity function of these "blue" clusters is well represented by a power law. Interestingly, the brightest shell associated with the galaxy harbors some of the youngest clusters observed. This seems to indicate that the same merger event was responsible for the formation of both the shells and the young clusters. The red part of the color distribution contains several very bright clusters, which are not expected for an old, metal-poor population. Furthermore, the luminosity function of the "red" GCs cannot be fit well by either a single gaussian or a single power law. A composite (gaussian + power law) fit to the LF of the red clusters yields both a low rms and very plausible properties for an old population plus an intermediate-age population of GCs. Hence, we suggest that the red clusters in AM 0139-655 consist of two distinct GC subpopulations, one being an old, metal-poor population as seen in normal galaxies and one having formed during a recent dissipative galaxy merger.
It was argued in literature that traversable wormholes can exist with arbitrarily small violation of null energy conditions. We show that if the amount of exotic material near the wormhole throat tends to zero, either this leads to a horn instead of a wormhole or the throat approaches the horizon in such a way that infnitely large stresses develop on the throat.
It is argued that under natural hypothesis the Fermions inside a black hole formed after the collapse of a neutron star could form a non compressible fluid (well before reaching the Planck scale) leading to some features of integer Quantum Hall Effect. The relations with black hole entropy are analyzed. Insights coming from Quantum Hall Effect are used to analyze the coupling with Einstein equations. Connections with some cosmological scenarios and with higher dimensional Quantum Hall Effect are shortly pointed out.
We present a complete set of the equations and matching conditions required for the description of physically meaningful charged, dissipative, spherically symmetric gravitational collapse with shear. Dissipation is described with both free-streaming and diffusion approximations. The effects of viscosity are also taken into account. The roles of different terms in the dynamical equation are analyzed in detail. The dynamical equation is coupled to a causal transport equation in the context of Israel-Stewart theory. The decrease of the inertial mass density of the fluid, by a factor which depends on its internal thermodynamic state, is reobtained, with the viscosity terms included. In accordance with the equivalence principle, the same decrease factor is obtained for the gravitational force term. The effect of the electric charge on the relation between the Weyl tensor and the inhomogeneity of energy density is discussed.
It was recently argued that the observed PVLAS anomaly can be explained by chameleon field theories in which large deviations from Newton's law can be avoided. Here we present the predictions for the dichroism and the birefringence induced in the vacuum by a magnetic field in these models. We show that chameleon particles behave very differently from standard axion-like particles (ALPs). We find that, unlike ALPs, the chameleon particles are confined within the experimental set-up. As a consequence, the birefringence is always bigger than the dichroism in PVLAS-type experiments.
We study D-brane inflation in a warped conifold background that includes brane-position dependent corrections for the nonperturbative superpotential. Instead of stabilizing the volume modulus chi at instantaneous minima of the potential and studying the inflation dynamics with an effective single field (radial distance between a brane and an anti-brane) phi, we investigate the multi-field inflation scenario involving these two fields. The two-field dynamics with the potential V(phi,chi) in this model is significantly different from the effective single-field description in terms of the field phi when the field chi is integrated out. The latter picture underestimates the total number of e-foldings even by one order of magnitude. We show that a correct single-field description is provided by a field psi obtained from a rotation in the two-field space along the background trajectory. This model can give a large number of e-foldings required to solve flatness and horizon problems at the expense of fine-tunings of model parameters. We also estimate the spectra of density perturbations and show that the slow-roll parameter eta_{psi psi}=M_{pl}^2 V_{,psi psi}/V in terms of the rotated field psi determines the spectral index of scalar metric perturbations. We find that it is generally difficult to satisfy, simultaneously, both constraints of the spectral index and the COBE normalization, while the tensor to scalar ratio is sufficiently small to match with observations.
Links to: arXiv, form interface, /find, astro-ph, /recent, /0707, /abs, help (Access key information)
We investigate the nature of CO emission from z~6 quasars by combining non-LTE radiative transfer calculations with merger-driven models of z~6 quasar formation that arise naturally in LCDM cosmological simulations. We consider four model quasars formed in 10^12-10^13 M_sun halos from different merging histories. Our main results follow. Owing to massive starbursts and funneling of dense gas into the nuclear regions of merging galaxies, the CO is highly excited and the flux density peaks between J=5-8. The CO morphology of z~6 quasars often exhibits multiple emission peaks which arise from H2 concentrations which have not yet fully coalesced. Quasars at z~6 display a large range of sightline dependent line widths such that the lines are narrowest when the rotating H2 gas associated with the quasar is viewed face-on (when L_B is largest), and broadest when the gas is seen edge-on (when L_B is lowest). Thus for all models selection effects exist such that quasars selected for optical luminosity are preferentially face-on which may result in detected CO line widths narrower than the median. The sightline averaged line width is reflective of the circular velocity (V_c) of the host halo, and ranges from sigma~300-650 km/s. For optically selected QSOs, 10-25% (halo-mass dependant) of sightlines have narrow line widths compatible with the sole CO detection at z>6, J1148+5251. When accounting for both the temporal evolution of CO line widths, as well as the redshift evolution of halo V_c, these models self-consistently account for the CO line widths of both z~2 sub-mm galaxies and QSO's. Finally, the dynamical mass derived from the sightline averaged line widths provides a good estimate of the total mass, and allows for a stellar bulge and SMBH consistent with the local M_BH-M_bulge relation. [abridged]
We review the latest attempts to determine the accretion geometry in radio-loud active galactic nuclei (AGN). These objects, which comprise ~10-20% of the AGN population, produce powerful collimated radio jets that can extend thousands of parsecs from the center of the host galaxy. Recent multiwavelength surveys have shown that radio-loudness is more common in low-luminosity AGN than in higher luminosity Seyfert galaxies or quasars. These low-luminosity AGN have small enough accretion rates that they are most likely accreting via a geometrically thick and radiatively inefficient accretion flow. In contrast, X-ray spectroscopic observations of three higher luminosity broad-line radio galaxies (3C 120, 4C+74.26 and PG 1425+267) have found evidence for an untruncated thin disk extending very close to the black hole. These tentative detections indicate that, for this class of radio-loud AGN, the accretion geometry is very similar to their radio-quiet counterparts. These observations suggest that there are three conditions to jet formation that must be satisfied: the presence of a rapidly spinning black hole, an accretion flow with a large H/r ratio, and a favorable magnetic field geometry.
We derive the basic properties of seven Galactic open clusters containing Cepheids and construct their period-luminosity (P-L) relations. For our cluster main-sequence fitting we extend previous Hyades-based empirical color-temperature corrections to hotter stars using the Pleiades as a template. We use BVI_{C}JHK_{s} data to test the reddening law, and include metallicity effects to perform a more comprehensive study for our clusters than prior efforts. The ratio of total to selective extinction R_V that we derive is consistent with expectations. Assuming the LMC P-L slopes, we find <M_V> = -3.93 +/- 0.07 (statistical) +/- 0.14 (systematic) for 10-day period Cepheids, which is generally fainter than those in previous studies. Our results are consistent with recent HST and Hipparcos parallax studies when using the Wesenheit magnitudes W(VI). Uncertainties in reddening and metallicity are the major remaining sources of error in the V-band P-L relation, but a higher precision could be obtained with deeper optical and near-infrared cluster photometry. We derive distances to NGC4258, the LMC, and M33 of (m - M)_0 = 29.28 +/- 0.10, 18.34 +/- 0.06, and 24.55 +/- 0.28, respectively, with an additional systematic error of 0.16 mag in the P-L relations. The distance to NGC4258 is in good agreement with the geometric distance derived from water masers [\Delta (m - M)_0 = 0.01 +/- 0.24]; our value for M33 is less consistent with the distance from an eclipsing binary [\Delta (m - M)_0 = 0.37 +/- 0.34]; our LMC distance is moderately shorter than the adopted distance in the HST Key Project, which formally implies an increase in the Hubble constant of 7% +/- 8%.
New observations over the next few years of the emission of distant objects will help unfold the chapter in cosmic history around the era of the first galaxies. These observations will use the neutral hydrogen emission or absorption at a wavelength of 21 cm as a detector of the hydrogen abundance. We predict the signature on the 21-cm signal of the early generations of galaxies. We calculate the 21-cm power spectrum including two physical effects that were neglected in previous calculations. The first is the redistribution of the UV photons from the first galaxies due to their scattering off of the neutral hydrogen, which results in an enhancement of the 21-cm signal. The second is the presence of an ionized hydrogen bubble near each source, which produces a cutoff at observable scales. We show that the resulting clear signature in the 21-cm power spectrum can be used to detect and study the population of galaxies that formed just 200 million years after the Big Bang.
This paper studies the turbulent cascade of magnetic energy in weakly collisional magnetized plasmas. A cascade model is presented, based on the assumptions of local nonlinear energy transfer in wavenumber space, critical balance between linear propagation and nonlinear interaction times, and the applicability of linear dissipation rates for the nonlinearly turbulent plasma. The model follows the nonlinear cascade of energy from the driving scale in the MHD regime, through the transition at the ion Larmor radius into the kinetic \Alfven wave regime, in which the turbulence is dissipated by kinetic processes. The turbulent fluctuations remain at frequencies below the ion cyclotron frequency due to the strong anisotropy of the turbulent fluctuations, $k_\parallel \ll k_\perp$ (implied by critical balance). In this limit, the turbulence is optimally described by gyrokinetics; it is shown that the gyrokinetic approximation is well satisfied for typical slow solar wind parameters. Wave phase velocity measurements are consistent with a kinetic \Alfven wave cascade and {\em not} the onset of ion cyclotron damping. The conditions under which the gyrokinetic cascade reaches the ion cyclotron frequency are established. Cascade model solutions imply that collisionless damping provides a natural explanation for the observed range of spectral indices in the dissipation range of the solar wind. The dissipation range spectrum is predicted to be an exponential fall off; the power-law behavior apparent in observations may be an artifact of limited instrumental sensitivity. The cascade model is motivated by a programme of gyrokinetic simulations of turbulence and particle heating in the solar wind.
We use data from observational cosmology to put constraints on higher-dimensional extensions of general relativity in which the effective four-dimensional dark-energy density (or cosmological "constant") decays with time. In particular we study the implications of this decaying dark energy for the age of the universe, large-scale structure formation, big-bang nucleosynthesis and the magnitude-redshift relation for Type Ia supernovae. Two of these tests (age and the magnitude-redshift relation) place modest lower limits on the free parameter of the theory, a cosmological length scale L akin to the de Sitter radius. These limits will improve if experimental uncertainties on supernova magnitudes can be reduced around z=1.
We present a cascade model for turbulence in weakly collisional plasmas that follows the nonlinear cascade of energy from the large scales of driving in the MHD regime to the small scales of the kinetic Alfven wave regime where the turbulence is dissipated by kinetic processes. Steady-state solutions of the model for the slow solar wind yield three conclusions: (1) beyond the observed break in the magnetic energy spectrum, one expects an exponential cut-off; (2) the widely held interpretation that this dissipation range obeys power-law behavior is an artifact of instrumental sensitivity limitations; and, (3) over the range of parameters relevant to the solar wind, the observed variation of dissipation range spectral indices from -2 to -4 is naturally explained by the varying effectiveness of Landau damping, from an undamped prediction of -7/3 to a strongly damped index around -4.
We report the discovery of hysteresis between the x-ray spectrum and luminosity of black-hole binary LMC X-3. Our observations, with the Proportional Counter Array on the Rossi X-ray Timing Explorer, took place entirely within the soft spectral state, dominated by a spectral component that was fitted well with a multicolor disk blackbody. A power-law component was seen only during times when the luminosity of the disk blackbody was declining. The x-ray luminosity at these times was comparable to that seen in transient systems (x-ray novae) when they return to the hard state at the end of an outburst. Our observations may represent partial transitions to the hard state; complete transitions have been seen in this system by Wilms et al. (2001). If they are related to the soft-to-hard transition in transients, then they demonstrate that hysteresis effects can appear without a full state transition. We discuss these observations in the context of earlier observations of hysteresis within the hard state of binaries 1E 1740.7-2942 and GRS 1758-258 and in relation to published explanations of hysteresis in transients.
We present luminosity functions (LFs) and photometric and spectroscopic properties of Lya emitters (LAEs) at three redshifts of z=3.1, 3.7, and 5.7 in a 1 deg^2 sky of the Subaru/XMM-Newton Deep Survey (SXDS) Field. We obtain a photometric sample of 858 LAE candidates based on deep Subaru/Suprime-Cam imaging data, and a spectroscopic sample of 84 confirmed LAEs based on Subaru/FOCAS and VLT/VIMOS spectroscopic data. We derive the LF of Lya emission for each redshift, taking into account the statistical error and the field-to-field variation, and find that the apparent luminosity function shows no significant evolution between z=3.1 and 5.7 within factors of 1.8 and 2.7 in L* and phi*, respectively. This implies that the intrinsic Lya luminosity of LAEs is higher at earlier epochs and that this brightening is just canceled out by the counter effect of increasing absorption by the intervening inter-galactic medium (IGM). We also derive the LF of UV continuum emission ~1500 A to find that the number density and/or the average UV luminosity of LAEs increase from z=3.1 to 5.7, which is consistent with the plausible intrinsic brightening of the Lya luminosity. The ratio in number density of LAEs to dropout galaxies is found to increase from z=3.1 to 5.7, implying that galaxies with Lya emission are more common at earlier epochs. We identify six LAEs (in total) with AGN activities from our spectra and multi-wavelength data-set of VLA, Spitzer, and XMM-Newton. Only ~1% of the LAEs at z=3-4 in our photometric sample show AGN activities, while the brightest LAEs with log L(Lya) >~ 43.4-43.6 erg/s appear to always host AGNs. We investigate stacked radio images, UV colors, and HeII emission of our LAEs for star-formation, extinction, and primordial populations, respectively (abridged).
Using a sample of galaxies from the Sloan Digital Sky Survey spectroscopic catalog with measured star-formation rates (SFRs) and ultraviolet (UV) photometry from the GALEX Medium Imaging Survey, we derived empirical linear correlations between the SFR to UV luminosity ratio and the UV-optical colors of blue sequence galaxies. The relations provide a simple prescription to correct UV data for dust attenuation that best reconciles the SFRs derived from UV and emission line data. The method breaks down for the red sequence population as well as for very blue galaxies such as the local ``supercompact'' UV luminous galaxies and the majority of high redshift Lyman Break Galaxies which form a low attenuation sequence of their own.
Most large scale dynamo research for astrophysical rotators focuses on interior flow driven helical dynamos (FDHDs), but larger scale coronal fields most directly influence observations. It is thus important to understand the relationship between coronal and interior fields. Coronal field relaxation is actually a type of magnetically dominated helical dynamo (MDHD). MDHDs also occur in fusion plasma devices where they drive a system toward its relaxed state in response to magnetic helicity injection that otherwise drives the system away from this state. Global scale fields of astrophysical rotators and jets are thus plausibly produced by a direct coupling between an interior FDHD and a coronal MDHD, interfaced by magnetic helicity transport through their mutual boundary. Tracking the magnetic helicity also elucidates how both FDHD and MDHDs evolve and saturate. The utility of magnetic helicity is unhampered by its non-gauge invariance since physical fields can always be recovered.
Halo model interpretations of the luminosity dependence of galaxy clustering assume that there is a central galaxy in every sufficiently massive halo, and that this central galaxy is very different from all the others in the halo. The halo model decomposition makes the remarkable prediction that the mean luminosity of the non-central galaxies in a halo should be almost independent of halo mass: the predicted increase is about 20% while the halo mass increases by a factor of more than twenty. In contrast, the luminosity of the central object is predicted to increase approximately linearly with halo mass at low to intermediate masses, and logarithmically at high masses. We show that this almost non-existent mass-dependence of the satellites is in excellent agreement with the satellite population in group catalogs constructed by two different collaborations. This is remarkable because the halo model prediction was made without ever identifying groups and clusters. The halo model also predicts that the number of satellites in a halo is drawn from a Poisson distribution with mean which depends on halo mass. This, combined with the weak dependence of satellite luminosity on halo mass, suggests that the Scott effect may better apply to the most luminous satellite galaxy in a halo than to BCGs. If galaxies are identified with dark halo substructure at the present time, then central galaxies should be about 4 times more massive than satellite galaxies of the same luminosity, whereas the differences between the stellar mass-to-light ratios should be smaller. Therefore, a comparison of the weak lensing signal from central and satellite galaxies of the same luminosity should provide useful constraints on these models. We also show how the halo model may be used to constrain the stellar mass associated with intercluster light.
We report SMA 335 GHz continuum observations with angular resolution of ~0.''3, together with VLA ammonia observations with ~1'' resolution toward Cep A HW 2. We find that the flattened disk structure of the dust emission observed by Patel et al. is preserved at the 0.''3 scale, showing an elongated structure of ~$0.''6 size (450 AU) peaking on HW 2. In addition, two ammonia cores are observed, one associated with a hot-core previously reported, and an elongated core with a double peak separated by ~1.''3 and with signs of heating at the inner edges of the gas facing HW 2. The double-peaked ammonia structure, as well as the double-peaked CH3CN structure reported previously (and proposed to be two independent hot-cores), surround both the dust emission as well as the double-peaked SO2 disk structure found by Jimenez-Serra et al. All these results argue against the interpretation of the elongated dust-gas structure as due to a chance-superposition of different cores; instead, they imply that it is physically related to the central massive object within a disk-protostar-jet system.
We present the mass and X-ray temperature functions derived from a sample of more than 15,000 galaxy clusters of the MareNostrum Universe cosmological SPH simulations. In these simulations, we follow structure formation in a cubic volume of 500/h Mpc on a side assuming cosmological parameters consistent with either the first or third year WMAP data and gaussian initial conditions. We compare our numerical predictions with the most recent observational estimates of the cluster X-ray temperature functions and find that the low normalization cosmological model inferred from the 3 year WMAP data results is barely compatible with the present epoch X-ray cluster abundances. We can only reconcile the simulations with the observational data if we assume a normalization of the Mass-Temperature relation which is a factor of 2.5--3 smaller than our non-radiative simulations predict. This deviation seems to be too large to be accounted by the effects of star formation or cooling in the ICM, not taken into account in these simulations.
We measure the intrinsic alignments of the blue and the red galaxies separately by analyzing the spectroscopic data of the Sloan Digital Sky Survey Data Release 6 (SDSS DR6). For both samples of the red and blue galaxies with axial ratios of b/a <= 0.8, we detect a 3 sigma signal of the intrinsic alignments in the redshift range of [0, 0.4] for r-band absolute (model) magnitude cut of M_{r} <= -19.2 (no K correction). We note a difference in the strength and the distance scale for the red and the blue galaxy intrinsic correlations. For the bright blue galaxies, the intrinsic correlation signal is stronger but detected only at small distances of r <= 3 Mpc/h. While for the bright red galaxies it is weaker but detected even at larger distances out to r ~ 6 Mpc/h. Fitting the recent analytic model to the observed signals, we quantify and interpret the difference between the blue and the red galaxy intrinsic alignments. It is found that for the blue galaxies the intrinsic correlation, eta_{2D}(r), follows a quadratic scaling of the linear density correlation function as eta_{2D}(r) xi^{2}(r), while for the red galaxies it is closer to a linear scaling as eta_{2D}(r) xi(r). Our results suggest that the growth of the non-Gaussianity in the density field had a strong effect on the red galaxy intrinsic alignments. We conclude that our results will be useful not only for the cosmic shear analysis but also for understanding the evolution and properties of the red and the blue galaxies.
The 174 ks Chandra Advanced CCD Imaging Spectrometer exposure of the Large Area Lyman Alpha Survey (LALA) Cetus field is the second of the two deep Chandra images on LALA fields. In this paper we present the Chandra X-ray sources detected in the Cetus field, along with an analysis of X-ray source counts, stacked X-ray spectrum, and optical identifications. A total of 188 X-ray sources were detected: 174 in the 0.5-7.0 keV band, 154 in the 0.5-2.0 keV band, and 113 in the 2.0-7.0 keV band. The X-ray source counts were derived and compared with LALA Bootes field (172 ks exposure). Interestingly, we find consistent hard band X-ray source density, but 36+-12% higher soft band X-ray source density in Cetus field. The weighted stacked spectrum of the detected X-ray sources can be fitted by a powerlaw with photon index Gamma = 1.55. Based on the weighted stacked spectrum, we find that the resolved fraction of the X-ray background drops from 72+-1% at 0.5-1.0 keV to 63+-4% at 6.0-8.0 keV. The unresolved spectrum can be fitted by a powerlaw over the range 0.5-7 keV, with a photon index Gamma = 1.22. We also present optical counterparts for 154 of the X-ray sources, down to a limiting magnitude of r' = 25.9 (Vega), using a deep r' band image obtained with the MMT.
The location of two nearby galaxy groups within ~20 Mpc in the Leo region allows for a detailed study of low-mass galaxies. A catalog of HI line detections in Leo (9h36m < RA <11h36m, +8deg < dec < +16deg) has been made from the blind HI survey ALFALFA. More sensitive single-pixel Arecibo observations targeted Leo dwarf candidates noted optically by Karachentsev et al 2004 (K04) to determine group members and allow for a comparison of HI and optically-selected samples. This presentation highlights the differences between the two samples and the significant contribution blind HI surveys can make to the missing satellites problem.
The hemispheric pattern of solar filaments is considered in the context of
the global magnetic field of the solar corona. In recent work Mackay and van
Ballegooijen have shown how, for a pair of interacting magnetic bipoles, the
observed chirality pattern could be explained by the dominant range of bipole
tilt angles and helicity in each hemisphere. This study aims to test this
earlier result through a direct comparison between theory and observations,
using newly-developed simulations of the actual surface and 3D coronal magnetic
fields over a 6-month period, on a global scale.
In this paper we consider two key components of the study; firstly the
observations of filament chirality for the sample of 255 filaments, and
secondly our new simulations of the large-scale surface magnetic field. Based
on a flux-transport model, these will be used as the lower boundary condition
for the future 3D coronal simulations. Our technique differs significantly from
those of other authors, where the coronal field is either assumed to be purely
potential, or has to be reset back to potential every 27 days in order that the
photospheric field remain accurate. In our case we ensure accuracy by the
insertion of newly-emerging bipolar active regions, based on observed
photospheric synoptic magnetograms. The large-scale surface field is shown to
remain accurate over the 6-month period, without any resetting. This new
technique will enable future simulations to consider the long-term build-up and
transport of helicity and shear in the coronal magnetic field, over many months
or years.
We explore a model for a fermionic dark matter particle family which decouples from the rest of the partices when at least all standard model particles are in equilibrium. We calculate the allowed ranges for mass and chemical potential to be compatible with big bang nucleosynthesis (BBN) calculations and WMAP-data for a flat universe with dark energy. Futhermore we estimate the free streaming length for fermions and antifermions to allow comparison to large scale structure data (LLS). We find that for dark matter decoupling when all standard model particles are present even the least restrictive combined BBN calculation and WMAP results allow us to constrain the initial dark matter chemical potential to a highest value of 6.3 times the dark matter temperature. In this case the resulting mass range is at most 1.8 eV < m < 53 eV, where the upper bound scales linearly with the effective degrees of freedom at decoupling. From LSS we find that similar to ordinary warm dark matter models the particle mass has to be larger than approximately 500 eV (meaning the effective degrees of freedom at decoupling have to be > 1000) to be compatible with observations of the Ly alpha forest at high redshift, but still the dark matter chemical potential over temperature ratio can exceed unity.
The Arecibo Legacy Fast ALFA (ALFALFA) survey is a second generation blind extragalactic HI survey currently in progess which is exploiting Arecibo's superior sensitivity, angular resolution and digital technology to derive a census of the local HI universe over a cosmologically significant volume. As of the time of this meeting, some 4500 good quality extragalactic HI line sources have been identified in about 15% of the final survey area. ALFALFA is detecting HI masses as low as 10**6 solar masses and as large as 10**10.8 solar masses with positional accuracies typically better than 20", allowing immediate identification of the most probable optical counterparts. Only 3% of all extragalactic HI sources and less than 1% of detections with HI mass 10**9.5 solar masses cannot be identified with a stellar component. Because ALFALFA is far from complete, the discussion here focuses on limitations of past surveys that ALFALFA will overcome because of its greater volume, sensitivity and reduced susceptibility to source confusion and on a sampling of illustrative preliminary results. First ALFALFA results already suggest, in agreement with previous studies, that there does not appear to be a cosmologically significant population of optically dark but HI rich galaxies. ALFALFA promises a wealthy dataset for the exploration of many issues in near-field cosmology and galaxy evolution studies, setting the stage for their extension to higher redshifts in the future with the Square Kilometer Array (SKA).
Early-type dwarf galaxies dominate cluster populations, but their formation and evolutionary histories are poorly understood. The ALFALFA (Arecibo Legacy Fast ALFA) survey has completed observations of the Virgo Cluster in the declination range of 6 - 16 degrees. Less than 2% of the early-type dwarf population is detected, a significantly lower fraction than reported in previous papers based on more limited samples. In contrast ~30 of the irregular/BCD dwarf population is detected. The detected early-type galaxies tend to be located in the outer regions of the cluster, with a concentration in the direction of the M Cloud. Many show evidence for ongoing/recent star formation. Galaxies such as these may be undergoing morphological transition due to cluster environmental effects.
HI observations of the Virgo Cluster pair NGC 4532/DDO 137, conducted as part of the Arecibo Legacy Fast ALFA Survey (ALFALFA), reveal an HI feature extending ~500 kpc to the southwest. The structure has a total mass of up to 7 x 10^8 solar masses, equivalent to 10% of the pair HI mass. Optical R imaging reveals no counterparts to a level of 26.5 magnitudes per square arcsec. The structure is likely the result of galaxy harassment.
For the last 25 years, the 21 cm line has been used productively to investigate the large-scale structure of the Universe, its peculiar velocity field and the measurement of cosmic parameters. In February 2005 a blind HI survey that will cover 7074 square degrees of the high latitude sky was started at Arecibo, using the 7-beam feed L-band feed array (ALFA). Known as the Arecibo Legacy Fast ALFA (ALFALFA) Survey, the program is producing a census of HI-bearing objects over a cosmologically significant volume of the local Universe. With respect to previous blind HI surveys, ALFALFA offers an improvement of about one order of magnitude in sensitivity, 4 times the angular resolution, 3 times the spectral resolution, and 1.6 times the total bandwidth of HIPASS. ALFALFA can detect 7 X 10**4 D**2 solar masses of HI, where D is the source distance in Mpc. As of mid 2007, 44% of the survey observations and 15% of the source extraction are completed. We discuss the status of the survey and present a few preliminary results, in particular with reference to the proposed "dark galaxy" VirgoHI21.
The ALFALFA blind HI survey will enable a census of the distribution of gas-rich galaxies in the local Universe. Sensitive to an HI mass of 10**7 solar masses at the distance of the Virgo cluster, ALFALFA will probe the smallest objects locally and provide a new consideration of near-field cosmology. Additionally, with a larger, cosmologically significant sample volume and wider bandwidth than previous blind surveys, a much larger number of detections in each mass bin is possible, with adequate angular resolution to eliminate the need for extensive follow-up observations. This increased sensitivity will greatly enhance the utility of cosmological probles in HI. ALFALFA will eventually measure the correlation function of HI selected galaxies in a large local volume. The larger sample and volume size of the ALFALFA dataset will also robustly measure the HI mass function (HIMF). Here, we present the preliminary results on the distribution of local gas-rich galaxies from a first ALFALFA catalog covering 540 deg**2.
We examine the MHD instabilities arising in the radiation zone of a differentially rotating star, in which a poloidal field of fossil origin is sheared into a toroidal field. We focus on the non-axisymmetric instability that affects the toroidal magnetic field in a rotating star, which was first studied by Pitts and Tayler in the non-dissipative limit. According to Spruit, it could also drive a dynamo. The Pitts & Tayler instability is manifestly present in our simulations, with its conspicuous m=1 dependence in azimuth. But its analytic treatment used so far is too simplified to be applied to the real stellar situation. Although the instability generated field reaches an energy comparable to that of the mean poloidal field, that field seems unaffected by the instability: it undergoes Ohmic decline, and is neither eroded nor regenerated by the instability. The toroidal field is produced by shearing the poloidal field and it draws its energy from the differential rotation. The small scale motions behave as Alfven waves; they cause negligible eddy-diffusivity and contribute little to the net transport of angular momentum. In our simulations we observe no sign of dynamo action, of either mean field or fluctuation type, up to a magnetic Reynolds number of 10^5. However the Pitts & Tayler instability is sustained as long as the differential rotation acting on the poloidal field is able to generate a toroidal field of sufficient strength.
It has been claimed that during the past history of our universe, starting past the radiation-dominated era, the fine structure constant of electromagnetism (EM), $\alpha$, has been changing\cite{webb01,murphy03}. The conclusion is achieved after looking at the separation between lines of alkaline ions like CIV, MgII, SiII, FeII, among others in the absorption spectra of very distant quasars, and comparing them with their counterparts obtained in the laboratory. (This technique is oftenly used because $\alpha$ plays an essential role in electron transitions in atoms, with the relative magnitude of the fine splitting of resonance lines of these alkaline ions being proportional to $\alpha^2$). However, the current precision of laboratory tests does not allow one to comfort or reject the astronomical observations, yet. In the meantime, other research teams have found just recently no evidence at all for a varying $\alpha$ \cite{chand04,levshakov04}. Here we suggest that as photons are EM messengers, a nonlinear electrodynamics (NLED) description of the interaction of photons with the weak local background magnetic fields of a gas cloud absorber around the emitting quasar can reconcile the null results obtained by Chand et al.\cite{chand04} and Srianand et al. \cite{srianand04}, with the negative variation found by Murphy et al. \cite{webb01,murphy01a,murphy01b,murphy01c,murphy01d}, and also to find a bridge with the positive variation argued more recently by Levshakov et al.\cite{levshakov06a,levshakov07}.
We present the first subarcsecond-resolution images at multiple mid-IR wavelengths of the thermally-emitting dust around the A0 star HD 32297. Our observations with T-ReCS at Gemini South reveal a nearly edge-on resolved disk at both 11.7 microns and 18.3 microns that extends ~150 AU in radius. The mid-IR is the third wavelength region in which this disk has been resolved, following coronagraphic observations by others of the source at optical and near-IR wavelengths. The global mid-IR colors and detailed consideration of the radial color-temperature distribution imply that the central part of the disk out to ~80 AU is relatively deficient in dust.
We report the detection of a ring of warm dust in the edge-on disk surrounding HD 32297 with the Gemini-N/MICHELLE mid-infrared imager. Our N'-band image shows elongated structure consistent with the orientation of the scattered-light disk. The Fnu(11.2 um) = 49.9+/-2.1 mJy flux is significantly above the 28.2+/-0.6 mJy photosphere. Subtraction of the stellar point spread function reveals a bilobed structure with peaks 0.5"-0.6" from the star. An analysis of the stellar component of the SED suggests a spectral type later than A0, in contrast to commonly cited literature values. We fit three-dimensional, single-size grain models of an optically thin dust ring to our image and the SED using a Markov chain Monte Carlo algorithm in a Bayesian framework. The best-fit effective grain sizes are submicron, suggesting the same dust population is responsible for the bulk of the scattered light. The inner boundary of the warm dust is located 0.5"-0.7" (~65 AU) from the star, which is approximately cospatial with the outer boundary of the scattered-light asymmetry inward of 0.5". The addition of a separate component of larger, cooler grains that provide a portion of the 60 um flux improves both the fidelity of the model fit and consistency with the slopes of the scattered-light brightness profiles. Previous indirect estimates of the stellar age (~30 Myr) indicate the dust is composed of debris. The peak vertical optical depths in our models (~0.3-1 x 1e-2) imply that grain-grain collisions likely play a significant role in dust dynamics and evolution. Submicron grains can survive radiation pressure blow-out if they are icy and porous. Similarly, the inferred warm temperatures (130-200 K) suggest that ice sublimation may play a role in truncating the inner disk.
We discuss non-thermal emission mechanism of the Crab-like pulsars with both a two-dimensional electrodynamical study and a three-dimensional model. We investigate the emission process in the outer gap accelerator. In the two-dimensional electrodynamical study, we solve the Poisson equation of the accelerating electric field in the outer gap and the equation of motion of the primary particles with the synchrotron and the curvature radiation process and the pair-creation process. We show a solved gap structure which produces a consistent gamma-ray spectrum with EGRET observation. Based on the two-dimensional model, we conduct a three-dimensional emission model to calculate the synchrotron and the inverse-Compton processes of the secondary pairs produced outside the outer gap. We calculate the pulse profiles, the phase-resolved spectra and the polarization characteristics in optical to $\gamma$-ray bands to compare the observation of the Crab pulsar and PSR B0540-69. For the Crab pulsar, we find that the outer gap geometry extending from near the stellar surface to near the light cylinder produces a complex morphology change of the pulse profiles as a function of the photon energy. This predicted morphology change is quite similar with that of the observations. The calculated phase-resolved spectra are consistent with the data through optical to the $\gamma$-ray bands. We demonstrate that the 10$\sim$20 % of the polarization degree in the optical emissions from the Crab pulsar and the Vela pulsar are explained by the synchrotron emissions with the particle gyration motion.
We aim to study dust properties of massive star forming regions in the outer Galaxy, in a direction opposite to the Galactic center. We present observations of six outer Galaxy point sources IRAS 01045+6505, 01420+6401, 05271+3059, 05345+3556, 20222+3541 and 20406+4555, taken with the Submillimeter Common-User Bolometer Array (SCUBA) on the James Clerk Maxwell Telescope (JCMT) at 450 and 850 micron. Single temperature greybody models are fitted to the Spectral Energy Distribution of the detected sub-mm cores to derive dust temperature, dust emissivity index and optical depth at 250 micron. The observed radial intensity profiles of the sub-mm cores were fitted with power laws to derive the indices describing the density distribution. At a resolution of 15" all six IRAS point sources show multiple emission peaks. Only four out of fourteen detected sub-mm cores show associated mid-infrared emission. For the sub-mm cores we derive dust temperatures of 32+-5 K and dust emissivity indices between 0.9 and 2.5. The density profiles of the sub-mm cores can be fitted by a single power law distribution with indices -1.5+-0.3, with most cores showing an index of -1.5. This is consistent with most observations of massive star forming regions and supports predictions of models of star formation which consider non-thermal support against gravitational collapse.
We have observed the shadowing of galactic cosmic ray flux in the direction of the moon, the so-called moon shadow, using the Tibet-III air shower array operating at Yangbajing (4300 m a.s.l.) in Tibet since 1999. Almost all cosmic rays are positively charged; for that reason, they are bent by the geomagnetic field, thereby shifting the moon shadow westward. The cosmic rays will also produce an additional shadow in the eastward direction of the moon if cosmic rays contain negatively charged particles, such as antiprotons, with some fraction. We selected 1.5 x10^{10} air shower events with energy beyond about 3 TeV from the dataset observed by the Tibet-III air shower array and detected the moon shadow at $\sim 40 \sigma$ level. The center of the moon was detected in the direction away from the apparent center of the moon by 0.23$^\circ$ to the west. Based on these data and a full Monte Carlo simulation, we searched for the existence of the shadow produced by antiprotons at the multi-TeV energy region. No evidence of the existence of antiprotons was found in this energy region. We obtained the 90% confidence level upper limit of the flux ratio of antiprotons to protons as 7% at multi-TeV energies.
We have developed radiation detectors using the new synthetic diamonds. The diamond detector has an advantage for observations of "low/medium" energy gamma rays as a Compton telescope. The primary advantage of the diamond detector can reduce the photoelectric effect in the low energy range, which is background noise for tracking of the Compton recoil electron. A concept of the Diamond Compton Telescope (DCT) consists of position sensitive layers of diamond-striped detector and calorimeter layer of CdTe detector. The key part of the DCT is diamond-striped detectors with a higher positional resolution and a wider energy range from 10 keV to 10 MeV. However, the diamond-striped detector is under development. We describe the performance of prototype diamond detector and the design of a possible DCT evaluated by Monte Carlo simulations.
We discuss air shower simulations based on the EPOS hadronic interaction
model.
A remarkable feature is the fact that the number of produced muons is
considerably larger compared to other interaction models. We show that this is
due to an improved treatment of baryon-antibaryon production.
Dark matter annihilation in so-called ``spikes'' near black holes is believed to be an important method of indirect dark matter detection. In the case of circular particle orbits, the density profile of dark matter has a plateau at small radii, the maximal density being limited by the annihilation cross-section. However, in the general case of arbitrary velocity anisotropy the situation is different. Particulary, for isotropic velocity distribution the density profile cannot be shallower than r^{-1/2} in the very centre. Indeed, a detailed study reveals that in many cases the term ``annihilation plateau'' is misleading, as the density actually continues to rise towards small radii and forms a weak cusp, rho ~ r^{-(beta+1/2)}, where beta is the anisotropy coefficient. The annihilation flux, however, does not change much in the latter case, if averaged over an area larger than the annihilation radius.
We present observations with the IRAM Plateau de Bure Interferometer of three QSOs at z>5 aimed at detecting molecular gas in their host galaxies as traced by CO transitions. CO (5-4) is detected in SDSSJ033829.31+002156.3 at z=5.0267, placing it amongst the most distant sources detected in CO. The CO emission is unresolved with a beam size of ~1", implying that the molecular gas is contained within a compact region, less than ~3kpc in radius. We infer an upper limit on the dynamical mass of the CO emitting region of ~3x10^10 Msun/sin(i)^2. The comparison with the Black Hole mass inferred from near-IR data suggests that the BH-to-bulge mass ratio in this galaxy is significantly higher than in local galaxies. From the CO luminosity we infer a mass reservoir of molecular gas as high as M(H2)=2.4x10^10 Msun, implying that the molecular gas accounts for a significant fraction of the dynamical mass. When compared to the star formation rate derived from the far-IR luminosity, we infer a very short gas exhaustion timescale (~10^7 yrs), comparable to the dynamical timescale. CO is not detected in the other two QSOs (SDSSJ083643.85+005453.3 and SDSSJ163033.90+401209.6) and upper limits are given for their molecular gas content. When combined with CO observations of other type 1 AGNs, spanning a wide redshift range (0<z<6.4), we find that the host galaxy CO luminosity (hence molecular gas content) and the AGN optical luminosity (hence BH accretion rate) are correlated, but the relation is not linear: L(CO) ~ [lambda*L_lambda(4400A)]^0.72. Moreover, at high redshifts (and especially at z>5) the CO luminosity appears to saturate. We discuss the implications of these findings in terms of black hole-galaxy co-evolution.
Spectral synthesis calculations based on three-dimensional stellar atmosphere models are limited by the affordable angular resolution of the radiation field. This hampers an accurate treatment of rotational line broadening. We aim to find a treatment of rotational broadening of a spherical star when the radiation field is only available at a modest number of limb-angles. We apply a combination of analytical considerations of the line-broadening process and numerical tests. We obtain a method which is closely related to classical flux convolution and which performs noticeably better than a previously suggested procedure. It can be applied to rigid as well as differential rotation.
(Abridged) We have studied the relationship among nuclear radio and X-ray power, Bondi rate and the kinetic luminosity of sub-Eddington active galactic nuclear (AGN) jets. Besides the recently discovered correlation between jet kinetic and Bondi power, we show that a clear correlation exists also between Eddington-scaled kinetic power and bolometric luminosity, given by: Log(L_kin/L_Edd)=0.49*Log(L_bol/L_Edd)-0.78. The measured slope suggests that these objects are in a radiatively inefficient accretion mode, and has been used to put stringent constraints on the properties of the accretion flow. We found no statistically significant correlations between Bondi power and bolometric AGN luminosity, apart from that induced by their common dependence on L_kin. Analyzing the relation between kinetic power and radio core luminosity, we are then able to determine, statistically, both the probability distribution of the mean jets Lorentz factor, peaking at \Gamma~7, and the intrinsic relation between kinetic and radio core luminosity, that we estimate as: Log(L_kin)=0.81*Log(L_R)+11.9, in good agreement with theoretical predictions of synchrotron jet models. With the aid of these findings, quantitative assessments of kinetic feedback from supermassive black holes in the radio mode will be possible based on accurate determinations of the central engine properties alone. As an example, Sgr A* may follow the correlations of radio mode AGN, based on its observed radiative output and on estimates of the accretion rate both at the Bondi radius and in the inner flow. If this is the case, the SMBH in the Galactic center is the source of ~ 5 times 10^38 ergs/s of mechanical power, equivalent to about 1.5 supernovae every 10^5 years.
We report on two new XMM-Newton observations of the Anomalous X-ray Pulsar (AXP) 4U 0142+614 performed in March and July 2004, collecting the most accurate spectrum for this source to date. Furthermore, we analyse two short archival observations performed in February 2002 and January 2003 (the latter already reported by G\"ohler et al. 2005) in order to study the long term behaviour of this AXP. 4U 0142+614 appears to be relatively steady in flux between 2002 and 2004, and the phase-averaged spectrum does not show any significant variability between the four epochs. We derive the deepest upper limits to date on the presence of lines in the 4U 0142+614 spectrum as a function of energy: equivalent width in the 1-3 keV energy range < 4 eV and < 8 eV for narrow and broad lines, respectively. A remarkable energy dependence in both the pulse profile and the pulsed fraction is detected, and consequently pulse-phase spectroscopy shows spectral variability as a function of phase. By making use of XMM-Newton and INTEGRAL data, we successfully model the 1-250 keV spectrum of 4U 0142+614 with three models presented in Rea et al. (2007a), namely the canonical absorbed blackbody plus two power-laws, a resonant cyclotron scattering model plus one power-law and two log-parabolic functions.
To measure the 30-GHz flux densities of the 293 sources in the Caltech-Jodrell Bank flat-spectrum (CJF) sample. The measurements are part of an ongoing programme to measure the spectral energy distributions of flat spectrum radio sources and to correlate them with the milliarcsecond structures from VLBI and other measured astrophysical properties. The 30-GHz data were obtained with a twin-beam differencing radiometer system mounted on the Torun 32-m telescope. The system has an angular resolution of 1.2 arcmin. Together with radio spectral data obtained from the literature, the 30-GHz data have enabled us to identify 42 of the CJF sources as Giga-hertz Peaked Spectrum (GPS) sources. Seventeen percent of the sources have rising spectra (alpha > 0) between 5 and 30 GHz.
We consider a belt of small bodies around a star, captured in one of the external or 1:1 mean-motion resonances with a massive perturber. The objects in the belt collide with each other. Combining methods of celestial mechanics and statistical physics, we calculate mean collisional velocities and collisional rates, averaged over the belt. The results are compared to collisional velocities and rates in a similar, but non-resonant belt, as predicted by the particle-in-a-box method. It is found that the effect of the resonant lock on the velocities is rather small, while on the rates more substantial. The collisional rates between objects in an external resonance are by about a factor of two higher than those in a similar belt of objects not locked in a resonance. For Trojans under the same conditions, the collisional rates may be enhanced by up to an order of magnitude. Our results imply, in particular, shorter collisional lifetimes of resonant Kuiper belt objects in the solar system and higher efficiency of dust production by resonant planetesimals in debris disks around other stars.
We studied the effect of supernovae feedback on a disk galaxy, taking into account the impact of infalling gas on both the star formation history and the corresponding outflow structure, the apparition of a supernovae-driven wind being highly sensitive to the halo mass, the galaxy spin and the star formation efficiency. We model our galaxies as cooling and collapsing NFW spheres. The dark matter component is modelled as a static external potential, while the baryon component is described by the Euler equations using the AMR code RAMSES. Metal-dependent cooling and supernovae-heating are also implemented using state-of-the-art recipes coming from cosmological simulations. We allow for 3 parameters to vary: the halo circular velocity, the spin parameter and the star formation efficiency. We found that the ram pressure of infalling material is the key factor limiting the apparition of galactic winds. We obtain a very low feedback efficiency, with supernovae to wind energy conversion factor around one percent, so that only low cicrular velocity galaxies give rise to strong winds. For massive galaxies, we obtain a galatic fountain, for which we discuss the observational properties. We conclude that for quiescent isolated galaxies, galactic winds appear only in very low mass systems. Although that can quite efficiently enrich the IGM with metals, they don't carry away enough cold material to solve the overcooling problem.
The leading quantum correction to the power spectrum of a gravitationally-coupled light scalar field is calculated, assuming that it is generated during a phase of single-field, slow-roll inflation.
An estimate of the one-loop correction to the power spectrum of the primordial curvature perturbation is given, assuming it is generated during a phase of single-field, slow-roll inflation. The loop correction splits into two parts, which can be calculated separately: a purely quantum-mechanical contribution which is generated from the interference among quantized field modes around the time when they cross the horizon, and a classical contribution which comes from integrating the effect of field modes which have already passed far beyond the horizon. The loop correction contains logarithms which may invalidate the use of naive perturbation theory for cosmic microwave background (CMB) predictions when the scale associated with the CMB is exponentially different from the scale at which the fundamental theory which governs inflation is formulated. This may have dramatic consequences for the comparison of chaotic inflationary models with forthcoming high-precision satellite data.
This paper describes the Fifth Data Release (DR5) of the Sloan Digital Sky Survey (SDSS). DR5 includes all survey quality data taken through June 2005 and represents the completion of the SDSS-I project (whose successor, SDSS-II will continue through mid-2008). It includes five-band photometric data for 217 million objects selected over 8000 square degrees, and 1,048,960 spectra of galaxies, quasars, and stars selected from 5713 square degrees of that imaging data. These numbers represent a roughly 20% increment over those of the Fourth Data Release; all the data from previous data releases are included in the present release. In addition to "standard" SDSS observations, DR5 includes repeat scans of the southern equatorial stripe, imaging scans across M31 and the core of the Perseus cluster of galaxies, and the first spectroscopic data from SEGUE, a survey to explore the kinematics and chemical evolution of the Galaxy. The catalog database incorporates several new features, including photometric redshifts of galaxies, tables of matched objects in overlap regions of the imaging survey, and tools that allow precise computations of survey geometry for statistical investigations.
The discovery of extra-solar planets is one of the greatest achievements of modern astronomy. There are now more than 200 such objects known, and the recent detection of planets with masses approximately 5 times that of Earth demonstrates that extra-solar planets of low mass exist. In addition to providing a wealth of scientific information on the formation and structure of planetary systems, these discoveries capture the interest of both scientists and the wider public with the profound prospect of the search for life in the Universe. We propose an L-type mission, called Darwin, whose primary goal is the study of terrestrial extrasolar planets and the search for life on them. By its very nature, Darwin advances the first Grand Theme of ESA Cosmic Vision. Accomplishing the mission objectives will require collaborative science across disciplines ranging from planet formation and atmospheres to chemistry and biology, and these disciplines will reap profound rewards from their contributions to the Darwin mission.
We present results from a detailed spectrophotometric analysis of the blue compact dwarf galaxy Mrk 35 (Haro 3), based on deep optical (B,V,R,I) and near-IR (J,H,K) imaging, Halpha narrow-band observations and long-slit spectroscopy. The optical emission of the galaxy is dominated by a central young starburst, with a bar-like shape, while an underlying component of stars, with elliptical isophotes and red colors, extends more than 4 kpc from the galaxy center. High resolution Halpha and color maps allow us to identify the star-forming regions, to spatially discriminate them from the older stars, and to recognize several dust patches. We derive colors and Halpha parameters for all the identified star-forming knots. Observables derived for each knot are corrected for the contribution of the underlying older stellar population, the contribution by emission lines, and from interstellar extinction, and compared with evolutionary synthesis models. We find that the contributions of these three factors are by no means negligible and that they significantly vary across the galaxy. Therefore, careful quantification and subtraction of emission lines, galaxy host contribution, and interstellar reddening at every galaxy position, are essential to derive the properties of the young stars in BCDs. We find that we can reproduce the colors of all the knots with an instantaneous burst of star formation and the Salpeter initial mass function with an upper mass limit of 100 M_solar. In all cases the knots are just a few Myr old. The underlying population of stars has colors consistent with being several Gyr old.
With the Sixth Data Release of the Sloan Digital Sky Survey, the imaging of the Northern Galactic Cap is now complete. The survey contains images and parameters of roughly 287 million objects over 9583 deg^2, and 1.27 million spectra of stars, galaxies, quasars and blank sky (for sky subtraction) selected over 7425 deg^2. This release includes much more extensive stellar spectroscopy than previously, and also includes detailed estimates of stellar temperatures, gravities, and metallicities. The results of improved photometric calibration are now available, with uncertainties of roughly 1% in g, r, i, and z, and 2% in u, substantially better than the uncertainties in previous data releases. The spectra in this data release have improved wavelength and flux calibration, especially in the extreme blue and extreme red, leading to the qualitatively better determination of stellar types and radial velocities. The spectrophotometric fluxes are now tied to point spread function magnitudes of stars rather than fiber magnitudes, giving a 0.35 mag change in the spectrophotometric flux scale. Systematic errors in the velocity dispersions of galaxies have been fixed, and the results of two independent codes for determining spectral classifications and redshifts are made available. (Abridged)
We study the ultraviolet to far-infrared (hereafter UV-to-IR) SEDs of a sample of intermediate redshift (0.2 < z < 0.7) UV-selected galaxies from the ELAIS-N1 and ELAIS-N2 fields by fitting a multi-wavelength dataset to a library of GRASIL templates. Star formation related properties of the galaxies are derived from the library of models by using the Bayesian statistics. We find a decreasing presence of galaxies with low attenuation and low total luminosity as redshift decreases, which does not hold for high total luminosity galaxies. In addition the dust attenuation of low mass galaxies increases as redshift decreases, and this trend seems to disappear for galaxies with M* > 10^11 M_sun. This result is consistent with a mass dependent evolution of the dust to gas ratio, which could be driven by a mass dependent efficiency of star formation in star forming galaxies. The specific star formation rates (SSFR) decrease with increasing stellar mass at all redshifts, and for a given stellar mass the SSFR decreases with decreasing redshift. The differences in the slope of the M*--SSFR relation found between this work and others at similar redshift could be explained by the adopted selection criteria of the samples which, for a UV selected sample, favours blue, star forming galaxies.
As a service to the community, we have compiled radio frequency spectra from the literature for all sources within the VLA Low Frequency Sky Survey (VLSS) that are brighter than 15 Jy at 74 MHz. Over 160 references were used to maximize the amount of spectral data used in the compilation of the spectra, while also taking care to determine the corrections needed to put the flux densities from all reference on the same absolute flux density scale. With the new VLSS data, we are able to vastly improve upon previous efforts to compile spectra of bright radio sources to frequencies below 100 MHz because (1) the VLSS flux densities are more reliable than those from some previous low frequency surveys and (2) the VLSS covers a much larger area of the sky (declination >-30 deg.) than many other low frequency surveys (e.g., the 8C survey). In this paper, we discuss how the spectra were constructed and how parameters quantifying the shapes of the spectra were derived. Both the spectra and the shape parameters are made available here to assist in the calibration of observations made with current and future low frequency radio facilities.
We have constructed a detailed radiative transfer disk model which reproduces the main features of the spectrum of the outbursting young stellar object FU Orionis from ~ 4000 angstrom, to ~ 8 micron. Using an estimated visual extinction Av~1.5, a steady disk model with a central star mass ~0.3 Msun and a mass accretion rate ~ 2e-4 Msun/yr, we can reproduce the spectral energy distribution of FU Ori quite well. With the mid-infrared spectrum obtained by the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope, we estimate that the outer radius of the hot, rapidly accreting inner disk is ~ 1 AU using disk models truncated at this outer radius. Inclusion of radiation from a cooler irradiated outer disk might reduce the outer limit of the hot inner disk to ~ 0.5 AU. In either case, the radius is inconsistent with a pure thermal instability model for the outburst. Our radiative transfer model implies that the central disk temperature Tc > 1000 K out to ~ 0.5 - 1 AU, suggesting that the magnetorotational instability (MRI) can be supported out to that distance. Assuming that the ~ 100 yr decay timescale in brightness of FU Ori represents the viscous timescale of the hot inner disk, we estimate the viscosity parameter (alpha) to be ~ 0.2 - 0.02 in the outburst state, consistent with numerical simulations of MRI in disks. The radial extent of the high mass accretion region is inconsistent with the model of Bell & Lin, but may be consistent with theories incorporating both gravitational instability and MRI.
Aims: Use the standard fireball model to create virtual populations of
gamma-ray burst afterglows and study their luminosity functions.
Methods: We randomly vary the parameters of the standard fireball model to
create virtual populations of afterglows. We use the luminosity of each burst
at an observer's time of 1 day to create a luminosity function and compare our
results with available observational data to assess the internal consistency of
the standard fireball model.
Results: We show that the luminosity functions can be described by a function
similar to a log normal distribution with an exponential cutoff. The function
parameters are frequency dependent but not very dependent on the model
parameter distributions used to create the virtual populations. Comparison with
observations shows that while there is good general agreement with the data, it
is difficult to explain simultaneously the X-ray and optical data. Possible
reasons for this are discussed and the most likely one is that the standard
fireball model is incomplete and that decoupling of the X-ray and optical
emission mechanism may be needed.
The integrated line width derived from CO spectroscopy provides a powerful tool to study the internal kinematics of extragalactic objects, including quasars at high redshift, provided that the observed line width can be properly translated to more conventionally used kinematical parameters of galaxies. We show, through construction of a K-band CO Tully-Fisher relation for nearby galaxies spanning a wide range in infrared luminosity, that the CO line width measured at 20% of the peak intensity, when corrected for inclination and other effects, successfully recovers the maximum rotation velocity of the disk. The line width at 50% of the peak intensity performs much more poorly, in large part because CO lines have a wide range of profiles, which are shown to vary systematically with infrared luminosity. We present a practical prescription for converting observed CO line widths into the stellar velocity dispersion of the bulge (sigma), and then apply it to a sample of low-redshift (z < 0.2) and high-redshift (1.4 < z < 6.4) quasars to study their host galaxies. Nearby quasars roughly fall on the correlation between black hole mass and bulge stellar velocity dispersion established for inactive galaxies, but the host galaxies of the high-z quasars systematically deviate from the local M_BH-sigma relation. At a given sigma, high-z quasars have black hole masses larger by a factor of 4 relative to local galaxies, suggesting that early in the life-cycle of galaxies the development of the bulge lags behind the growth of the central black hole. An alternative explanation for these observations, which currently cannot be ruled out rigorously, is that high-redshift quasars are preferentially viewed at face-on orientations.
We present a study of the nearby Seyfert galaxy NGC 1068 using mid- and far- infrared data acquired with the IRAC, IRS, and MIPS instruments aboard the Spitzer Space Telescope. The images show extensive 8 um and 24 um emission coinciding with star formation in the inner spiral approximately 15" (1 kpc) from the nucleus, and a bright complex of star formation 47" (3 kpc) SW of the nucleus. The brightest 8 um PAH emission regions coincide remarkably well with knots observed in an Halpha image. Strong PAH features at 6.2, 7.7, 8.6, and 11.3 um are detected in IRS spectra measured at numerous locations inside, within, and outside the inner spiral. The IRAC colors and IRS spectra of these regions rule out dust heated by the AGN as the primary emission source; the SEDs are dominated by starlight and PAH emission. The equivalent widths and flux ratios of the PAH features in the inner spiral are generally consistent with conditions in a typical spiral galaxy ISM. Interior to the inner spiral, the influence of the AGN on the ISM is evident via PAH flux ratios indicative of a higher ionization parameter and a significantly smaller mean equivalent width than observed in the inner spiral. The brightest 8 and 24 um emission peaks in the disk of the galaxy, even at distances beyond the inner spiral, are located within the ionization cones traced by [O III]/Hbeta, and they are also remarkably well aligned with the axis of the radio jets. Although it is possible that radiation from the AGN may directly enhance PAH excitation or trigger the formation of OB stars that subsequently excite PAH emission at these locations in the inner spiral, the orientation of collimated radiation from the AGN and star formation knots in the inner spiral could be coincidental. (abridged)
Compact binary supersoft X-ray sources (CBSS) are explained as being associated with hydrostatic nuclear burning on the surface of a white dwarf with high accretion rate. This high mass transfer rate has been suggested to be caused by dynamical instability, expected when the donor star is more massive than the accreting object. When the orbital period is smaller than ~6 hours, this mechanism does not work and the CBSS with such periods are believed to be fed by a distinct mechanism: the wind-driven accretion. Such a mechanism has been proposed to explain the properties of objects like SMC 13, T Pyx and V617 Sgr. One observational property that offers a critical test for discriminating between the above two possibilities is the orbital period change. As systems with wind-driven accretion evolve with increasing periods, some of them may reach quite long orbital periods. The above critical test may, therefore, also be applied to orbital periods longer than 6 hours. CAL 87 is an eclipsing system in the LMC with an orbital period of 10.6 hours that could provide the opportunity for testing the hypothesis of the system being powered by wind-driven accretion. We obtained eclipse timings for this system and show that its orbital period increases with a rate of P/Pdot = +7.2(+/-1.3) X 10^{6} years. Contrary to the common belief, we conclude that CAL 87 is the first confirmed case of a wind-driven CBSS with an orbital period longer than 6 hours. The system is probably an evolved object that had an initial secondary mass of M2i=0.63 solar masses but is currently reduced to about M2=0.34 solar masses. We discuss evidence that other CBSS, like CAL 83 and V Sge stars, like WX Cen, are probably also wind-driven systems. This may in fact be the rule, and systems with inverted mass ratio, the exception.
We revisit the issue of the stability in the Dvali-Gabadadze-Porrati model, by considering the nucleation of bubbles of the conventional branch within the self-accelerating branch. We construct an instanton describing this process in the thin wall approximation. On one side of the bubble wall, the bulk consists of the exterior of the brane while on the other side it is the interior. The solution requires the presence of a 2-brane (the bubble wall) which induces the transition. However, we show that this instanton cannot be realized as the thin wall limit of any smooth solution. Once the bubble thickness is resolved, the equations of motion do not allow O(4) symmetric solutions joining the two branches. We conclude that the thin wall instanton is unphysical, and that one cannot have processes connecting the two branches, unless negative tension bubble walls are introduced. This also suggests that the self-accelerating branch does not decay into the conventional branch nucleating bubbles. We comment on other kinds of bubbles that could interpolate between the two branches.
Already in the 1970s there where attempts to present a set of ground rules, sometimes referred to as a theory of gravitation theories, which theories of gravity should satisfy in order to be considered viable in principle and, therefore, interesting enough to deserve further investigation. From this perspective, an alternative title of the present paper could be ``why are we still unable to write a guide on how to propose viable alternatives to general relativity?''. Attempting to answer this question, it is argued here that earlier efforts to turn qualitative statements, such as the Einstein Equivalence Principle, into quantitative ones, such as the metric postulates, stand on rather shaky grounds -- probably contrary to popular belief -- as they appear to depend strongly on particular representations of the theory. This includes ambiguities in the identification of matter and gravitational fields, dependence of frequently used definitions, such as those of the stress-energy tensor or classical vacuum, on the choice of variables, etc. Various examples are discussed and possible approaches to this problem are pointed out. In the course of this study, several common misconceptions related to the various forms of the Equivalence Principle, the use of conformal frames and equivalence between theories are clarified.
We derive the equations of motion in metric-affine gravity by making use of the conservation laws obtained from Noether's theorem. The results are given in the form of propagation equations for the multipole decomposition of the matter sources in metric-affine gravity, i.e., the canonical energy-momentum current and the hypermomentum current. In particular, the propagation equations allow for a derivation of the equations of motion of test particles in this generalized gravity theory, and allow for direct identification of the couplings between the matter currents and the gauge gravitational field strengths of the theory, namely the curvature, the torsion, and the nonmetricity. We demonstrate that the possible non-Riemannian spacetime geometry can only be detected with the help of the test bodies that are formed of matter with microstructure. Ordinary gravitating matter, i.e., matter without microscopic internal degrees of freedom, can probe only the Riemannian spacetime geometry. Thereby, we generalize previous results of General Relativity and Poincare gauge theory.
Links to: arXiv, form interface, /find, astro-ph, /recent, /0707, /abs, help (Access key information)
Traditional photometric redshift methods use only color information about the objects in question to estimate their redshifts. This paper introduces a new method utilizing colors, luminosity, surface brightness, and radial light profile to measure the redshifts of galaxies in the Sloan Digital Sky Survey (SDSS). We take a statistical approach: distributions of galaxies from the SDSS Large-Scale Structure (LSS; spectroscopic) sample are constructed at a range of redshifts, and target galaxies are compared to these distributions. An adaptive mesh is implemented to increase the percentage of the parameter space populated by the LSS galaxies. We test the method on a subset of galaxies from the LSS sample, yielding rms Delta-z of 0.025 for red galaxies and 0.030 for blue galaxies (all with z < 0.25). Additional tests and future improvements for this promising technique are suggested.
We use measurements of the projected galaxy correlation function w_p and galaxy void statistics to test whether the galaxy content of halos of fixed mass is systematically different in low density environments. We present new measurements of the void probability function (VPF) and underdensity probability function (UPF) from Data Release Four of the Sloan Digital Sky Survey, as well as new measurements of the VPF from the full data release of the Two-Degree Field Galaxy Redshift Survey. We compare these measurements to predictions calculated from models of the Halo Occupation Distribution (HOD) that are constrained to match both w_p and the space density of galaxies. The standard implementation of the HOD assumes that galaxy occupation depends on halo mass only, and is independent of local environment. For luminosity-defined samples, we find that the standard HOD prediction is a good match to the observations, and the data exclude models in which galaxy formation efficiency is reduced in low-density environments. More remarkably, we find that the void statistics of red and blue galaxies (at L ~ 0.4L_*) are perfectly predicted by standard HOD models matched to the correlation function of these samples, ruling out "assembly bias" models in which galaxy color is correlated with large-scale environment at fixed halo mass. We conclude that the luminosity and color of field galaxies are determined predominantly by the mass of the halo in which they reside and have little direct dependence on the environment in which the host halo formed. In broader terms, our results show that the sizes and emptiness of voids found in the distribution of L > 0.2L_* galaxies are in excellent agreement with the predictions of a standard cosmological model with a simple connection between galaxies and dark matter halos. (abridged)
Dusty plasmas have generated a large amount of interest since the discovery of ordered structure (crystal) formation in experimentally generated complex plasmas in 1994. Dust particles within the plasma sheath generated in these complex plasmas can form vertical chains due to the streaming ion wakefield. For the simplest of these configurations (a two particle chain), the particle closest to the lower electrode will generally remain in the shadow of the particle farthest from the lower electrode. These results in the two particles feeling differing ion drag forces: the top particle is acted on by the ion drag force directed from the plasma to the lower electrode, while the bottom particle is acted upon by the resulting wakefield produced by the interaction of the upper particle with the ion drag force. This dynamic situation currently provides the best known experimental environment for examining the physics behind the ion drag force and its interaction with the plasma sheath. An experimental method for investigating the interaction between pair-particle chains based on modulating the bias on the lower electrode employing a DC bias modulation technique will be presented.
Several integration schemes exits to solve the equations of motion of the $N$-body problem. The Lie-integration method is based on the idea to solve ordinary differential equations with Lie-series. In the 1980s this method was applied for the $N$-body problem by giving the recurrence formula for the calculation of the Lie-terms. The aim of this works is to present the recurrence formulae for the linearized equations of motion of $N$-body systems. We prove a lemma which greatly simplifies the derivation of the recurrence formulae for the linearized equations if the recurrence formulae for the equations of motions are known. The Lie-integrator is compared with other well-known methods. The optimal step size and order of the Lie-integrator are calculated. It is shown that a fine-tuned Lie-integrator can be 30%-40% faster than other integration methods.
We had earlier shown that for a constant velocity jet the discrepancy between the low speeds indicated by VLBI knot motions and the high Doppler factors inferred from emission of TeV photons could be reconciled if ultrarelativistic jets possessed modest opening angles. Here we evaluate the (flux-weighted) viewing angles of the jet and the apparent speeds and Doppler factors of the radio knots on parsec scales. The influence of the jet opening angle on these radio knot parameters are found for the usually considered types of relativistic nuclear jets: those with uniform bulk speeds and those where the bulk Lorentz factor of the flow decreases with distance from the jet axis, known as `spine--sheath' flows. For both types of jet velocity structures the expectation value of the jet orientation angle at first falls dramatically with increases in the (central) jet Lorentz factor, but for extremely relativistic jets it levels off at a fraction of the opening angle. The effective values of the apparent speeds and Doppler factors of the knots always decline substantially with increasing jet opening angle. The rarity of highly superluminal parsec-scale radio components in TeV blazars can be understood if their jets are both highly relativistic and intrinsically weaker, so probably less well collimated, than the jets in ordinary blazars.
A sequence of two symmetry breaking transitions in the early universe may produce monopoles whose flux is confined into two strings each, which thus assemble into ''necklaces'' with monopoles as beads. Such ''cosmic necklaces'' in our galaxy have been proposed as a source of ultra-high-energy cosmic rays. We analyze the evolution of these systems and show that essentially all monopoles annihilate or leave the string at early times, after which, cosmic necklaces would evolve in a similar way to a network of ordinary cosmic strings. Too few monopoles remain on the necklaces to produce any observable cosmic rays.
In an external constant magnetic field, so strong that the electron Larmour length is much shorter than its Compton length, we consider the modification of the Coulomb potential of a point charge owing to the vacuum polarization. We establish a short-range component of the static interaction in the Larmour scale, expressed as a Yukawa-like law, and reveal the corresponding "photon mass" parameter. The electrostatic force regains its long-range character in the Compton scale: the tail of the potential follows an anisotropic Coulomb law, decreasing away from the charge slower along the magnetic field and faster across. In the infinite-magnetic-field limit the potential is confined to an infinitely thin string passing though the charge parallel to the external field. This is the first evidence for dimensional reduction in the photon sector of quantum electrodynamics. The one-dimensional form of the potential on the string is derived that includes a delta-function centered in the charge. The nonrelativistic ground state energy of a hydrogen-like atom is found with its use and shown not to be infinite in the infinite-field limit. These results may be useful for studying properties of matter at the surface of extremely magnetized neutron stars.
We have examined the relationship between the optical depth of the 9.7 micron silicate absorption feature (tau_9.7) and the near-infrared color excess, E(J-Ks) in the Serpens, Taurus, IC 5146, Chameleon I, Barnard 59, and Barnard 68 dense clouds/cores. Our data set, based largely on Spitzer IRS spectra, spans E(J-Ks)=0.3 to 10 mag (corresponding to visual extinction between about 2 and 60 mag.). All lines of sight show the 9.7 micron silicate feature. Unlike in the diffuse ISM where a tight linear correlation between the 9.7 micron silicate feature optical depth and the extinction (Av) is observed, we find that the silicate feature in dense clouds does not show a monotonic increase with extinction. Thus, in dense clouds, tau_9.7 is not a good measure of total dust column density. With few exceptions, the measured tau_9.7 values fall well below the diffuse ISM correlation line for E(J-Ks) > 2 mag (Av >12 mag). Grain growth via coagulation is a likely cause of this effect.
Lagrangian reconstruction of large-scale peculiar velocity fields can be strongly affected by observational biases. We develop a thorough analysis of these systematic effects by relying on specially selected mock catalogues. For the purpose of this paper, we use the MAK reconstruction method, although any other Lagrangian reconstruction method should be sensitive to the same problems. We extensively study the uncertainty in the mass-to-light assignment due to luminosity incompleteness, and the poorly-determined relation between mass and luminosity. The impact of redshift distortion corrections is analyzed in the context of MAK and we check the importance of edge and finite-volume effects on the reconstructed velocities. Using three mock catalogues with different average densities, we also study the effect of cosmic variance. In particular, one of them presents the same global features as found in observational catalogues that extend to 80 Mpc/h scales. We give recipes, checked using the aforementioned mock catalogues, to handle these particular observational effects, after having introduced them into the mock catalogues so as to quantitatively mimic the most densely sampled currently available galaxy catalogue of the nearby universe. Once biases have been taken care of, the typical resulting error in reconstructed velocities is typically about a quarter of the overall velocity dispersion, and without significant bias. We finally model our reconstruction errors to propose an improved Bayesian approach to measure Omega_m in an unbiased way by comparing the reconstructed velocities to the measured ones in distance space, even though they may be plagued by large errors. We show that, in the context of observational data, a nearly unbiased estimator of Omega_m may be built using MAK reconstruction.
We present X-ray, broad band optical and low frequency radio observations of the bright type IIP supernova SN 2004et. The \cxo observed the supernova at three epochs, and the optical coverage spans a period of $\sim$ 470 days since explosion. The X-ray emission softens with time, and we characterise the X-ray luminosity evolution as $\Lx \propto t^{-0.4}$. We use the observed X-ray luminosity to estimate a mass-loss rate for the progenitor star of $\sim \ee{2}{-6} M_\odot \mathrm{yr}^{-1}$. The optical light curve shows a pronounced plateau lasting for about 110 days. Temporal evolution of photospheric radius and color temperature during the plateau phase is determined by making black body fits. We estimate the ejected mass of $^{56}$Ni to be 0.06 $\pm$ 0.03 M$_\odot$. Using the expressions of Litvinova & Nad\"{e}zhin (1985) we estimate an explosion energy of (0.98 $\pm$ 0.25) $\times 10^{51}$ erg. We also present a single epoch radio observation of SN 2004et. We compare this with the predictions of the model proposed by Chevalier et al. (2006). These multi-wavelength studies suggest a main sequence progenitor mass of $\sim$ 20 M$_\odot$ for SN 2004et.
We investigate the generation of large scale magnetic fields in the universe from quantum fluctuations produced in the inflationary stage. By coupling these quantum fluctuations to the dilaton field and Ricci scalar, we show that the magnetic fields with the strength observed today can be produced. We consider two situations: First, the evolution of dilaton ends at the onset of the reheating stage. Second, the dilaton continues its evolution after reheating and then decays. In both cases, we come back to the usual Maxwell equations after inflation and then calculate present magnetic fields.
We compare Path Integral Monte Carlo calculations by Militzer and Pollock (Phys. Rev. B 71, 134303, 2005) of Coulomb tunneling in nuclear reactions in dense matter to semiclassical calculations assuming WKB Coulomb barrier penetration through the radial mean-field potential. We find a very good agreement of two approaches at temperatures higher than ~1/5 of the ion plasma temperature. We obtain a simple parameterization of the mean field potential and of the respective reaction rates. We analyze Gamow-peak energies of reacting ions in various reaction regimes and discuss theoretical uncertainties of nuclear reaction rates taking carbon burning in dense stellar matter as an example.
The blazars 3C 454.3, PKS 0537-441 and PKS 2155-304 are traditionally known to be among the most active sources of this class. They emit at all frequencies, up to the gamma-rays, and are good probes of multiwavelength nuclear variability. The first two have also luminous broad emission line regions. We have recently monitored them with various facilities, including Swift and INTEGRAL, and have interpreted their variations with models of non-thermal radiation from a relativistic jet. In particular, we have tested for the first two sources the hypothesis that the variability is produced within the jet through internal shocks, i.e. collisions of relativistic plasma blobs. This allows a parameterization of all physical quantities as functions of the bulk Lorentz factor. We have made the critical assumption that every flaring episode is characterized by a fixed amount of energy. The model reproduces brilliantly the multiwavelength data and especially the gamma-ray spectra, when available. The model is not applicable to PKS 2155-304, the variability of which is caused by independent variations of few individual parameters.
We study the properties and the molecular content of the host of a type-Ia supernova (SN1997ey). This z=0.575 host is the brightest submillimetre source of the sample of type-Ia supernova hosts observed at 450um and 850um by Farrah et al.. Observations were performed at IRAM-30m to search for CO(2-1) and CO(3-2) lines in good weather conditions but no signal was detected. The star formation rate cannot exceed 50 M_sol/yr. These negative results are confronted with an optical analysis of a Keck spectrum and other data archives. We reach the conclusion that this galaxy is a late-type system (0.7 L^B_*), with a small residual star-formation activity (0.2 M_sol/yr) detected in the optical. No source of heating (AGN or starburst) is found to explain the submillimetre-continuum flux and the non-CO detection excludes the presence of a large amount of cold gas. We thus suggest that either the star formation activity is hidden in the nucleus (with A_V ~ 4) or this galaxy is passive or anemic and this flux might be associated with a background galaxy.
Residual wavefront errors in optical elements limit the performance of coronagraphs. To improve their efficiency, different types of devices have been proposed to correct or calibrate these errors. In this paper, we study one of these techniques proposed by Baudoz et al. 2006 and called Self-Coherent Camera (SCC). The principle of this instrument is based on the lack of coherence between the stellar light and the planet that is searched for. After recalling the principle of the SCC, we simulate its performance under realistic conditions and compare it with the performance of differential imaging.
We review current understanding of star formation, outlining an overall theoretical framework and the observations that motivate it. A conception of star formation has emerged in which turbulence plays a dual role, both creating overdensities to initiate gravitational contraction or collapse, and countering the effects of gravity in these overdense regions. The key dynamical processes involved in star formation -- turbulence, magnetic fields, and self-gravity -- are highly nonlinear and multidimensional. Physical arguments are used to identify and explain the features and scalings involved in star formation, and results from numerical simulations are used to quantify these effects. We divide star formation into large-scale and small-scale regimes and review each in turn. Large scales range from galaxies to giant molecular clouds (GMCs) and their substructures. Important problems include how GMCs form and evolve, what determines the star formation rate (SFR), and what determines the initial mass function (IMF). Small scales range from dense cores to the protostellar systems they beget. We discuss formation of both low- and high-mass stars, including ongoing accretion. The development of winds and outflows is increasingly well understood, as are the mechanisms governing angular momentum transport in disks. Although outstanding questions remain, the framework is now in place to build a comprehensive theory of star formation that will be tested by the next generation of telescopes.
Kinematic and spectral studies are improving our knowledge of the age distribution in compact radio sources, providing evidence that small sources are generally very young. The properties of jets in objects spanning the size range from a few tens of parsecs to some kiloparsecs become then of particular interest. Because of our selection criteria and of the small scales involved, the properties of jets in the population of Compact Symmetric Objects (CSO) are not well known yet. Polarization properties seem to indicate a strong influence by the interaction with the dense surrounding medium, and some objects show evidence of relativistic bulk motion. More evolved jets are present in the class of Low Power Compact (LPC) sources and a number of cases are discussed here. Since it is becoming increasingly clear that not all these sources will survive to evolve into large scale radio galaxies, the question of the final evolution of the CSO and LPC population is also discussed, with examples of candidate dying sources.
The origin of the abundance discrepancy is one of the key problems in the physics of photoionized nebula. In this work, we analize and discuss data for a sample of Galactic and extragalactic HII regions where this abundance discrepancy has been determined. We find that the abundance discrepancy factor (ADF) is fairly constant and of the order of 2 in all the available sample of HII regions. This is a rather different behaviour than that observed in planetary nebulae, where the ADF shows a much wider range of values. We do not find correlations between the ADF and the O/H, O++/H+ ratios, the ionization degree, Te(High), Te(Low)/ Te(High), FWHM, and the effective temperature of the main ionizing stars within the observational uncertainties. These results indicate that whatever mechanism is producing the abundance discrepancy in HII regions it does not substantially depend on those nebular parameters. On the contrary, the ADF seems to be slightly dependent on the excitation energy, a fact that is consistent with the predictions of the classical temperature fluctuations paradigm. Finally, we obtain that Te values obtained from OII recombination lines in HII regions are in agreement with those obtained from collisionally excited line ratios, a behaviour that is again different from that observed in planetary nebulae. These similar temperature determinations are in contradiction with the predictions of the model based on the presence of chemically inhomogeneous clumps but are consistent with the temperature fluctuations paradigm. We conclude that all the indications suggest that the physical mechanism responsible of the abundance discrepancy in HII regions and planetary nebulae are different.
It has been shown that generalized Einstein-Aether theories may lead to significant modifications to the non-relativistic limit of the Einstein equations. In this paper we study the effect of a general class of such theories on the Solar System. We consider corrections to the gravitational potential in negative and positive powers of distance from the source. Using measurements of the perihelion shift of Mercury and time delay of radar signals to Cassini, we place constraints on these corrections. We find that a subclass of generalized Einstein-Aether theories are compatible with these constraints.
In this paper we have calculated the effect of Lyalpha photons emitted by the first stars on the evolution of the IGM temperature. We have considered both a standard Salpeter IMF and a delta-function IMF for very massive stars with mass 300 M_sun. We find that the Lyalpha photons produced by the stellar populations considered here are able to heat the IGM at z<25, although never above ~100 K. Stars with a Salpeter IMF are more effective as, due to the contribution from small-mass long-living stars, they produce a higher Lyalpha background. Lyalpha heating can affect the subsequent formation of small mass objects by producing an entropy floor that may limit the amount of gas able to collapse and reduce the gas clumping.We find that the gas fraction in halos of mass below ~ 5 x 10^6 M_sun is less than 50% (for the smallest masses this fraction drops to 1% or less) compared to a case without Lyalpha heating. Finally, Lyalpha photons heat the IGM temperature above the CMB temperature and render the 21cm line from neutral hydrogen visible in emission at z<15.
Current explanation of the overabundance of dark matter subhalos in the Local Group (LG) indicates that there maybe a limit on mass of a halo, which can host a galaxy. This idea can be tested using voids in the distribution of galaxies: at some level small voids should not contain any (even dwarf) galaxies. We use observational samples complete to M_B = -12 with distances less than 8 Mpc to construct the void function (VF): the distribution of sizes of voids empty of any galaxies. There are ~30 voids with sizes ranging from 1 to 5 Mpc. We then study the distribution of dark matter halos in very high resolution simulations of the LCDM model. The theoretical VF matches the observations remarkably well only if we use halos with circular velocities larger than 45 +/- 10 km/s. This agrees with the Local Group predictions. There are smaller halos in the voids, but they should not produce any luminous matter. Small voids look quite similar to their giant cousins: the density has a minimum at the center of a void and it increases as we get closer to the border. Small nonluminous halos inside the void form a web of tiny filaments. Thus, both the Local Group data and the nearby voids indicate that isolated halos below 45 +/- 10 km/s must not host galaxies and that small (few Mpc) voids are truly dark.
We present preliminary results of a study of the low frequency radio continuum emission from the nuclei of Giant Low Surface Brightness (LSB) galaxies. We have mapped the emission and searched for extended features such as radio lobes/jets associated with AGN activity. LSB galaxies are poor in star formation and generally less evolved compared to nearby bright spirals. This paper presents low frequency observations of 3 galaxies; PGC 045080 at 1.4 GHz, 610 MHz, 325MHz, UGC 1922 at 610 MHz and UGC 6614 at 610 MHz. The observations were done with the GMRT. Radio cores as well as extended structures were detected and mapped in all three galaxies; the extended emission may be assocated with jets/lobes associated with AGN activity. Our results indicate that although these galaxies are optically dim, their nuclei can host AGN that are bright in the radio domain.
We report on an observation of the Vela-like pulsar B1823-13 and its
synchrotron nebula with Chandra.The pulsar's spectrum fits a power-law model
with a photon index Gamma_PSR=2.4 for the plausible hydrogen column density
n_H=10^{22} cm^{-2}, corresponding to the luminosity L_PSR=8*10^{31} ergs
s^{-1} in the 0.5-8 keV band, at a distance of 4 kpc. The pulsar radiation
likely includes magnetospheric and thermal components, but they cannot be
reliably separated because of the small number of counts detected and strong
interstellar absorption. The pulsar is surrounded by a compact, 25''x 10'',
pulsar wind nebula (PWN) elongated in the east-west direction, which includes a
brighter inner component, 7''x 3'', elongated in the northeast-southwest
direction. The slope of the compact PWN spectrum is Gamma_comp=1.3, and the
0.5-8 keV luminosity is L_comp~3*10^{32} ergs s^{-1}. The compact PWN is
surrounded by asymmetric diffuse emission (extended PWN) seen up to at least
2.4' south of the pulsar, with a softer spectrum (Gamma_ext=1.9), and the 0.5-8
keV luminosity L_ext~10^{33}-10^{34} ergs s^{-1}. We also measured the pulsar's
proper motion using archival VLA data: \mu_\alpha=23.0+/-2.5 mas yr^{-1},
\mu_\delta=-3.9+/-3.3 mas yr^{-1}, which corresponds to the transverse
velocity v_perp=440 km s^{-1}. The direction of the proper motion is
approximately parallel to the elongation of the compact PWN, but it is nearly
perpendicular to that of the extended PWN and to the direction towards the
center of the bright VHE gamma-ray source HESS J1825-137, which is likely
powered by PSR B1823-13.
We present the first large-scale study of E+A (post-starburst) galaxies that incorporates photometry in the ultraviolet (UV) wavelengths. We find that the starburst that creates the E+A galaxy typically takes place within the last Gyr and creates a high fraction (20-60 percent) of the stellar mass in the remnant over a short timescale (< 0.1 Gyrs). We find a tight correlation between the luminosity of our E+A galaxies and the implied star formation rate (SFR) during the starburst. While low-luminosity E+As (M(z) > -20) exhibit implied SFRs of less than 50 solar masses per year, their luminous counterparts (M(z) < -22) shows SFRs greater than 300 and as high as 2000 solar masses per year, suggesting that luminous and ultra-luminous infrared galaxies in the low-redshift Universe could be the progenitors of massive nearby E+A galaxies. We perform a comprehensive study of the characteristics of the quenching that truncates the starburst in E+A systems.We find that, for galaxies less massive than 10^10 MSun, the quenching efficiency decreases as the galaxy mass increases. However, for galaxies more massive than 10^10 MSun, this trend is reversed and the quenching efficiency increases with galaxy mass. Noting that the mass threshold at which this reversal occurs is in excellent agreement with the mass above which AGN become significantly more abundant in nearby galaxies, we use simple energetic arguments to show that the bimodal behaviour of the quenching efficiency is consistent with AGN and supernovae (SN) being the principal sources of negative feedback above and below M ~ 10^10 MSun respectively. (abridged)
We study the evolution of 82302 star-forming (SF) galaxies from the SDSS. Our main goals are to explore new ways of handling star formation histories (SFH) obtained with our publicly available spectral synthesis code STARLIGHT, and apply them to investigate how SFHs vary as a function of nebular metallicity (Zneb). Our main results are: (1) A conventional correlation analysis shows how global properties such as luminosity, mass, dust content, mean stellar metallicity and mean stellar age relate to Zneb. (2) We present a simple formalism which compresses the results of the synthesis into time-dependent star formation rates (SFR) and mass assembly histories. (3) The current SFR derived from the population synthesis and that from H-alpha are shown to agree within a factor of two. Thus we now have a way to estimate SFR in AGN hosts, where the H-alpha method cannot be applied. (4) Fully time-dependent SFHs are derived for all galaxies and averaged over six Zneb bins spanning the entire SF wing in the [OIII]/H-beta X [NII]/H-alpha diagram. (5) We find that SFHs vary systematically along the SF sequence, such that low-Zneb systems evolve slower and are currently forming stars at a higher relative rate. (6) At any given time, the distribution of specific SFRs for galaxies within a Zneb-bin is broad and roughly log-normal. (7) The same results are found grouping galaxies in stellar mass (M*) or surface mass density (S*) bins. (8) The overall pattern of SFHs as a function of Zneb, M* or S* is robust against changes in selection criteria, choice of evolutionary synthesis models for the spectral fits, and differential extinction effects. (Abridged)
Super star clusters are young, compact star clusters found in the central regions of interacting galaxies. Recently, they have also been reported to preferentially form in certain tidal tails, but not in others. In this paper, we have used 21 cm HI maps and the Hubble Space Telescope Wide Field Planetary Camera 2 images of eight tidal tail regions of four merging galaxy pairs to compare the kiloparsec scale HI distribution with the location of super star clusters found from the optical images. For most of the tails, we find that there is an increase in super star cluster density with increasing projected HI column density, such that the star cluster density is highest when log N(HI) >= 20.6 cm^{-2}, but equal to the background count rate at lower HI column density. However, for two tails (NGC 4038/39 Pos A and NGC 3921), there is no significant star cluster population despite the presence of gas at high column density. This implies that the N(HI) threshold is a necessary but not sufficient condition for cluster formation. Gas volume density is likely to provide a more direct criterion for cluster formation, and other factors such as gas pressure or strength of encounter may also have an influence. Comparison of HI thresholds needed for formation of different types of stellar structures await higher resolution HI and optical observations of larger numbers of interacting galaxies.
The concentration of magnetic flux near the poles of rapidly rotating cool stars has been recently proposed as an alternative mechanism to dynamo saturation in order to explain the saturation of angular momentum loss. In this work we study the effect of magnetic surface flux distribution on the coronal field topology and angular momentum loss rate. We investigate if magnetic flux concentration towards the pole is a reasonable alternative to dynamo saturation. We construct a 1D wind model and also apply a 2-D self-similar analytical model, to evaluate how the surface field distribution affects the angular momentum loss of the rotating star. From the 1D model we find that, in a magnetically dominated low corona, the concentrated polar surface field rapidly expands to regions of low magnetic pressure resulting in a coronal field with small latitudinal variation. We also find that the angular momentum loss rate due to a uniform field or a concentrated field with equal total magnetic flux is very similar. From the 2D wind model we show that there are several relevant factors to take into account when studying the angular momentum loss from a star. In particular, we show that the inclusion of force balance across the field in a wind model is fundamental if realistic conclusions are to be drawn from the effect of non-uniform surface field distribution on magnetic braking. This model predicts that a magnetic field concentrated at high latitudes leads to larger Alfven radii and larger braking rates than a smoother field distribution. From the results obtained, we argue that the magnetic surface field distribution towards the pole does not directly limit the braking efficiency of the wind.
Using standard big-bang nucleosynthesis and present, high-precision measurements of light element abundances, we place constraints on the self-gravity of radiation pressure in the early universe. The self-gravity of pressure is strictly non-Newtonian, and thus the constraints we set are a direct test of this aspect of general relativity.
We present observations of a new low-mass double-lined eclipsing binary system discovered using repeat observations of the celestial equator from the Sloan Digital Sky Survey II. Using near-infrared photometry and optical spectroscopy we have measured the properties of this short-period [P=0.407037(14) day] system and its two components. We find the following parameters for the two components: M_1=0.272+/-0.020 M_sun, R_1=0.268+/-0.010 R_sun, M_2=0.240+/-0.022 M_sun, R_2=0.248+/-0.0090 R_sun, T_1=3320+/-130 K, T_2=3300+/-130 K. The masses and radii of the two components of this system agree well with theoretical expectations based on models of low-mass stars, within the admittedly large errors. These are the first direct measurements of the fundamental parameters of objects with 0.25 M_sun < M < 0.35M_sun. Future synoptic surveys like Pan-STARRS and LSST will produce a wealth of information about low-mass eclipsing systems and should make it possible, with an increased reliance on follow-up observations, to detect many systems with low-mass and sub-stellar companions. With the large numbers of objects for which these surveys will produce high-quality photometry, we suggest that it becomes possible to identify such systems even with sparse time sampling and a relatively small number of individual observations.
The Alpha Magnetic Spectrometer (AMS02) experiment will be installed in 2009 on the International Space Station (ISS) for an operational period of at least three years. The purpose of AMS02 experiment is to perform accurate, high statistics, long duration measurements in space of charged cosmic rays in rigidity range from 1 GV to 3 TV and of high energy photons up to few hundred of GeV. In this work we will discuss the experimental details and the physics capabilities of AMS02 on ISS.
We present a numerical analysis of an incompressible decaying magnetohydrodynamic turbulence run on a grid of 1536^3 points. The Taylor Reynolds number at the maximum of dissipation is ~1100, and the initial condition is a superposition of large scale ABC flows and random noise at small scales, with no uniform magnetic field. The initial kinetic and magnetic energies are equal, with negligible correlation. The resulting energy spectrum is a combination of two components, each moderately resolved. Isotropy obtains in the large scales, with a spectral law compatible with the Iroshnikov-Kraichnan theory stemming from the weakening of nonlinear interactions due to Alfven waves; scaling of structure functions confirms the non-Kolmogorovian nature of the flow in this range. At small scales, weak turbulence emerges with a k_{\perp}^{-2} spectrum, the perpendicular direction referring to the local quasi-uniform magnetic field.
Mergers of spinning black holes can give recoil velocities from gravitational radiation up to several thousand km/s. A recoiling supermassive black hole in an AGN can retain the inner part of its accretion disk, providing fuel for continuing AGN activity. Using AGN in the Sloan Digital Sky Survey (SDSS) that show velocity shifts of the broad emission lines relative to the narrow lines, we place upper limits on the incidence of high velocity recoils in AGN. Brief but powerful flares in soft X-rays may occur when bound material falls back into the moving accretion disk.
A detailed analysis of vacuum Cherenkov radiation in spacelike Maxwell-Chern-Simons (MCS) theory is presented. A semiclassical treatment reproduces the leading terms of the tree-level result from quantum field theory. Moreover, certain quantum corrections turn out to be suppressed for large energies of the charged particle, for example, the quantum corrections to the classical MCS Cherenkov angle. It is argued that MCS-theory Cherenkov radiation may, in principle, lead to anisotropy effects for ultra-high-energy cosmic rays (UHECRs). In addition, a qualitative discussion of vacuum Cherenkov radiation from a modified-Maxwell term in the action is given, together with UHECR bounds on some of its dimensionless "coupling constants."
Loop quantum cosmology provides a nice solution of avoiding the big bang singularity through a big bounce mechanism in the high energy region. In loop quantum cosmology an inflationary universe is emergent after the big bounce, no matter what matter component is filled in the universe. A super-inflation phase without phantom matter will appear in a certain way in the initial stage after the bounce; then the universe will undergo a normal inflation stage. We discuss the condition of inflation in detail in this framework. Also, for slow-roll inflation, we expect the imprint from the effects of the loop quantum cosmology should be left in the primordial perturbation power spectrum. However, we show that this imprint is too weak to be observed.
Starting from a nonequilibrium configuration we analyse the essential role of the direct and the inverse binary and triple interactions in reaching an asymptotic thermal equilibrium in a homogeneous isotropic electron-positron-photon plasma. We focus on energies in the range 0.1--10 MeV. We numerically integrate the integro-partial differential relativistic Boltzmann equation with the exact QED collisional integrals taking into account all binary and triple interactions in the plasma. We show that first, when detailed balance is reached for all binary interactions on a timescale $t_{k}\lesssim10^{-14}$sec, photons and electron-positron pairs establish kinetic equilibrium. Successively, when triple interactions fulfill the detailed balance on a timescale $t_{eq}\lesssim10^{-12}$sec, the plasma reaches thermal equilibrium. It is shown that neglecting the inverse triple interactions prevents reaching thermal equilibrium. Our results obtained in the theoretical physics domain also find application in astrophysics and cosmology.
The authority of J. A. Wheeler in many areas of gravitational physics is immense, and there is a connection with the study of relic gravitational waves as well. I begin with a brief description of Wheeler's influence on this study. One part of the paper is essentially a detailed justification of the very existence of relic gravitational waves, account of their properties related to the quantum-mechanical origin, derivation of the expected magnitude of their effects, and reasoning why they should be detectable in the relatively near future. This line of argument includes comparison of relic gravitational waves with density perturbations of quantum-mechanical origin, and severe criticism of methods and predictions of inflationary theory. Another part of the paper is devoted to active searches for relic gravitational waves in cosmic microwave background radiation (CMB). Here, the emphasis is on the temperature-polarization TE cross-correlation function of CMB. The expected numerical level of the correlation, its sign, statistics, and the most appropriate interval of angular scales are identified. The overall conclusion is such that the observational discovery of relic gravitational waves looks like the matter of a few coming years, rather than a few decades.
Links to: arXiv, form interface, /find, astro-ph, /recent, /0707, /abs, help (Access key information)
We present early results from an ongoing study of the kinematic structure of star-forming galaxies at redshift z ~ 2 - 3 using integral-field spectroscopy of rest-frame optical nebular emission lines in combination with Keck laser guide star adaptive optics (LGSAO). We show kinematic maps of 3 target galaxies Q1623-BX453, Q0449-BX93, and DSF2237a-C2 located at redshifts z = 2.1820, 2.0067, and 3.3172 respectively, each of which is well-resolved with a PSF measuring approximately 0.11 - 0.15 arcsec (~ 900 - 1200 pc at z ~ 2-3) after cosmetic smoothing. Neither galaxy at z ~ 2 exhibits substantial kinematic structure on scales >~ 30 km/s; both are instead consistent with largely dispersion-dominated velocity fields with sigma ~ 80 km/s along any given line of sight into the galaxy. In contrast, DSF2237a-C2 presents a well-resolved gradient in velocity over a distance of ~ 4 kpc with peak-to-peak amplitude of 140 km/s. It is unlikely that DSF2237a-C2 represents a dynamically cold rotating disk of ionized gas as the local velocity dispersion of the galaxy (sigma = 79 km/s) is comparable to the observed shear. Using extant multi-wavelength spectroscopy and photometry we relate these kinematic data to physical properties such as stellar mass, gas fraction, star formation rate, and outflow kinematics and consider the applicability of current galaxy formation models.[Abridged]
Gamma ray bursts (GRB's) often feature subpulses that have a distinctively asymmetric profile -- they rise quickly and decay much more slowly, while their spectrum softens slightly with observer time. It is suggested that these subpulses are caused by slow baryonic clouds embedded within a primary $\gamma$-ray beam, which scatter the $\gamma$-radiation into our line of sight as they accelerate. Good quantitative agreement is obtained with observed light curves and spectral evolution. The kinetic energy that the baryonic component of GRB jets receives from the primary $\gamma$-radiation is predicted to be about equal to the amount of $\gamma$-radiation that is scattered, consistent with observations of afterglow. Several other observational consequences are briefly discussed. The possibility is raised that the time scale of short GRB is established by radiative acceleration and/or baryon injection rather than the time scale of the central engine.
In the initial formation stages young stars must acquire a significant fraction of their mass by accretion from a circumstellar disk that forms in the center of a collapsing protostellar cloud. Throughout this period mass accretion rates through the disk can reach 10^{-6}-10^{-5} M_Sun/yr leading to substantial energy release in the vicinity of stellar surface. We study the impact of irradiation of the stellar surface produced by the hot inner disk on properties of accreting fully convective low-mass stars, and also look at objects such as young brown dwarfs and giant planets. At high accretion rates irradiation raises the surface temperature of the equatorial region above the photospheric temperature T_0 that a star would have in the absence of accretion. The high-latitude (polar) parts of the stellar surface, where disk irradiation is weak, preserve their temperature at the level of T_0. In strongly irradiated regions an almost isothermal outer radiative zone forms on top of the fully convective interior, leading to the suppression of the local internal cooling flux derived from stellar contraction (similar suppression occurs in irradiated ``hot Jupiters''). Properties of this radiative zone likely determine the amount of thermal energy that gets advected into the convective interior of the star. Total intrinsic luminosity integrated over the whole stellar surface is reduced compared to the non-accreting case, by up to a factor of several in some systems (young brown dwarfs, stars in quasar disks, forming giants planets), potentially leading to the retardation of stellar contraction. Stars and brown dwarfs irradiated by their disks tend to lose energy predominantly through their cool polar regions while young giant planets accreting through the disk cool through their whole surface.
We present an analysis of the atomic hydrogen and stellar properties of 38 late-type galaxies in the local Universe covering a wide range of HI mass-to-light ratios (M_HI/L_B), stellar luminosities, and surface brightnesses. From these data we have identified an upper envelope for the M_HI/L_B as a function of galaxy luminosity. This implies an empirical relation between the minimum amount of stars a galaxy will form and its initial baryonic mass. While the stellar mass of a galaxy seems to be only loosely connected to its baryonic mass, the latter quantity is strongly linked to the galaxy's dynamical mass as it is observed in the baryonic Tully-Fisher relation. We find that dwarf irregular galaxies with generally high M_HI/L_B-ratios follow the same trend as defined by lower M_HI/L_B giant galaxies, but are underluminous for their rotation velocity to follow the trend in a stellar mass Tully-Fisher relation, suggesting that the baryonic mass of the dwarf galaxies is normal but they have failed to produced a sufficient amount of stars. Finally, we present a three dimensional equivalent to the morphology-density relation which shows that high M_HI/L_B galaxies preferentially evolve and/or survive in low-density environments. We conclude that an isolated galaxy with a shallow dark matter potential can retain a large portion of its baryonic matter in the form of gas, only producing a minimum quantity of stars necessary to maintain a stable gas disk.
We study physical processes that affect the alignment of grains subject to radiative torques (RATs). To describe the action of the RATs we use the analytical model (AMO) of RATs introduced in Paper I, namely, in Lazarian & Hoang (2007). We focus our discussion on the RAT alignment by anisotropic radiation flux in respect to magnetic field. Such an alignment does not invoke paramagnetic, i.e. Davis-Greenstein, dissipation, but, nevertheless, grains tend to align with long axes perpendicular to magnetic field. We use phase space trajectory maps to describe the alignment. When we account for thermal fluctuations within grain material, we show that for grains, which are characterized by a triaxial ellipsoid of inertia, the zero-J attractor point obtained in our earlier study develops into a low-J attractor point. Value at the latter point is the order of thermal angular momentum corresponding to the grain temperature. We show that the alignment of grains with long axes parallel to magnetic field (``wrong alignment'') reported in Paper I, for situations when the direction of radiative flux was nearly perpendicular to magnetic field, disappears in the present of thermal fluctuations. Thus all grains get aligned with their long axes perpendicular to magnetic field. We show effects that stochastic gaseous bombardment drives grains from low-J to high-J attractor points in the cases when the high-J attractor points are present, thus gaseous bombardment can increase the degree of grain alignment in respect to magnetic field. We consider the effects of torques, induced by H_2 formation and show that those change the value of angular momentum at high-J attractor point, but marginally affect low-J attractor points.
Ultracool stellar atmospheres show absorption by alkali resonance lines
severely broadened by collisions with neutral perturbers. In the coolest and
densest atmospheres, such as those of T dwarfs, Na I and K I broadened by
molecular hydrogen and helium can come to dominate the entire optical spectrum.
Their profiles have been successfully modelled with accurate interaction
potentials in the adiabatic theory, computing line profiles from the first few
orders of a density expansion of the autocorrelation function. The line shapes
in the emergent spectrum also depend on the distribution of absorbers as a
function of depth, which can be modelled with improved accuracy by new models
of dust condensation and settling.
The far red K I wings of the latest T dwarfs still show missing opacity in
these models, a phenomenon similar to what has been found for the Na I line
profiles observed in extremely cool, metal-rich white dwarfs. We show that the
line profile in both cases is strongly determined by multiple-perturber
interactions at short distances and can no longer be reproduced by a density
expansion, but requires calculation of the full profile in a unified theory.
Including such line profiles in stellar atmosphere codes will further improve
models for the coolest and densest dwarfs as well as for the deeper atmosphere
layers of substellar objects in general.
The scale and scope of the physics studied at the Auger Observatory offer significant opportunities for original outreach work. Education, outreach, and public relations of the Auger collaboration are coordinated in a task of its own whose goals are to encourage and support a wide range of efforts that link schools and the public with the Auger scientists and the science of cosmic rays, particle physics, and associated technologies. This report focuses on the impact of the collaboration in Mendoza Province, Argentina, as: the Auger Visitor Center in Malargue that has hosted over 29,000 visitors since 2001, the Auger Celebration and a collaboration-sponsored science fair held on the Observatory campus in November 2005, the opening of the James Cronin School in Malargue in November 2006, public lectures, school visits, and courses for science teachers. As the collaboration prepares the proposal for the northern Auger site foreseen to be in southeast Colorado, plans for a comprehensive outreach program are being developed in parallel, as described here.
The Cosmic Ray Observatory Project (CROP) is a statewide education and research experiment involving Nebraska high school students, teachers and university undergraduates in the study of extensive cosmic-ray air showers. A network of high school teams construct, install, and operate school-based detectors in coordination with University of Nebraska physics professors and graduate students. The detector system at each school is an array of scintillation counters recycled from the Chicago Air Shower Array in weather-proof enclosures on the school roof, with a GPS receiver providing a time stamp for cosmic-ray events. The detectors are connected to triggering electronics and a data-acquisition PC inside the building. Students share data via the Internet to search for time coincidences with other sites. Funded by the National Science Foundation, CROP has enlisted 29 schools with the aim of expanding to the 314 high schools in the state over several years. This report highlights both the scientific and professional development achievements of the project to date.
We present three dimensional simulations of the interaction of a light
hypersonic jet with an inhomogeneous thermal and turbulently supported disk in
an elliptical galaxy. We model the jet as a light, supersonic non-relativistic
flow with parameters selected to be consistent with a relativistic jet with
kinetic power just above the FR1/FR2 break.
We identify four generic phases in the evolution of such a jet with the
inhomogeneous interstellar medium: 1) an initial ``flood and channel'' phase,
where progress is characterized by high pressure gas finding changing weak
points in the ISM, flowing through channels that form and re-form over time, 2)
a spherical, energy-driven bubble phase, were the bubble is larger than the
disk scale, but the jet remains fully disrupted close to the nucleus, 3) a
rapid, jet break--out phase the where jet breaks free of the last dense clouds,
becomes collimated and pierces the spherical bubble, and 4) a classical phase,
the jet propagates in a momentum-dominated fashion leading to the classical jet
+ cocoon + bow-shock structure.
Mass transport in the simulations is investigated, and we propose a model for
the morphology and component proper motions in the well-studied Compact
Symmetric Object 4C31.04.
We present three dimensional simulations of the interaction of a light
hypersonic jet with an inhomogeneous thermal and turbulently supported disk in
an elliptical galaxy, including Radio and multi-band X-ray visualisations.
These simulations are applicable to the GPS/CSS phase of some extragalactic
radio sources.
We identify four generic phases in the evolution of such a jet with the
interstellar medium. The first is a `flood and channel'' phase, dominated by
complex jet interactions with the dense cloudy medium close to the nucleus. A
spherical, energy driven, bubble phase follows, where the bubble is larger than
the disk scale, but the jet remains fully disrupted close to the nucleus. Then
in a rapid, jet break--out phase, the jet breaks free of the last obstructing
dense clouds, becomes collimated and pierces the more or less spherical bubble.
In the final classical phase, the jet propagates in a momentum-dominated
fashion similar to jets in single component hot haloes, leading to the
classical jet -- cocoon -- bow-shock structure.
We investigate the General Relativistic (GR) effects on the conversion from nuclear to two-flavour quark matter in compact stars, both static as well as rotating. We find that GR effects lead to qualitative differences in rotating stars, indicating the inadequacy of non-relativistic (NR) or even Special Relativistic (SR) treatments for these cases.
We calculate the energy release associated with a strong first-order phase transition, from normal phase N to an "exotic" superdense phase S, in a rotating neutron star. Such a phase transition, accompanied by a density jump rho_N --> rho_S, is characterized by rho_S/rho_N > 3/2(1+P_0/rho_N c^2), where P_0 is the pressure, at which phase transition occurs. Configurations with small S-phase cores are then unstable and collapse into stars with large S-phase cores. The energy release is equal to the difference in mass-energies between the initial (normal) configuration and the final configuration containing an S-phase core, total stellar baryon mass and angular momentum being kept constant. The calculations of the energy release are based on precise numerical 2-D calculations. Polytropic equations of state (EOSs) as well as realistic EOS with strong first-order phase transition due to kaon condensation are used. For polytropic EOSs, a large parameter space is studied. For a fixed "overpressure", dP, defined as the relative excess of central pressure of collapsing metastable star over the pressure of equilibrium first-order phase transition, the energy release E_rel does not depend on the stellar angular momentum. It coincides with that for nonrotating stars with the same dP. Therefore, results of 1-D calculations of E_rel(dP) for non-rotating stars can be used to predict, with very high precision, the outcome of much harder to perform 2-D calculations for rotating stars with the same dP. This result holds also for dP_min < dP < 0, corresponding to phase transitions with climbing over the energy barrier separating metastable N-phase configurations from those with an S-phase core. Such phase transitions could be realized in the cores of newly born, hot, pulsating neutron stars.
SpectroWeb is an online maintained interactive graphical database of digital spectral atlases of spectral standard stars at this http URL . It is an efficient and user-friendly research tool for accurate analyses of stellar spectra observed with large spectral resolution, including the solar spectrum. The web-interface displays observed and theoretical stellar spectra, and comprehensively provides detailed atomic and molecular line information via user interaction. It fully integrates interactive spectrum visualization tools for the analysis, management, and maintenance of large volumes of spectral line-identification, -transition, and -property data. SpectroWeb 1.0 currently offers optical (3300-6800 A) flux normalized high-resolution spectra of Betelgeuse (M2), Arcturus (K1), The Sun (G2), Beta Aqr (G0), Procyon (F5), and Canopus (F0). The provided line identifications are based on state of the art spectrum synthesis calculations. The graphical database is under permanent development as an online repository of identified (absorption) lines in spectral standard reference stars, covering a broad range of stellar spectral types. Its object-oriented (Java) implementation offers future expansion capabilities to link and read stellar spectral atlases from various public internet sites.
We discuss the development of the new radiative transfer code Wind3D. It solves the non-LTE radiative transport problem in moving stellar atmosphere models in three geometric dimensions. The code accepts arbitrary 3D velocity fields in Cartesian geometry without assumptions of axial symmetry. Wind3D is currently implemented as a fully parallelized (exact) accelerated lambda iteration scheme with a two level atom formulation. The numerical transfer scheme is efficient and very accurate to trace small variations of local velocity gradients on line opacity in strongly scattering dominated extended stellar winds. We investigate the detailed formation of P Cygni line profiles observed in ultraviolet spectra of massive stars. We compute the detailed shape of these resonance lines to model local enhancements of line opacity that can for instance be caused by clumping in supersonically expanding winds. Wind3D will be applied to hydrodynamic models to investigate physical properties of discrete absorption line components.
We analyze velocity profiles of the X-ray spectral lines emitted by the Eta Carinae stellar binary at four epochs, just before the X-ray minimum (associated with periastron) and more than two years before the minimum (~apastron). The profiles are nicely resolved by the HETGS spectrometer on board Chandra. Far from periastron, we find symmetrical lines that are more or less centered at zero velocity. Closer to periastron, the lines broaden, shift towards the blue, and become visibly asymmetric. While the quiescent X-ray emission and slight (<200 km/sec) centroid shifts can be ascribed to the ordinary continuous binary wind interaction and to the orbital velocity of the secondary star, the observed high-velocity emission up to ~2,000 km/sec and the abrupt flares during which it occurs can not. This leads us to interpret the high-velocity flaring emission as due to a fast collimated outflow of ionized gas.
The long term magnetohydrodynamic stability of magnetized transonic/supersonic jets is numerically investigated using a spatial approach. We focus on two-dimensional linearly-unstable slab configurations where the jet is embedded in a flow-aligned uniform magnetic field of weak amplitude. We compare our results with previous studies using a temporal approach where longitudinally periodic domains were adopted. The finite-volume based versatile advection code (VAC) is used to solve the full set of ideal compressible MHD equations. We follow the development of Kelvin-Helmholtz modes that are driven by a white noise perturbation continuously introduced at the jet inlet. No noticeable difference is observed in spatial simulations versus analogous temporal ones during the linear and early non-linear evolution of the configuration. However, in the case of transonic flows, a different long-term scenario occurs in our spatial runs. Indeed, after the large-scale disruption of the flow, a sheath region of enhanced magnetic field encompassing the jet core forms along the whole flow. This provides a partial stabilization mechanism leading to enhanced stability for later times, which is almost independent of the initial magnitude of the magnetic field. The implication of this mechanism for the stability of astrophysical jets is discussed.
We investigate the growth of hydromagnetic waves driven by streaming cosmic
rays in the precursor environment of a supernova remnant shock.
It is known that transverse waves propagating parallel to the mean magnetic
field are unstable to anisotropies in the cosmic ray distribution, and may
provide a mechanism to substantially amplify the ambient magnetic field. We
quantify the extent to which temperature and ionisation fractions modify this
picture.
Using a kinetic description of the plasma we derive the dispersion relation
for a collisionless thermal plasma with a streaming cosmic ray current. Fluid
equations are then used to discuss the effects of neutral-ion collisions and
collisions between the charged species. We calculate the extent to which the
environment into which the cosmic rays are propagating influence the growth of
magnetic field, and determine the range of possible growth rates. If the cosmic
ray acceleration is efficient, we find that very small ionisation fractions are
required to stabilise the growth of the nonresonant mode. For weakly driven
modes, ion-neutral damping can dominate over the instability at more modest
ionisation fractions, more similar to the conditions in the precursor of a
supernova shock.
We report the discovery of a 16-20 Jupiter mass radial velocity companion around the very young (~3 Myr) brown dwarf candidate ChaHa8 (M5.75-M6.5). Based on high-resolution echelle spectra of ChaHa8 taken between 2000 and 2007 with UVES at the VLT, a companion was detected through RV variability with a semi-amplitude of 1.6 km/s. A Kepler fit to the data yields an orbital period of the companion of 1590 days and an eccentricity of e=0.49. A companion minimum mass M2sini between 16 and 20 Jupiter masses is derived when using model-dependent mass estimates for the primary. The mass ratio q= M2/M1 might be as small as 0.2 and, with a probability of 87%, it is less than 0.4. ChaHa8 harbors most certainly the lowest mass companion detected so far in a close (~ 1 AU) orbit around a brown dwarf or very low-mass star. From the uncertainty in the orbit solution, it cannot completely be ruled out that the companion has a mass in the planetary regime. Its discovery is in any case an important step towards RV planet detections around BDs. Further, ChaHa8 is the fourth known spectroscopic brown dwarf or very low-mass binary system with an RV orbit solution and the second known very young one.
The detection of cosmic neutrinos with energies above 1017 eV got growing interest during recent years. Possible target materials for in-matter arrays of ~100 km3 size under discussion are water, ice and rock salt. Here we propose to investigate permafrost as an additional alternative, covering ~20% of Earth land surface and reaching down to more than 1000 m depth at certain locations. If sufficiently large attenuation lengths for radio and acoustic signals can be demonstrated by in-situ measurements, the construction of a large hybrid array within this material may be possible in the Northern hemisphere. Properties and problems of a possible location in Siberia are discussed below. Some acoustic data are compared to laboratory measurements using "artificial" permafrost.
We analyse the sensitivity of geosynchrotron radio emission from inclined extensive air showers to the energy and mass of primary cosmic rays. We demonstrate that radio emission measurements at suitable lateral distances can infer both the number of electrons and positrons in the shower maximum and the atmospheric depth of the maximum on a shower-to-shower basis. Alternatively, measurements at a fixed lateral distance but in two different observing frequency bands yield comparable information. An RMS error of 5% in the determination of the number of electrons and positrons at shower maximum can be achieved. Through the determination of these quantities, geosynchrotron radiation provides access to the energy and mass of primary cosmic rays on a shower-to-shower basis.
Simulations of geosynchrotron radio emission from extensive air showers performed with the Monte Carlo code REAS1 used analytical parameterisations to describe the spatial, temporal, energy and angular particle distributions in air showers. The successor REAS2 replaces these parameterisations with precise, multi-dimensional histograms derived from per-shower CORSIKA simulations. REAS2 allows an independent selection between parameterisation and histogram for each of the relevant particle distributions, enabling us to study the changes arising from using a more realistic air shower model in detail. We describe the new simulation strategy and illustrate the effects introduced by the improved air shower model.
We consider star formation properties of dwarf galaxies in Cen A group observed within our HST/ACS projects number 9771 and 10235. We model color-magnitude diagrams of the galaxies under consideration and measure star formation rate and metallicity dependence on time. We study environmental dependence of the galaxy evolution and probable origin of the dwarf galaxies in the group.
We apply the 3-dimensional radiative transport code Wind3D to 3D hydrodynamic models of Corotating Interaction Regions to fit the detailed variability of Discrete Absorption Components observed in Si IV UV resonance lines of HD 64760 (B0.5 Ib). We discuss important effects of the hydrodynamic input parameters on these large-scale equatorial wind structures that determine the detailed morphology of the DACs computed with 3D transfer. The best fit model reveals that the CIR in HD 64760 is produced by a source at the base of the wind that lags behind the stellar surface rotation. The non-corotating coherent wind structure is an extended density wave produced by a local increase of only 0.6 % in the smooth symmetric wind mass-loss rate.
Excited-state OH maser emission has previously been reported in the circumstellar envelopes of only two evolved stars: the Mira star AU Geminorum and the hypergiant NML Cygni. We present Very Large Array (VLA) observations of the 1665, 1667, and excited-state 4750 MHz mainline OH transitions in AU Gem and Expanded Very Large Array (EVLA) observations of the excited-state 6030 and 6035 MHz OH mainline transitions in NML Cyg. We detect masers in both mainline transitions in AU Gem but no excited-state emission in either star. We conclude that the excited-state OH emission in AU Gem is either a transient phenomenon (such as for NML Cyg outlined below), or possibly an artifact in the data, and that the excited state OH emission in NML Cyg was generated by an episode of enhanced shock between the stellar mass-loss and an outflow of the Cyg OB2 association. With these single exceptions, it therefore appears that excited-state OH emission indeed should not be predicted nor observable in evolved stars as part of their normal structure or evolution.
The physical mechanism(s) responsible for transitioning from a spherical
Asymptotic Giant Branch (AGB) star to an asymmetric post-AGB (pAGB) object is
poorly understood. In particular, excess momenta in the outflows of pAGB
objects suggest that a binary may be required to supply an additional source of
energy and angular momentum. The extraction of rotational energy from the
engine is likely fundamental and may be facilitated if a dynamo is operating in
the interior. In this regard, single star magnetic outflow models have been
proposed as mechanisms for producing and shaping PNe, however these models
neglect the back-reaction of the large-scale magnetic field on the flow.
Here we present a transient $\alpha-\Omega$ dynamo operating in the envelope
of an AGB star in (1) an isolated setting and (2) a common envelope in which
the secondary is a low-mass companion in-spiraling in the AGB interior. The
back reaction of the fields on the shear is included and differential rotation
and rotation deplete via turbulent dissipation and Poynting flux. For an
isolated star, the shear must be resupplied in order to sufficiently sustain
the dynamo. We comment on the energy requirements that convection must satisfy
to accomplish this. For the common envelope case, a robust dynamo can result as
the companion provides an additional source of energy and angular momentum.
In this article I study the distribution of spiral galaxies in the Sloan Digital Sky Survey (SDSS) to investigate whether the universe has an overall handedness. A preference for spiral galaxies in one sector of the sky to be left-handed or right-handed spirals would indicate a preferred handedness. The SDSS data show a strong signal for such an asymmetry with a probability <0.2%. The asymmetry axis is at (RA,dec) ~(202 deg,25 deg) with an uncertainty ~15 deg. The axis appears to be correlated with that of the quadrupole and octopole moments in the WMAP microwave sky survey, an unlikely alignment that has been dubbed "the axis of evil". Our Galaxy is aligned with its spin axis along the same direction as the majority of the spirals.
The global missing baryon problem - that the sum of observed baryons falls short of the number expected form BBN - is well known. In addition to this, there is also a local missing baryon problem that applies to individual dark matter halos. This halo by halo missing baryon problem is such that the observed mass fraction of baryons in individual galaxies falls short of the cosmic baryon fraction. This deficit is a strong function of circular velocity. I give an empirical estimate of this function, and note the presence of a critical scale of ~900 km/s therein. I also briefly review Omega_b from BBN, highlighting the persistent tension between lithium and the CMB, and discuss some pros and cons of individual galaxies and clusters of galaxies as potential reservoirs of dark baryons.
The detection of high-energy particles, cosmic rays (CRs), deep inside the heliosphere implies that there are, at least, three distinctly different stages in the lifetime of a CR particle: acceleration, propagation in the interstellar medium (ISM), and propagation in the heliosphere. Gamma rays produced by interactions of CRs with gas, radiation, and magnetic fields can be used to study their spectra in different locations. Still, accurate direct measurements of CR species inside the heliosphere (such as their spectra and abundances) are extremely important for the understanding of their origin and propagation. In this paper, an emphasis is made on very recent advances and especially on those where GLAST and PAMELA observations can lead to further progress in our understanding of CRs.
We show that grains can be efficiently aligned by interacting with a subsonic gaseous flow. The alignment arises from grains having irregularities that scatter atoms with different efficiency in the right and left directions. The grains tend to align with long axes perpendicular to magnetic field, which corresponds to Davis-Greenstein predictions, but does not involve magnetic field. For rather conservative factors characterizing the grain helicity and scattering efficiency of impinging atoms, the alignment of helical grains is much more efficient than the Gold-type alignment processes.
We present Spitzer Space Telescope infrared photometry of a secondary eclipse of the hot Neptune GJ 436b. The observations were obtained using the 8-micron band of the InfraRed Array Camera (IRAC). The data spanning the predicted time of secondary eclipse show a clear flux decrement with the expected shape and duration. The observed eclipse depth of slightly less than 0.5 mmag allows us to estimate a blackbody brightness temperature of Tb = 709 +-17 K at 8 microns. We compare this infrared flux measurement to a model of the planetary thermal emission, and show that this model reproduces properly the observed flux decrement. The timing of the secondary eclipse confirms the non-zero orbital eccentricity of the planet, while also increasing its precision (e = 0.14 +- 0.01). Using additional new spectroscopic and photometric observations allows us to estimate the rotational period of the star and to assess to an high extent the dynamics of the system and the potential presence of another planet.
Inflationary predictions based on the linear theory of cosmological perturbations are related to the two point function of a (second quantized) real scalar free field during the accelerated stage. Such a two point function is finite, in contrast with its coincidence limit, which is divergent due to the ultraviolet divergences proper of field theory. We therefore argue that predictions of most of the inflationary models do not necessarily need a regularization scheme to leading order, i.e. tree level, which is required instead for non-linear corrections or calculations involving the energy-momentum tensor. We also discuss unpleasant features of the "would be" regularized spectrum obtained using the traditional fourth order adiabatic subtraction.
Zircon can crystallize in a wide range of physical and chemical conditions. At the same time, it has very high stability and durability. Therefore zircon can grow and survive in a variety of geological processes. In addition, the diffusivity of chemical compositions in its crystal is very low. Consequently, we can trace back the evolution history of the planetary materials containing zircon by zircon U-Th-Pb geochronology and geochemistry studies. However, this depends on our ability to decipher its genesis,namely magmatic or metamorphic origins. In this paper, we have found that there are obvious differences between magmatic and metamorphic zircons in their chemical composition zonations. The magmatic zircons exhibit composition zonation of increasing HfO2, and (UO2 + ThO2) content and decreasing ZrO2/HfO2 ratio and ZrO2 content from inner to outer parts within each growth zone or from core to rim of a crysta1. The metamorphic zircons exhibit compositional variation trend opposite to that of magmatic (igneous) zircons,tending to decrease in HfO2, (UO2+ ThO2) and increase in ZrO2/HfO2 ratio and ZrO2 from core to rim of a crystal. These chemical composition variation trends are thought to be controlled by the crystal chemical features of ions themselves and the evolution trends of magmatism and metamorphism respectively, and can be used to identify the genesis of zircons. Their morphological features are also discussed.
Zircon can crystallize in a wide range of physical and chemical conditions. At the same time, it has very high stability and durability. Therefore zircon can grow and survive in a variety of geological processes. In addition, the diffusivity of chemical compositions in its crystal is very low. Consequently, we can trace back the evolution history of the planetary materials containing zircon by zircon U-Th-Pb geochronology and geochemistry studies. However, this depends on our ability to decipher its genesis, namely magmatic or metamorphic origins. In this paper, magmatic and metamorphic zircons were found from plagioclase-amphibolite samples. Their geneses have been determined by zircon morphology, chemical composition zonations and geological field setting combined with their zircon U-Th-Pb ages. We have found obvious differences in micro-scale Raman spectra between these magmatic and metamorphic zircons. The magmatic zircons exhibit a high sloping background in their Raman spectra, but the metamorphic zircons exhibit a low horizontal background in their Raman spectra, which suggest that the magmatic zircons may contain a much higher concentration of fluorescent impurities than the metamorphic zircons. Moreover, reverse variation trends in Raman spectrum peak intensities from core to rim of a crystal between the magmatic and metamorphic zircons have been found. We think that this can be attributed to their reverse chemical composition zonations. These differences can be used to distinguish magmatic and metamorphic zircons.
The magmatic and metamorphic zircons were investigated with Raman spectrum microprobe analysis. We found notable differences between these two kinds of zircons exhibited by the variation trend of Raman peak intensity from core to rim of a crystal. In magmatic zircons, the intensity and the ratio H/W of Raman spectrum peaks gradually decrease from core to rim of a crystal, which is produced by an increase in metamictization degree and suggests an increase in U and Th concentrations from core to rim. In metamorphic zircons, there are two kinds of crystals according to their Raman spectra: the first group of zircons exhibits a variation trend opposite to those of magmatic zircons, tending to increase in the Raman peak intensity and H/W value from core to rim of a crystal, which is produced by a decrease in metamictization degree and indicates a decrease of U and Th concentrations from core to rim of a crystal. The second group of zircons exhibits no change in Raman peak intensity and H/W value through a crystal. The data of infrared and Raman spectra of these crystals show that they are well crystallized and have no lattice destruction induced by metamictization, and are thought to crystallize in high temperature stages of metamorphism. During these stages, the U and Th ions have been removed by metamorphic fluids from the parent rocks of these zircons. The other difference between magmatic and metamorphic zircons is the background level of their Raman spectra, which is high and sloped in magmatic zircons, but low and horizontal in metamorphic zircons. The differences between magmatic and metamorphic zircons can be used to identify the genesis of zircons and understand the origin and evolution history of their parent rocks.
We investigate whether the eternal chaotic inflation can be achieved when the weak gravity conjecture is taken into account. We show that even the assisted chaotic inflation with potential $\lambda\phi^4$ or $m^2\phi^2$ can not be eternal. The effective field theory description for the inflaton field breaks down before inflation reaches the eternal regime. We also find that the total number of e-folds is still bounded by the inflationary entropy for the assisted inflation.
In this paper we explore the consequences of the recent determination of the mass m=(8.7 +/- 0.8)M_Sun of Cygnus X-1, obtained from the Quasi-Periodic Oscillation (QPO)-photon index correlation scaling, on the orbital and physical properties of the binary system HDE 226868/Cygnus X-1. By using such a result and the latest spectroscopic optical data of the HDE 226868 supergiant star we get M=(24 +/- 5)M_Sun for its mass. It turns out that deviations from the third Kepler law significant at more than 1-sigma level would occur if the inclination i of the system's orbital plane to the plane of the sky falls outside the range 41-56 deg: such deviations cannot be due to the first post-Newtonian (1PN) correction to the orbital period because of its smallness; interpreted in the framework of the Newtonian theory of gravitation as due to the stellar quadrupole mass moment Q, they are unphysical because Q would take unreasonably large values. By conservatively assuming that the third Kepler law is an adequate model for the orbital period we obtain i=(48 +/- 7) deg which yields for the relative semimajor axis a=(42 +/- 9)R_Sun. Our estimate for the Roche's lobe of HDE 226868 is r_M = (21 +/- 6)R_Sun.
Links to: arXiv, form interface, /find, astro-ph, /recent, /0707, /abs, help (Access key information)
The galaxy circular velocity function at small masses is related to the matter power spectrum on small scales. Although this function is well-studied for Local Group dwarfs, theoretical predictions and observational measurements are difficult for satellite galaxies, because of ram pressure and tidal stripping. By contrast, isolated dwarf galaxies are less affected by these processes, and almost always have enough 21cm emission to trace their dynamics robustly. Here, we test cold dark matter cosmology using isolated low mass dwarf galaxies from the SDSS with measured 21cm widths. We find consistency between the predicted and observed number density of isolated galaxies down to circular velocities of 50 km/s. Our technique yields a direct test of small-scale cosmology independent of the Lyman-alpha forest power spectrum, but our sample is currently statistically less powerful: warm dark matter particles heavier than 0.5 keV cannot be ruled out. Our major systematic uncertainty is the surface brightness limit of the SDSS. Blind HI surveys, such as the ALFALFA survey on Arecibo, will uncover a larger number of isolated low mass galaxies and increase the power of our constraints. With our sample, we also find that the Tully-Fisher relation for dwarf galaxies is a strong function of environment, and that the baryonic fraction is only a weak function of mass. These results suggest that for dwarf galaxies, gas loss is dominated by external, not internal, processes. [abridged]
We use a cosmological chemodynamical simulation to study how the group environment impacts the star formation properties of disk galaxies. The simulated group has a total mass of M~8x10^12 Msun and a total X-ray luminosity of L_X~10^41 erg s^-1. Our simulation suggests that ram pressure is not sufficient in this group to remove the cold disk gas from a V_rot~150 km s^-1 galaxy. However, the majority of the hot gas in the galaxy is stripped over a timescale of approximately 1 Gyr. Since the cooling of the hot gas component provides a source for new cold gas, the stripping of the hot component effectively cuts off the supply of cold gas. This in turn leads to a quenching of star formation. The galaxy maintains the disk component after the cold gas is consumed leading to a galaxy with S0 properties. Our self-consistent simulation suggests that this strangulation mechanism works even in low mass groups, providing an explanation for the lower star formation rates in group galaxies relative to galaxies in the field.
Galaxy groups likely contain a significant fraction of the total baryonic mass in the local universe within their intragroup medium (IGM). However, aside from a handful of UV absorption line and X-ray observations, almost nothing is known about the IGM. We present early results from a research program that combines low-frequency radio continuum observations and optical spectroscopy of bent-double radio sources and their neighbors in groups of galaxies. These observations allow us to probe the density of the IGM to an unprecedented degree by examining its impact on the jets of radio galaxies.
The charge on micron-sized dust grains plays a crucial role in the structure and evolution of forming aggregates within the dust population during the coagulation process. The manner in which the charge is arranged on developing irregular structures can affect the fractal dimension of aggregates formed during collisions, which in turn influences the coagulation rate and size evolution of the dust cloud. Preliminary models for the charge evolution on fractal aggregates immersed in a plasma environment calculated using a modification to the orbital-motion-limited (OML) theory are presented in this paper. The model calculates currents to each point on the aggregate surface using a line-of-sight (LOS) approximation: only those electron or ion trajectories which are not blocked by another grain within the aggregate contribute to the charging current. Both the total charge and the dipole moment are calculated for the dust aggregate. While most coagulation theories assume that it is difficult for like-charged grains to coagulate, the OML_LOS approximation indicates that the electric potentials of aggregate structures are often reduced enough to allow significant coagulation.
We present high angular resolution observations with the Keck Interferometer, high dispersion spectroscopic observations with Keck/NIRSPEC, and near-IR photometric observations from PAIRITEL of a sample of 11 solar-type T Tauri stars in 9 systems. We use these observations to probe the circumstellar material within 1 AU of these young stars, measuring the circumstellar-to-stellar flux ratios and angular size scales of the 2.2 micron emission. Our sample spans a range of stellar luminosities and mass accretion rates, allowing investigation of potential correlations between inner disk properties and stellar or accretion properties. We suggest that the mechanism by which the dusty inner disk is truncated may depend on the accretion rate of the source; in objects with low accretion rates, the stellar magnetospheres may truncate the disks, while sublimation may truncate dusty disks around sources with higher accretion rates. We have also included in our sample objects that are known to be highly variable (based on previous photometric and spectroscopic observations), and for several sources, we obtained multiple epochs of spectroscopic and interferometric data, supplemented by near-IR photometric monitoring, to search for inner disk variability. While time-variable veilings and accretion rates are observed in some sources, no strong evidence for inner disk pulsation is found.
We study scaling relations of compressible isothermal strongly magnetized turbulence using numerical simulations with resolution 512$^3$. We find a good correspondence of our results with the Fleck (1996) model of compressible hydrodynamic turbulence. In particular, we find that the density-weighted velocity, i.e. $\boldsymbol{u} \equiv \rho^{1/3} \boldsymbol{v}$, proposed in Kritsuk et al. (2007) obeys the Kolmogorov scaling, i.e. ${\cal E}_{u}(k)\sim k^{-5/3}$ for the high Mach number turbulence. Similarly, we find that the exponents of the third order structure functions for $\boldsymbol{u}$ stay equal to unity for all Mach numbers studied. The scaling of higher order correlations obeys the She-L\'{e}v\^{e}que (1994) scalings corresponding to the two-dimensional dissipative structures, and this result does not change with the Mach number either. In contrast to velocity $\boldsymbol{v}$ which exhibits different scaling parallel and perpendicular to the local magnetic field, the scaling of $\boldsymbol{u}$ is similar in both directions. In addition, we find that the peaks of density create a hierarchy in which both physical and column densities decrease with the scale in accordance to the Fleck (1996) predictions. This hierarchy can be related ubiquitous small ionized and neutral structures (SINS) in the interstellar gas. We believe that studies of statistics of the column density peaks can provide both consistency check for the turbulence velocity studies and insight into supersonic turbulence, when the velocity information is not available.
The Galactic black-hole binary GRO J1655$-$40 was observed with Suzaku on 2005 September 22--23, for a net exposure of 35 ks with the X-ray Imaging Spectrometer (XIS) and 20 ks with the Hard X-ray Detector (HXD). The source was detected over a broad and continuous energy range of 0.7--300 keV, with an intensity of $\sim$50 mCrab at 20 keV. At a distance of 3.2 kpc, the 0.7--300 keV luminosity is $ \sim 5.1 \times 10^{36}$ erg s$^{-1}$ ($\sim 0.7$ % of the Eddington luminosity for a 6 $M_{\odot}$ black hole). The source was in a typical low/hard state, exhibiting a power-law shaped continuum with a photon index of $\sim 1.6$. During the observation, the source intensity gradually decreased by 25% at energies above $\sim 3$ keV, and by 35% below 2 keV. This, together with the soft X-ray spectra taken with the XIS, suggests the presence of an independent soft component that can be represented by emission from a cool ($\sim 0.2$ keV) disk. The hard X-ray spectra obtained with the HXD reveal a high-energy spectral cutoff, with an e-folding energy of $\sim 200$ keV. Since the spectral photon index above 10 keV is harder by $\sim 0.4$ than that observed in the softer energy band, and the e-folding energy is higher than those of typical reflection humps, the entire 0.7--300 keV spectrum cannot be reproduced by a single thermal Comptonization model, even considering reflection effects. Instead, the spectrum (except the soft excess) can be successfully explained by invoking two thermal-Comptonization components with different $y$-parameters. In contrast to the high/soft state spectra of this object in which narrow iron absorption lines are detected with equivalent widths of 60--100 eV, the present XIS spectra bear no such features beyond an upper-limit equivalent width of 25 eV.
We analyse the photometric properties of the early-type Fornax cluster dwarf galaxy population (M_V>-17 mag), based on a wide field imaging study of the central cluster area in V and I band-passes with IMACS/Magellan at Las Campanas Observatory. We create a fiducial sample of ~100 Fornax cluster dwarf ellipticals (dEs) with -16.6<M_V<-8.8 mag in the following three steps: (1) To verify cluster membership, we measured I-band surface brightness fluctuations (SBF) distances to candidate dEs known from previous surveys; (2) We re-assessed morphological classifications for those candidate dEs that are too faint for SBF detection; and (3) We searched for new candidate dEs in the size-luminosity regime close to the resolution limit of previous surveys. The resulting fiducial dE sample follows a well-defined surface brightness - magnitude relation, showing that Fornax dEs are about 40% larger than Local Group dEs. The sample also defines a colour-magnitude relation similar to that of Local Group dEs. The early-type dwarf galaxy luminosity function in Fornax has a very flat faint end slope alpha = -1.1 +/- 0.1. We compare the number of dwarfs per unit mass with those in other environments and find that the Fornax cluster fits well into a general trend of a lack of high-mass dwarfs in more massive environments.
Corrected analytical solutions describing the enhanced phase mixing of Alfven waves propagating in divergent stratified coronal structures are presented. These show that the enhanced phase mixing mechanism can dissipate Alfven waves at heights less than half that is predicted by the previous analytical solutions. The enhanced phase mixing of 0.1 Hz harmonic Alfven waves propagating in strongly divergent, H_b=5 Mm, stratified coronal structures, H_rho=50 Mm, can fulfill 100% of an active region heating requirement, by generating viscous heating fluxes of F_H~2100 J /m^2 /s. The Alfven waves in this configuration are fully dissipated within 20 Mm, which is six times lower than would occur as a result of standard phase mixing in uniform magnetic fields. This results in the heating scale height, s_H, being lowered by a factor of six, to less than half of an active regions density scale height. Using the corrected analytical solutions it was found that, for a given wave frequency, the generation of a heating scale height of s_H<=50 Mm, by enhanced phase mixing in strongly divergent magnetic fields, requires a shear viscosity eight orders of magnitude lower, than required by standard phase mixing in uniform magnetic fields. It was also found that the enhanced phase mixing of observable, 0.01 rads /s Alfven waves, in strongly divergent magnetic fields, H_b=5 Mm, can generate heating scale heights within a density scale height, H_rho=50 Mm, using classical Braginskii viscosity. It is therefore not necessary to invoke anomalous viscosity in corona, if phase mixing takes place in strongly divergent magnetic fields. This study shows that the importance of enhanced phase mixing as a mechanism for dissipating Alfven waves in the solar corona (a stratified and divergent medium), has been seriously underestimated.
We present results of numerical simulations of the flux (irradiance), F, and the degree of polarization (i.e. the ratio of polarized to total flux), P, of light that is reflected by Earth-like extrasolar planets orbiting solar-type stars, as functions of the wavelength (from 0.3 to 1.0 micron, with 0.001 micron spectral resolution) and as functions of the planetary phase angle. We use different surface coverages for our model planets, including vegetation and a Fresnel reflecting ocean, and clear and cloudy atmospheres. Our adding-doubling radiative transfer algorithm, which fully includes multiple scattering and polarization, handles horizontally homogeneous planets only; we simulate fluxes and polarization of horizontally inhomogeneous planets by weighting results for homogeneous planets. Like the flux, F, the degree of polarization, P, of the reflected starlight is shown to depend strongly on the phase angle, on the composition and structure of the planetary atmosphere, on the reflective properties of the underlying surface, and on the wavelength, in particular in wavelength regions with gaseous absorption bands. The sensitivity of P to a planet's physical properties appears to be different than that of F. Combining flux with polarization observations thus makes for a strong tool for characterizing extrasolar planets. The calculated total and polarized fluxes will be made available through the CDS.
It is generally believed that the angular resolution of the Laser Interferometer Space Antenna (LISA) for binary supermassive black holes (SMBH) will not be good enough to identify the host galaxy or galaxy cluster. This conclusion, based on using only the dominant harmonic of the binary SMBH signal, changes dramatically when higher signal harmonics are included in assessing the parameter estimation problem. We show that in a subset of the source parameter space the angular resolution increases by more than a factor of 10, thereby making it possible for LISA to identify the host galaxy/galaxy cluster. Thus, LISA's observation of certain binary SMBH coalescence events could constrain the dark energy equation of state to within a few percent, comparable to the level expected from other dark energy missions.
We derive projected rotational velocities (vsini) for a sample of 156 Galactic OB star members of 35 clusters, HII regions, and associations. The HeI lines at $\lambda\lambda$4026, 4388, and 4471A were analyzed in order to define a calibration of the synthetic HeI full-widths at half maximum versus stellar vsini. A grid of synthetic spectra of HeI line profiles was calculated in non-LTE using an extensive helium model atom and updated atomic data. The vsini's for all stars were derived using the He I FWHM calibrations but also, for those target stars with relatively sharp lines, vsini values were obtained from best fit synthetic spectra of up to 40 lines of CII, NII, OII, AlIII, MgII, SiIII, and SIII. This calibration is a useful and efficient tool for estimating the projected rotational velocities of O9-B5 main-sequence stars. The distribution of vsini for an unbiased sample of early B stars in the unbound association Cep OB2 is consistent with the distribution reported elsewhere for other unbound associations.
Massive low surface brightness galaxies have disk central surface brightnesses at least one magnitude fainter than the night sky, but total magnitudes and masses that show they are among the largest galaxies known. Like all low surface brightness (LSB) galaxies, massive LSB galaxies are often in the midst of star formation yet their stellar light has remained diffuse, raising the question of how star formation is proceeding within these galaxies. We have undertaken a multi-wavelength study to clarify the structural parameters and stellar and gas content of these enigmatic systems. The results of these studies, which include HI, CO, optical, near UV, and far UV images of the galaxies will provide the most in depth study done to date of how, when, and where star formation proceeds within this unique subset of the galaxy population.
We reconsider the original argument, based on the virial theorem, by which Zwicky was first led to conjecture the existence of a missing mass, and point out that, without any justification, he neglects the contribution of the forces due to the matter lying outside the considered system, Now, it is true that the contribution of the outer mass to the virial vanishes if the gravitational field is taken in the Newtonian approximation. However, according to general relativity in the weak field approximation, the gravitational potential has to be taken at the retarded time. This fact introduces into the force an additional term which, quite unexpectedly, turns out to act as a pressure. Its contribution to the external virial is estimated. With the simplest assumptions, an extremely good agreement with the observations is found for the Coma cluster considered by Zwicky. Furthermore, it is found that the contribution of the outer matter increases linearly with the linear dimension of the system. This seems to be in qualitative agreement with the fact that the mass defect is known to increase with the scale of the considered system, from galactic objects to superclusters of galaxies.
We present the results of three-dimensional simulations of the deep convective envelope of a young (10 Myr) one-solar-mass star, obtained with the Anelastic Spherical Harmonic code. Since young stars are known to be faster rotators than their main sequence counterparts, we have systematically studied the impact of the stellar rotation speed, by considering stars spinning up to five times as fast as the Sun. The aim of these nonlinear models is to understand the complex interactions between convection and rotation. We discuss the influence of the turbulence level and of the rotation rate on the intensity and the topology of the mean flows. For all of the computed models, we find a solar-type superficial differential rotation, with an equatorial acceleration, and meridional circulation that exhibits a multicellular structure. Even if the differential rotation contrast decreases only marginally for high rotation rates, the meridional circulation intensity clearly weakens according to our simulations. We have also shown that, for Taylor numbers above a certain threshold (Ta>10^9), the convection can develop a vacillating behavior. Since simulations with high turbulence levels and rotation rates exhibit strongly cylindrical internal rotation profiles, we have considered the influence of baroclinic effects at the base of the convective envelope of these young Suns, to see whether such effect can modify the otherwise near cylindrical profiles to produce more conical, solar-like profiles.
We obtain a non-relativistic diffeomorphism invariant string action as a special limit of the Nambu-Goto action in an FLRW background. We use this action to study non-relativistic string dynamics in an expanding universe and construct an analytic model describing the macroscopic properties of non-relativistic string networks. The non-relativistic constraint equations allow arbitrarily small string velocities and thus a `frustrated' equation of state for non-interacting strings can be obtained without the need of a velocity damping mechanism. Assuming that colliding string segments reconnect by exchange of partners, non-relativistic string networks exhibit scaling behaviour, but with enhanced energy densities due to the reduced average string velocity. Non-relativistic string networks can be relevant in several contexts in condensed matter physics and cosmology.
A new phenomenological theory for the expansion of our universe is presented. Because fundamental supporting theory is still in development, its discussion is not presented in this paper. The theory is based on a new algebraic expression for cosmic time G Rho t^2=3/32Pi, which correctly predicts the WMAP measured cosmological constants and the fundamental Hubble parameter H(t) for the expansion of the universe. A replacement for dark matter, called here "dark mass", is proposed which scales as with the expansion and incorporated. It does not react with ordinary matter, except gravitationally, and produces flat rotational curves for spiral galaxies. Also a new expression for the approaching velocity of radiation in a closed 3-sphere expanding universe is given that accounts for the early degrading negative approach of radiation for z > 1.7. The expression is v = Hr-c. Combining these three elements produces a luminosity distance dL that successfully predicts the apparent magnitude of exploding supernova Ia stars and even the new gamma ray bursts with no need for dark energy or acceleration of the expansion of the universe.
This paper presents multiwavelength imaging and broad-band spectroscopy of the relativistic jets in the two nearby radio galaxies 3C 371 and PKS 2201+044, acquired with Chandra, HST, VLA, and Merlin. Radio polarization images are also available. The two sources stand out as "intermediate'' between FRIs and FRIIs; their cores are classified as BL Lacs, although broad and narrow optical emission lines were detected at times. The multiwavelength images show jet morphologies with the X-ray emission peaking closer to the nucleus than the longer wavelengths. The jets are resolved at all wavelengths in a direction perpendicular to the jet axis. The jets SEDs are consistent with a single spectral component from radio to X-rays, interpreted as synchrotron emission. The SEDs show a progressive softening from the inner to the outer regions of the jet, indicating that the electron break energy moves to lower energies with distance from the core. Overall, the X-ray and multiwavelength properties of the jets of 3C 371 and PKS 2201+044 appear intermediate between those of FRIs and FRIIs.
Debris sent into the intergalactic medium during tidal collisions can tell us about several fundamental properties of galaxies, in particular their missing mass, both in the form of cosmological Dark Matter and so-called Lost Baryons. High velocity encounters, which are common in clusters of galaxies, are able to produce faint tidal debris that may appear as star-less, free floating HI clouds. These may be mistaken for Dark Galaxies, a putative class of gaseous, dark matter dominated, objects which for some reason never managed to form stars. VirgoHI21 is by far the most spectacular and most discussed Dark Galaxy candidate so far detected in HI surveys. We show here that it is most likely made out of material expelled 750 Myr ago from the nearby spiral galaxy NGC 4254 during its fly--by at about 1000 km/s by a massive intruder. Our numerical model of the collision is able to reproduce the main characteristics of the system: in particular the absence of stars, and its prominent velocity gradient. Originally attributed to the gas being in rotation within a massive dark matter halo, we find it instead to be consistent with a combination of simple streaming motion plus projection effects (Duc & Bournaud, 2007). We discuss several ways to identify a tidal origin in a Dark Galaxy candidate and illustrate the method using another HI system in Virgo, VCC 2062, which is most likely a Tidal Dwarf Galaxy (Duc et al., 2007). Now, whereas tidal debris should not contain any dark matter from the halo of their parent galaxies, it may exhibit missing mass in the form of dark baryons, unaccounted for by classical observations, as recently found in the collisional ring of NGC 5291 (Bournaud et al., 2007) and probably in the TDG VCC 2062. These "Lost Baryons" must originally have been located in the disks of their parent galaxies.
We present a molecular dynamics test of the Central Limit Theorem (CLT) in a paradigmatic long-range-interacting many-body classical Hamiltonian system, the HMF model. We calculate sums of velocities at equidistant times along deterministic trajectories for different sizes and energy densities. We show that, when the system is in a chaotic regime (specifically, at thermal equilibrium), ergodicity is essentially verified, and the Pdfs of the sums appear to be Gaussians, consistently with the standard CLT. When the system is, instead, only weakly chaotic (specifically, along longstanding metastable Quasi-Stationary States), nonergodicity (i.e., discrepant ensemble and time averages) is observed, and robust $q$-Gaussian attractors emerge, consistently with recently proved generalizations of the CLT.
We investigate the Hadamard function, the vacuum expectation values of the field square and the energy-momentum tensor of a scalar field with general curvature coupling parameter in de Sitter spacetime compactified along one of spatial dimensions. By using the Abel-Plana summation formula, we have explicitly extracted from the vacuum expectation values the part due to the compactness of the spatial dimension. The topological part in the vacuum energy-momentum tensor violates the local de Sitter symmetry and dominates in the early stages of the cosmological evolution. At late times the corresponding vacuum stresses are isotropic and the topological part corresponds to an effective gravitational source with barotropic equation of state.
In this brief review we will discuss how a well motivated particle theory beyond the eletroweak Standard Model provides ingredients and conditions for a successful inflation. We will mainly focus on a low energy supersymmetric Standard Model which provides plenty of scalars. In particular, these scalars span a multidimensional moduli space of {\it gauge invariant} operators which carry the Standard Model charges. The inflationary predictions which matches the current observations are robust due to the fact that inflation occurs within our own gauge sector where the couplings are well known. We further argue that based on our current understandings if there exists a {\it string landscape} of multiple vacua, then it is very natural that the last phase of inflation would be driven by one of the many supersymmetric Standard Model modulii. Only such a graceful exit from inflation would provide hot thermal Standard Model baryons, cold dark matter, conditions for baryogenesis and foremost the seed density perturbations for the cosmic microwave background radiation in just {\it one package}. Furthermore we will also discuss how some of the ingredients of inflation can be tested already by the LHC.
A scale-dependent cosmological constant $\Lambda$ and the Newton constant G emerge naturally in quantum field theory in a curved space-time background leading to renormalization group running cosmologies. A scale-setting procedure is discussed in these cosmological models and the interpretation of the scale is emphasized. This setup introduces dark energy without invoking quintessence-like fields and can be applied to a variety of problems. The scale-dependent $\Lambda$ and G are also naturally incorporated into the generalized holographic dark energy model, and applied to different aspects of cosmology.
Links to: arXiv, form interface, /find, astro-ph, /recent, /0707, /abs, contact, help (Access key information)