The hypervelocity stars recently found in the Galactic halo are expelled from the Galactic center through interactions between binary stars and the central massive black hole or between single stars and a hypothetical massive binary black hole. In this paper, we demonstrate that binary stars can be ejected out of the Galactic center with velocities up to 10^3 km/s, while preserving their integrity, through interactions with a massive binary black hole. Binary stars are unlikely to attain such high velocities via scattering by a single massive black hole or through any other mechanisms. Based on the above theoretical prediction, we propose a search for binary systems among the hypervelocity stars. Discovery of hypervelocity binary stars, even one, is a definitive evidence of the existence of a massive binary black hole in the Galactic center.
We present 12.8 microns images of the core of NGC 1068 obtained with the BURST mode of the VLT/VISIR. We trace structures under the diffraction limit of one UT and we investigate the link between dust in the vicinity of the central engine of NGC 1068, recently resolved by interferometry with MIDI, and more extended structures. This step is mandatory for a multi-scale understanding of the sources of mid-infrared emission in AGNs. A speckle processing of VISIR BURST mode images was performed to extract very low spatial-frequency visibilities, first considering the full field of VISIR BURST mode images and then limiting it to the mask used for the acquisition of MIDI data. Extracted visibilities are reproduced with a multi-component model. We identify two major sources of emission: one compact < 85 mas, associated with the dusty torus, and an elliptical one, (< 140) mas x 1187 mas at P.A.=-4 degrees from N to E. This is consistent with previous deconvolution processes. The combination with MIDI data reveals the close environment of the dusty torus to contribute to about 83 percent of the MIR flux seen by MIDI. This strong contribution has to be considered in modeling long baseline interferometric data. It must be related to the NS elongated component which is thought to originate from individually unresolved dusty clouds and is located inside the ionization cone. Low temperatures of the dusty torus are not challenged, emphasizing the scenarios of clumpy torus.
Ultraviolet Luminous Galaxies (UVLGs) have been identified as intensely star-forming, nearby galaxies. A subset of these, the supercompact UVLGs, are believed to be local analogs of high redshift Lyman Break Galaxies. Here we investigate the radio continuum properties of this important population for the first time. We have observed 42 supercompact UVLGs with the VLA, all of which have extensive coverage in the UV/optical by GALEX and SDSS. Our analysis includes comparison samples of multiwavelength data from the Spitzer First Look Survey and from the SDSS-Galex matched catalogs. In addition we have Spitzer MIPS data for 24 of our galaxies and find that they fall on the radio-FIR correlation of normal star-forming galaxies. We find that our galaxies have lower radio-to-UV ratios and lower Balmer decrements than other local galaxies with similar (high) star formation rates. Optical spectra show they have lower Dn(4000) and HdeltaA indices, higher Hbeta emission-line equivalents widths, and higher [OIII]5007/Hbeta emission-line ratios than normal star forming galaxies. Comparing these results to galaxy spectral evolution models we conclude that supercompact UVLGs are distinguished from normal star forming galaxies firstly by their high specific star formation rates. Moreover, compared to other types of galaxies with similar star formation rates, they have significantly less dust attenuation. In both regards they are similar to Lyman Break Galaxies. This suggests that the process that causes star formation in the supercompact UVLGs differs from other local star forming galaxies, but may be similar to Lyman Break Galaxies.
We present analysis of Chandra and XMM-Newton observations of three early-type galaxies, NGC 57, NGC 7796 and IC 1531. All three are found in very low density environments, and appear to have no neighbours of comparable size. NGC 57 has a halo of kT~0.9 keV, solar metallicity gas, while NGC 7796 and IC 1531 both have ~0.55 keV, 0.5-0.6 Zsol haloes. IC 1531 has a relatively compact halo, and we consider it likely that gas has been removed from the system by the effects of AGN heating. For NGC 57 and NGC 7796 we estimate mass, entropy and cooling time profiles and find that NGC 57 has a fairly massive dark halo with a mass-to-light ratio of 44.7 (4.0,-8.5) Msol/Lsol (1 sigma uncertainties) at 4.75 Re. This is very similar to the mass-to-light ratio found for NGC 4555 and confirms that isolated ellipticals can possess sizable dark matter haloes. We find a significantly lower mass-to-light ratio for NGC 7796, 10.6 (+2.5,-2.3) Msol/Lsol at 5 Re, and discuss the possibility that NGC 7796 hosts a galactic wind, causing us to underestimate its mass.
We study theoretical interpretations of the 150-d (superorbital) modulation observed in X-ray and radio emission of Cyg X-1 in the framework of models connecting this phenomenon to precession. Precession changes the orientation of the emission source (either disc or jet) relative to the observer. This leads to emission modulation due to an anisotropic emission pattern of the source or orientation-dependent amount of absorbing medium along the line of sight or both. We consider, in particular, anisotropy patterns of blackbody-type emission, thermal Comptonization in slab geometry, jet/outflow beaming, and absorption in a coronal-type medium above the disc. We then fit these models to the data from the RXTE/ASM, CGRO/BATSE, and the Ryle and Green Bank radio telescopes, and find relatively small best-fit angles between the precession and orbital planes, ~10-20 degrees. The thermal Comptonization model for the X-ray emission explains well the observed decrease of the variability amplitude from 1 to 300 keV as a result of a reduced anisotropy of the emission due to multiple scatterings. Our modeling also yield the jet bulk velocity of ~(0.3-0.5)c, which is in agreement with the previous constraint from the lack of an observed counterjet and lack of short-term X-ray/radio correlations.
Magnetic activity in ultracool dwarfs, as measured in X-rays and H$\alpha$, shows a steep decline after spectral type M7-M8. So far, no L dwarf has been detected in X-rays. In contrast, L dwarfs may have higher radio activity than M dwarfs. We observe L and T dwarfs simultaneously in X-rays and radio to determine their level of magnetic activity in the context of the general decline of magnetic activity with cooler effective temperatures. The field L dwarf binary Kelu-1 was observed simultaneously with Chandra and the Very Large Array. Kelu-1AB was detected in X-rays with $L_{\rm X} = 2.9_{-1.3}^{+1.8} \times 10^{25}$ erg/s, while it remained undetected in the radio down to a $3 \sigma$ limit of $L_{\rm R} \leq 1.4 \times 10^{13}$ erg/s/Hz. We argue that, whereas the X-ray and H$\alpha$ emissions decline in ultracool dwarfs with decreasing effective temperature, the radio luminosity stays (more or less) constant across M and early-L dwarfs. The radio surface flux or the luminosity may better trace magnetic activity in ultracool dwarfs than the ratio of the luminosity to the bolometric luminosity. Deeper radio observations (and at short frequencies) are required to determine if and when the cut-off in radio activity occurs in L and T dwarfs, and what kind of emission mechanism takes place in ultracool dwarfs.
We summarize the scientific potential of high contrast optical space imaging for studies of extrasolar planets, debris disks, and planet formation. The unique scientific capabilities offered by a 2-m class optical telescope, the technical requirements to achieve 10^-9 contrast, and the programmatic means needed to advance such a mission are discussed.
Ages, metallicities, space velocities, and Galactic orbits of stars in the
Solar neighbourhood are fundamental observational constraints on models of
galactic disk evolution. We aim to consolidate the calibrations of uvby
photometry into Te, [Fe/H], distance, and age for F and G stars and rediscuss
the results of the Geneva-Copenhagen Survey (Nordstrom et al. 2004; GCS) in
terms of the evolution of the disk.
We substantially improve the Te and [Fe/H] calibrations for early F stars,
where spectroscopic temperatures have large systematic errors. Our recomputed
ages are in excellent agreement with the independent determinations by Takeda
et al. (2007), indicating that isochrone ages can now be reliably determined.
The revised G-dwarf metallicity distribution remains incompatible with
closed-box models, and the age-metallicity relation for the thin disk remains
almost flat, with large and real scatter at all ages (sigma intrinsic = 0.20
dex). Dynamical heating of the thin disk continues throughout its life;
specific in-plane dynamical effects dominate the evolution of the U and V
velocities, while the W velocities remain random at all ages. When assigning
thick and thin-disk membership for stars from kinematic criteria, parameters
for the oldest stars should be used to characterise the thin disk.
We present new Spitzer photometry of the Eagle Nebula (M16, containing the optical cluster NGC 6611) combined with near-infrared photometry from 2MASS. We use dust radiative transfer models, mid-infrared and near-infrared color-color analysis, and mid-infrared spectral indices to analyze point source spectral energy distributions, select candidate young stellar objects (YSOs), and constrain their mass and evolutionary state. Comparison of the different protostellar selection methods shows that mid-infrared methods are consistent, but as has been known for some time, near-infrared-only analysis misses some young objects. We reveal more than 400 protostellar candidates, including one massive young stellar object (YSO) that has not been previously highlighted. The YSO distribution supports a picture of distributed low-level star formation, with no strong evidence of triggered star formation in the ``pillars''. We confirm the youth of NGC 6611 by a large fraction of infrared-excess sources, and reveal a younger cluster of YSOs in the nearby molecular cloud. Analysis of the YSO clustering properties shows a possible imprint of the molecular cloud's Jeans length. Multiwavelength mid-IR imaging thus allows us to analyze the protostellar population, to measure the dust temperature and column density, and to relate these in a consistent picture of star formation in M16.
Some inconsistencies to the assumption of a cosmological origin of the cosmic microwave background CMB, such as the absence of gravitational lensing in the WMAP data, open the doors to some speculations such as a local origin to the CMB. We argue here that this assumption agrees with the absence of the GZK cutoff (at least according to AGASA data) in the energy spectrum of the cosmic ray due to the cosmic interaction with the CMB at $6\times 10^{19} eV$ or above. Within 50 Mpc from Earth, the matter and light distributions are close to an anisotropic distribution, where the local cluster and local super-clusters of galaxies can be identified. In contrast, the ultra high energy comic rays data is consistent to an almost isotropic distribution, and there is no correlation between their arrival direction and astronomical sources within our local cluster. This means that the events above the GZK cutoff come from distances above 50 Mpc, without an apparent energy loss. This scenario is plausible under the assumption of the CMB concentrated only within 3-4 Mpc from Earth. In other words, the CMB has a local origin linked only to the local super-cluster of galaxies. In addition, the galactic and extragalactic energy spectra index within the energy equipartition theorem strongly constrains the dark matter and dark energy hypothesis, essential in the Big Bang cosmology.
We present the complete on-line catalogue of gamma-ray bursts observed by the two Wide Field Cameras on board \sax in the period 1996-2002. Our aim is to provide the community with the largest published data set of GRB's prompt emission X-ray light curves and other useful data. This catalogue (BS-GRBWFCcat) contains data on 77 bursts and a collection of the X-ray light curves of 56 GRB discovered or noticed shortly after the event and of other additional bursts detected in subsequent searches. Light curves are given in the three X-ray energy bands (2-5, 5-10, 10-26 keV). The catalogue can be accessed from the home web page of the ASI Science Data Center-ASDC (this http URL)
We present a catalog of 34 diffuse features identified in X-ray images of the Galactic center taken with the Chandra X-ray Observatory. Several of the features have been discussed in the literature previously, including 7 that are associated with a complex of molecular clouds that exhibits fluorescent line emission, 4 that are superimposed on the supernova remnant Sgr A East, 2 that are coincident with radio features that are thought to be the shell of another supernova remnant, and one that is thought to be a pulsar wind nebula only a few arcseconds in projection from Sgr A*. However, this leaves 20 features that have not been reported previously. Based on the weakness of iron emission in their spectra, we propose that most of them are non-thermal. One long, narrow feature points toward Sgr A*, and so we propose that this feature is a jet of synchrotron-emitting particles ejected from the supermassive black hole. For the others, we show that their sizes (0.1-2 pc in length for D=8 kpc), X-ray luminosities (between 10^32 and 10^34 erg/s, 2-8 keV), and spectra (power laws with Gamma=1-3) are consistent with those of pulsar wind nebulae. Based on the star formation rate at the Galactic center, we expect that ~20 pulsars have formed in the last 300 kyr, and could be producing pulsar wind nebulae. Only one of the 19 candidate pulsar wind nebulae is securely detected in an archival radio image of the Galactic center; the remainder have upper limits corresponding to L_R<la10^31 erg/s. These radio limits do not strongly constrain their natures, which underscores the need for further multi- wavelength studies of this unprecedented sample of Galactic X-ray emitting structures.
We present photometry of the G0 star HAT-P-1 during six transits of its close-in giant planet, and we refine the estimates of the system parameters. Relative to Jupiter's properties, HAT-P-1b is 1.20 +/- 0.05 times larger and its surface gravity is 2.7 +/- 0.2 times weaker. Although it remains the case that HAT-P-1b is among the least dense of the known sample of transiting exoplanets, its properties are in accord with previously published models of strongly irradiated, coreless, solar-composition giant planets. The times of the transits have a typical accuracy of 1 min and do not depart significantly from a constant period.
We briefly review recent developments in black hole accretion disk theory, placing new emphasis on the vital role played by magnetohydrodynamic (MHD) stresses in transporting angular momentum. The apparent universality of accretion-related outflow phenomena is a strong indicator that vertical transport of angular momentum by large-scale MHD torques is important and may even dominate radial transport by small-scale MHD turbulence. This leads to an enhanced overall rate of angular momentum transport and allows accretion of matter to proceed at an interesting rate. Furthermore, we argue that when vertical transport is important, the radial structure of the accretion disk is modified and this affects the disk emission spectrum. We present a simple model demonstrating that energetic, magnetically-driven outflows give rise to a disk spectrum that is dimmer and redder than a standard accretion disk accreting at the same rate. We briefly discuss the implications of this key result for accreting black holes in different astrophysical systems.
The electrostatic charging of the test mass in ASTROD I (Astrodynamical Space Test of Relativity using Optical Devices I) mission can affect the quality of the science data as a result of spurious Coulomb and Lorentz forces. To estimate the size of the resultant disturbances, credible predictions of charging rates and the charging noise are required. Using the GEANT4 software toolkit, we present a detailed Monte Carlo simulation of the ASTROD I test mass charging due to exposure of the spacecraft to galactic cosmic-ray (GCR) protons and alpha particles (3He, 4He) in the space environment. A positive charging rate of 33.3 e+/s at solar minimum is obtained. This figure reduces by 50% at solar maximum. Based on this charging rate and factoring in the contribution of minor cosmic-ray components, we calculate the acceleration noise and stiffness associated with charging. We conclude that the acceleration noise arising from Coulomb and Lorentz effects are well below the ASTROD I acceleration noise limit at 0.1 mHz both at solar minimum and maximum. The coherent Fourier components due to charging are investigated, it needs to be studied carefully in order to ensure that these do not compromise the quality of science data in the ASTROD I mission.
We investigate the figure rotation of dark matter halos identified in Lambda CDM simulations. We find that when strict criteria are used to select suitable halos for study, 5 of the 222 halos identified in our z=0 simulation output undergo coherent figure rotation over a 5h^{-1}Gyr period. We discuss the effects of varying the selection criteria and find that pattern speeds for a much larger fraction of the halos can be measured when the criteria are relaxed. Pattern speeds measured over a 1h^{-1}Gyr period follow a log-normal distribution, centred at Omega_p = 0.25h rad/Gyr with a maximum value of 0.94h rad/Gyr. Over a 5h^{-1}Gyr period, the average pattern speed of a halo is about 0.1h rad/Gyr and the largest pattern speed found is 0.24h rad/Gyr. Less than half of the selected halos showed alignment between their figure rotation axis and minor axis, the exact fraction being somewhat dependent on how one defines a halo. While the pattern speeds observed are lower than those generally thought capable of causing spiral structure, we note that coherent figure rotation is found over very long periods and argue that further simulations would be required before strong conclusions about spiral structure in all galaxies could be drawn. We find no correlation between halo properties such as total mass and the pattern speed.
We monitored three transits of the giant gas planet around the nearby K dwarf HD 189733 with the ACS camera on the Hubble Space Telescope. The resulting very-high accuracy lightcurve (signal-to-noise ratio near 15000 on individual measurements, 35000 on 10-minute averages) allows a direct geometric measurement of the orbital inclination, radius ratio and scale of the system: i = 85.68 +- 0.04 R_{pl}/R_*=0.1572 +- 0.0004, a/R_*=8.92 +- 0.09. We derive improved values for the stellar and planetary radius, R_*=0.755 +- 0.011 R_{sun}, R_{pl}=1.154 +- 0.017 R_J, and the transit ephemerides, T_{tr}=2453931.12048 +- 0.00002 + n 2.218581 +- 0.000002. The HST data also reveal clear evidence of the planet occulting spots on the surface of the star. At least one large spot complex (> 80000 km) is required to explain the observed flux residuals and their colour evolution. This feature is compatible in amplitude and phase with the variability observed simultaneously from the ground. No evidence for satellites or rings around HD 189733b are seen in the HST lightcurve. This allows us to exlude with a high probability the presence of Earth-sized moons and Saturn-type debris rings around this planet. The timing of the three transits sampled is stable to the level of a few seconds, excluding a massive second planet in outer 2:1 resonance.
Analysis of the radio synchrotron and X-ray inverse-Compton emission from radio-loud active galaxies allows us to determine their particle acceleration processes and electron energy spectra. Previous studies have provided new constraints on the total energy budget and particle content of powerful radio galaxies and quasars; however, in most cases the sources are too faint in the X-ray to obtain spatial information. We present archival and new multi-frequency radio observations from the VLA and GMRT, and XMM-Newton observations of the bright FRII radio galaxy 3C353 which lies on the edge of the X-ray-luminous cluster Zw 1718.1-0108. The X-ray observations detect both the inverse-Compton emission from the radio galaxy lobes and thermal emission from the hot phase of the intracluster medium. We discuss the properties of the particle energy spectrum as a function of position in the lobe, as well as the properties of the merging cluster.
We have carried out a large set of N-body simulations studying the effect of
residual-gas expulsion on the survival rate and final properties of star
clusters.
We have varied the star formation efficiency, gas expulsion timescale and
strength of the external tidal field, obtaining a three-dimensional grid of
models which can be used to predict the evolution of individual star clusters
or whole star cluster systems by interpolating between our runs. The complete
data of these simulations is made available on the Internet.
Our simulations show that cluster sizes, bound mass fraction and velocity
profile are strongly influenced by the details of the gas expulsion. Although
star clusters can survive star formation efficiencies as low as 10% if the
tidal field is weak and the gas is removed only slowly, our simulations
indicate that most star clusters are destroyed or suffer dramatic loss of stars
during the gas removal phase. Surviving clusters have typically expanded by a
factor 3 or 4 due to gas removal, implying that star clusters formed more
concentrated than as we see them today. Maximum expansion factors seen in our
runs are around 10. If gas is removed on timescales smaller than the initial
crossing time, star clusters acquire strongly radially anisotropic velocity
dispersions outside their half-mass radii. Observed velocity profiles of star
clusters can therefore be used as a constraint on the physics of cluster
formation.
We investigate the noncommutative effect on the non-Gaussianities of primordial cosmological perturbation. In the lowest order of string length and slow-roll parameter, we find that in the models with small speed of sound the noncommutative modifications could be observable if assuming a relatively low string scale. In particular, the dominant modification of non-Gaussianity estimator f_{NL} could reach O(1) in DBI inflation and K-inflation. The corrections are sensitive to the speed of sound and the choice of string length scale. Moreover the shapes of the corrected non-Gaussianities are distinct from that of ordinary ones.
We carry out numerical investigations of the perturbations in Nflation models where the mass spectrum is generated by random matrix theory. The tensor-to-scalar ratio and non-gaussianity are already known to take the single-field values, and so the density perturbation spectral index is the main parameter of interest. We study several types of random field initial conditions, and compute the spectral index as a function of mass spectrum parameters. Comparison with data compilations including WMAP3 shows that the model is currently viable in the majority of its parameter space.
We establish the nature and derive fundamental and structural parameters of the recently catalogued objects FSR1744, FSR89 and FSR31. This work intends to provide clues to constrain the Galactic tidal disruption efficiency, improve statistics of the open cluster parameter space, and better define their age-distribution function inside the Solar circle. Properties of the objects are investigated by means of 2MASS colour-magnitude diagrams and stellar radial density profiles built with field star decontaminated photometry. Diagnostic-diagrams for structural parameters are used to help disentangle dynamical from high-background effects affecting such centrally projected open clusters. FSR1744, FSR89 and FSR31 are Gyr-class OCs located at Galactocentric distances 4.0 - 5.6kpc. Compared to nearby OCs, they have small core and limiting radii. With respect to the small number of OCs observed in the inner Galaxy, the emerging scenario in the near-infrared favours disruption driven by dynamical evolution rather than observational limitations associated with absorption and/or high background levels. Internally, the main processes associated with the dynamical evolution are, e.g. mass loss by stellar evolution, mass segregation and evaporation. Externally they are, e.g. tidal stress from the disk and bulge, and interactions with giant molecular clouds. FSR1744, FSR89 and FSR31 have structural parameters consistent with their Galactocentric distances, in the sense that tidally induced effects may have accelerated the dynamical evolution.
Determination of horizontal velocity fields on the solar surface is crucial
for understanding the dynamics of structures like mesogranulation or
supergranulation or simply the distribution of magnetic fields.
We pursue here the development of a method called CST for coherent structure
tracking, which determines the horizontal motion of granules in the field of
view.
We first devise a generalization of Strous method for the segmentation of
images and show that when segmentation follows the shape of granules more
closely, granule tracking is less effective for large granules because of
increased sensitivity to granule fragmentation. We then introduce the
multi-resolution analysis on the velocity field, based on Daubechies wavelets,
which provides a view of this field on different scales. An algorithm for
computing the field derivatives, like the horizontal divergence and the
vertical vorticity, is also devised. The effects from the lack of data or from
terrestrial atmospheric distortion of the images are also briefly discussed.
The determination of horizontal velocity fields at the solar surface is
crucial to understanding the dynamics and magnetism of the convection zone of
the sun. These measurements can be done by tracking granules.
Tracking granules from ground-based observations, however, suffers from the
Earth's atmospheric turbulence, which induces image distortion. The focus of
this paper is to evaluate the influence of this noise on the maps of velocity
fields.
We use the coherent structure tracking algorithm developed recently and apply
it to two independent series of images that contain the same solar signal.
We first show that a k-\omega filtering of the times series of images is
highly recommended as a pre-processing to decrease the noise, while, in
contrast, using destretching should be avoided. We also demonstrate that the
lifetime of granules has a strong influence on the error bars of velocities and
that a threshold on the lifetime should be imposed to minimize errors. Finally,
although solar flow patterns are easily recognizable and image quality is very
good, it turns out that a time sampling of two images every 21 s is not
frequent enough, since image distortion still pollutes velocity fields at a 30%
level on the 2500 km scale, i.e. the scale on which granules start to behave
like passive scalars.
The coherent structure tracking algorithm is a useful tool for noise control
on the measurement of surface horizontal solar velocity fields when at least
two independent series are available.
We analyze the distribution of the interstellar matter in the environs of the \hii region Gum 31, excited by the open cluster NGC 3324, located in the complex Carina region, with the aim of investigating the action of the massive stars on the surrounding neutral material. We use 21cm-line data, radio continuum images at 0.843, 2.4 and 4.9 GHz, $^{12}${\bf CO(1-0)} observations, and IRAS and MSX infrared data. Adopting a distance of 3 kpc for the \hii\ region and the ionizing cluster, we have derived an electron density of 33$\pm$3 cm$^{-3}$ and an ionized mass of (3.3$\pm$1.1)$\times10^3$ M$_{\odot}$ based on the radio continuum data at 4.9 GHz. The \hi 21-cm line images revealed an \hi shell surrounding the H {\sc ii} region. The \hi structure is 10.0$\pm$1.7 pc in radius, has a neutral mass of 1500$\pm$500 M$_{\odot}$, and is expanding at 11 km s$^{-1}$. The associated molecular gas amounts to (1.5$\pm$0.5)$\times10^5$ M$_{\odot}$, being its volume density of about 500 cm^{-3}. This molecular material probably represents the remains of the cloud where the young open cluster NGC 3324 was born. The distributions of the ionized and molecular material, along with that of the emission in the MSX band A suggest that a photodissociation region has developed at the interface between the ionized and molecular gas. We conclude that either the massive stars in the open cluster have weak stellar winds or the stellar winds have blown during a very short period of time to create an interstellar bubble in an interstellar medium as dense as observed. IRAS, MSX, and 2MASS point sources projected onto the molecular envelope are compatible with protostellar candidates, showing the presence star forming regions. The expansion of the \hii region has triggered stellar formation in the molecular shell.
Aims: We analyze INTEGRAL-ISGRI data in order to probe the hard X-ray emission (above 20 keV) from point sources in the Cyg OB2 region and to investigate the putative non-thermal high-energy emission from early-type stars (Wolf-Rayet and O-type stars). Among the targets located in the field of view, we focus on the still unidentified EGRET source 3EG 2033+4118 that may be related to massive stars known to produce non-thermal emission in the radio domain, and on the wide colliding-wind binary WR 140. Methods: Using a large set of data obtained with the IBIS-ISGRI imager onboard INTEGRAL, we run the OSA software package in order to find point sources in the fully coded field of view of the instrument. Results: Our data do not allow the detection of a lower-energy counterpart of 3EG J2033+4118 nor of any other new point sources in the field of view, and we derive upper limits on the high-energy flux for a few targets: 3EG J2033+4118, TeV J2032+4130, WR140, WR146 and WR147. The results are discussed in the context of the multiwavelength investigation of these objects. Conclusions: The upper limits derived are valuable constraints for models aimed at understanding the acceleration of particles in non-thermal emitting massive stars, and of the still unidentified very-high gamma-ray source TeV J2032+4130.
With a Jupiter-mass planet orbiting at a distance of only 0.031 AU, the active K2 dwarf HD 189733 is a potential candidate in which to study the magnetospheric interactions of a cool star with its recently-discovered close-orbiting giant planet. We decided to explore the strength and topology of the large-scale magnetosphere of HD 189733, as a future benchmark for quantitative studies for models of the star/planet magnetic interactions. To this end, we used ESPaDOnS, the new generation spectropolarimeter at the Canada-France-Hawaii 3.6m telescope, to look for Zeeman circular polarisation signatures in the line profiles of HD 189733 in 2006 June and August. Zeeman signatures in the line profiles of HD 189733 are clearly detected in all spectra, demonstrating that a field is indeed present at the surface of the star. The Zeeman signatures are not modulated with the planet's orbital period but apparently vary with the stellar rotation cycle. The reconstructed large-scale magnetic field, whose strength reaches a few tens of G, is significantly more complex than that of the Sun; it involves in particular a significant toroidal component and contributions from magnetic multipoles of order up to 5. The CaII H & K lines clearly feature core emission, whose intensity is apparently varying mostly with rotation phase. Our data suggest that the photosphere and magnetic field of HD 189733 are sheared by a significant amount of differential rotation. Our initial study confirms that HD 189733 is an optimal target for investigating activity enhancements induced by closely orbiting planets. More data are needed, densely covering both the orbital and rotation cycles, to investigate whether and how much the planet contributes to the overall activity level of HD 189733.
Two nights of phase-resolved medium resolution VLT spectroscopy of the extra-galactic low mass X-ray binary LMC X-2 have revealed a 0.32+/-0.02 day spectroscopic period in the radial velocity curve of the HeII lambda4686 emission line that we interpret as the orbital period. However, similar to previous findings, this radial velocity curve shows a longer term variation that is most likely due to the presence of a precessing accretion disk in LMC X-2. This is strengthened by HeII lambda4686 Doppler maps that show a bright spot that is moving from night to night. Furthermore, we detect narrow emission lines in the Bowen region of LMC X-2,with a velocity of K_em=351+/-28 km/s, that we tentatively interpret as coming from the irradiated side of the donor star. Since K_em must be smaller than K_2, this leads to the first upper-limit on the mass function of LMC X-2 of f(M_1)>=0.86Msun (95% confidence), and the first constraints on its system parameters.
We carried out an electromagnetic acoustic analysis of the solar flare of 14 August 2004 in active region AR10656 from the radio to the hard X-ray spectrum. The flare was a GOES soft X-ray class M7.4 and produced a detectable sun quake, confirming earlier inferences that relatively low-energy flares may be able to generate sun quakes. We introduce the hypothesis that the seismicity of the active region is closely related to the heights of coronal magnetic loops that conduct high-energy particles from the flare. In the case of relatively short magnetic loops, chromospheric evaporation populates the loop interior with ionized gas relatively rapidly, expediting the scattering of remaining trapped high-energy electrons into the magnetic loss cone and their rapid precipitation into the chromosphere. This increases both the intensity and suddenness of the chromospheric heating, satisfying the basic conditions for an acoustic emission that penetrates into the solar interior.
We consider stationary, axisymmetric hydrodynamic accretion flows in Kerr geometry. As a plausible means of efficiently separating a small population of nonthermal particles from the bulk accretion flows, we investigate the formation of standing dissipative shocks, i.e. shocks at which fraction of the energy, angular momentum and mass fluxes do not participate in the shock transition of the flow that accretes onto the compact object but are lost into collimated (jets) or uncollimated (winds) outflows. The mass loss fraction (at a shock front) is found to vary over a wide range (0 - 95%) depending on flow's angular momentum and energy. On the other hand, the associated energy loss fraction appears to be relatively low (<1%) for a flow onto a non-rotating black hole case, whereas the fraction could be an order of magnitude higher (<10%) for a flow onto a rapidly-rotating black hole. By estimating the escape velocity of the outflowing particles with a mass-accretion rate relevant for typical active galactic nuclei, we find that nearly 10% of the accreting mass could escape to form an outflow in a disk around a non-rotating black hole, while as much as 50% of the matter may contribute to outflows in a disk around a rapidly-rotating black hole. In the context of disk-jet paradigm, our model suggests that shock-driven outflows from accretion can occur in regions not too far from a central engine. Our results imply that a shock front under some conditions could serve as a plausible site where (nonthermal) seed particles of the outflows (jets/winds) are efficiently decoupled from bulk accretion.
The X-ray binary Cygnus X-3 is a highly variable X-ray source that displays a wide range of observed spectral states. One of the main states is significantly harder than the others, peaking at ~ 20 keV, with only a weak low-energy component. Due to the enigmatic nature of this object, hidden inside the strong stellar wind of its Wolf-Rayet companion, it has remained unclear whether this state represents an intrinsic hard state, with truncation of the inner disc, or whether it is just a result of increased local absorption. We study the X-ray light curves from RXTE/ASM and CGRO/BATSE in terms of distributions and correlations of flux and hardness and find several signs of a bimodal behaviour of the accretion flow that are not likely to be the result of increased absorption in a surrounding medium. Using INTEGRAL observations, we model the broad-band spectrum of Cyg X-3 in its apparent hard state. We find that it can be well described by a model of a hard state with a truncated disc, despite the low cut-off energy, if the accreted power is supplied to the electrons in the inner flow in the form of acceleration rather than thermal heating, resulting in a hybrid electron distribution and a spectrum with a significant contribution from non-thermal Comptonization, usually observed only in soft states. The high luminosity of this non-thermal hard state implies that either the transition takes place at significantly higher L/Ledd than in the usual advection models, or the mass of the compact object is > 20 Msun, possibly making it the most massive black hole observed in an X-ray binary in our Galaxy so far. We find that an absorption model as well as a model of almost pure Compton reflection also fit the data well, but both have difficulties explaining other results, in particular the radio/X-ray correlation.
Our knowledge of the optical spectra of Isolated Neutron Stars (INSs) is limited by their intrinsic faintness. Among the fourteen optically identified INSs, medium resolution spectra have been obtained only for a handful of objects. No spectrum has been published yet for the Vela pulsar (PSR B0833-45), the third brightest (V=23.6) INS with an optical counterpart. Optical multi-band photometry underlines a flat continuum.In this work we present the first optical spectroscopy observations of the Vela pulsar, performed in the 4000-11000 A spectral range.Our observations have been performed at the ESO VLT using the FORS2 instrument. The spectrum of the Vela pulsar is characterized by a flat power-law (alpha = -0.04 +/- 0.04), which compares well with the values obtained from broad-band photometry. This confirms, once more, that the optical emission of Vela is entirely of magnetospheric origin. The comparison between the optical spectral indeces of rotation-powered INSs does not show evidence for a spectral evolution suggesting that, as in the X-rays, the INS aging does not affect the spectral properties of the magnetospheric emission. At the same time, the optical spectral indeces are found to be nearly always flatter then the X-rays ones, clearly suggesting a general spectral turnover at lower energies.
The X-ray spectral and timing properties of ultraluminous X-ray sources (ULXs) have many similarities with the very high state of stellar-mass black holes (power-law dominated, at accretion rates greater than the Eddington rate). On the other hand, their cool disk components, large characteristic inner-disk radii and low characteristic timescales have been interpreted as evidence of black hole masses ~ 1000 Msun (intermediate-mass black holes). Here we re-examine the physical interpretation of the cool disk model, in the context of accretion states of stellar-mass black holes. In particular, XTE J1550-564 can be considered the missing link between ULXs and stellar-mass black holes, because it exhibits a high-accretion-rate, low-disk-temperature state (ultraluminous branch). On the ultraluminous branch, the accretion rate is positively correlated with the disk truncation radius and the bolometric disk luminosity, while it is anti-correlated with the peak temperature and the frequency of quasi-periodic-oscillations. Two prototypical ULXs (NGC1313 X-1 and X-2) also seem to move along that branch. We use a phenomenological model to show how the different range of spectral and timing parameters found in the two classes of accreting black holes depends on both their masses and accretion rates. We suggest that ULXs are consistent with black hole masses ~ 50-100 Msun, moderately inefficiently accreting at ~20 times Eddington.
We present X-ray spectral analysis of five Chandra and XMM observations of gravitationally-lensed blazar PKS1830-211 from 2000 to 2004. We show that the X-ray absorption towards PKS1830-211 is variable, and the variable absorption is most likely to be intrinsic with amplitudes of ~2-30e22 cm^-2 depending on whether or not the absorber is partially covering the X-ray source. This large variation of absorption column density can be interpreted as outflows from the central engine in the polar direction, consistent with recent numerical models of inflow/outflows in AGNs. While the spectra can also be fitted with a variable absorption at the lens redshift, or a variable low energy photon index, we show that these models are unlikely. We also rule out the simple microlensing interpretation of variability which was previously suggested.
Using 400 days of new X-ray monitoring of M82, we confirm the 62 day periodicity previously reported. In the full data set spanning 1124 days, we find a period of 62.0 +/- 0.3 days and a coherence, Q = 22.3, that is consistent with a strictly periodic signal. We estimate that the probability of chance occurrence of our observed signal is 6E-7. The light curve folded at this period is roughly sinusoidal and has a peak to peak amplitude of (0.99 +/- 0.10) x 10^-11 erg cm^-2 s^-1. Confirmation of the periodicity strengthens our previous suggestion that the 62 day modulation is due to orbital motion within an X-ray binary.
The first luminous objects in the concordance cosmology form by molecular hydrogen cooling in dark matter dominated halos of masses ~10^6 M_sun. We use Eulerian adaptive mesh refinement simulations to demonstrate that in the presence of a large soft ultraviolet radiation background, molecular hydrogen is the dominant coolant. Even for very large radiation backgrounds, the halo masses that cool and collapse are up to two orders of magnitude smaller than the halos that cool via atomic hydrogen line cooling. The abundance of cooling halos and the cosmic mass fraction contained within them depends exponentially on this critical mass scale. Consequently, the majority of current models of cosmological reionization, chemical evolution, supermassive black hole formation, and galaxy formation underestimate the number of star forming progenitors of a given system by orders of magnitude. At the highest redshifts, this disagreement is largest. We also show that even in the absence of residual electrons, collisional ionization in central shocks create a sufficient amount of electrons to form molecular hydrogen and cool the gas in halos of virial temperatures far below the atomic cooling limit.
The Galactic HII region NGC 2579 has stayed undeservedly unexplored due to identification problems which persisted until recently. Both NGC 2579 and its companion ESO 370-9 have been misclassified as planetary or reflection nebula, confused with each other and with other objects. Due to its high surface brightness, high excitation, angular size of few arcminutes and relatively low interstellar extinction, NGC 2579 is an ideal object for investigations in the optical range. Located in the outer Galaxy, NGC 2579 is an excellent object for studying the Galactic chemical abundance gradients. In this paper we present the first comprehensive observational study on the nebular and stellar properties of NGC 2579 and ESO 370-9, including the determination of electron temperature, density structure, chemical composition, kinematics, distance, and the identification and spectral classification of the ionizing stars, and discuss the nature of ESO 370-9. Long slit spectrophotometric data in the optical range were used to derive the nebular electron temperature, density and chemical abundances and for the spectral classification of the ionizing star candidates. Halpha and UBV CCD photometry was carried out to derive stellar distances from spectroscopic parallax and to measure the ionizing photon flux.
I have undertaken a comprehensive statistical investigation of the ultracool dwarf companion distribution (spectral type M6 and later). Utilizing a Bayesian algorithm, I tested models of the companion distribution against data from an extensive set of space and ground-based imaging observations of nearby ultracool dwarfs. My main conclusions are fivefold: 1) Confirm that the concentration of high mass ratio ultracool binary systems is a fundamental feature of the companion distribution, not an observational or selection bias; 2) Determine that the wide (>~20 AU) binary frequency can be no more the 1-2%; 3) Show that the decreasing binary frequency with later spectral types is a real trend; 4) Demonstrate that a large population of currently undetected low mass ratio systems are not consistent with the current data; 5) Find that the population of spectroscopic binaries must be be at least 30% that of currently known ultracool binaries. The best fit value for the overall M6 and later binary frequency is ~20%-22%, of which only ~6% consists of currently undetected companions with separations less than 1 AU. If this is correct, then the upper limit of the ultracool binary population discovered to date is ~75%. I find that the numerical simulation results of the ejection formation method are inconsistent with the outcome of this analysis. However, dynamics do seem to play an important role as simulations of small-N clusters and triple system decays produce results similar to those of this work. The observational efforts required to improve these constraints are shown to be primarily large spectroscopic binary surveys and improved high-resolution imaging techniques.
We report high-resolution optical spectroscopy of the low-mass X-ray binary V395 Car/2S 0921-630 obtained with the MIKE echelle spectrograph on the Magellan-Clay telescope. Our spectra are obtained near superior conjunction of the mass donor star and we exploit the absorption lines originating from the back-side of the K-type object to accurately derive its rotational velocity. Using K0-K1 III templates, we find vsini=32.9 +/- 0.8 km/s. We show that the choice of template star and the assumed limb darkening coefficient has little impact on the derived rotational velocity. This value is a significant revision downwards compared to previously published values. We derive new system parameter constraints in the light of our much lower rotational velocity. We find M_1=1.44 +/- 0.10 Msun, M_2=0.35 +/- 0.03 Msun, and q=0.24 +/- 0.02 where the errors have been estimated through a Monte-Carlo simulation. A possible remaining systematic effect is the fact that we may be over-estimating the orbital velocity of the mass donor due to irradiation effects. However, any correction for this effect will only reduce the compact object mass further, down to a minimum mass of M_1=1.05 +/- 0.08 Msun. There is thus strong evidence that the compact object in this binary is a neutron star of rather typical mass and that the previously reported mass values of 2-4Msun were too high due to an over-estimate of the rotational broadening.
Charged massive particles (CHAMPS), when present during the Big Bang nucleosynthesis (BBN) era, may significantly alter the synthesis of light elements when compared to a standard BBN scenario. This is due to the formation of bound states with nuclei. This paper presents a detailed numerical analysis of such CHAMP BBN. All key nuclear reaction cross sections, involving one nucleus in a bound state with a CHAMP, are calculated using a nuclear cluster model. A variety of processes and properties, such as bound state wave functions, bound state recombination rates, and bound state photodisintegration rates are computed exactly. All effects due to the electromagnetic or hadronic decay of CHAMPS are included. Two effects, priorly neglected, and changing 6Li and 7Li in CHAMP BBN by orders of magnitude are presented: (a) photodestruction of bound states due to electromagnetic cascades induced by the CHAMP decay and (b) late-time efficient destruction/production of 6Li and 7Li due to reactions on charge Z=1 nuclei bound to CHAMPS. It is found that in much of the parameter space any priorly synthesized 6Li and 7Li is again almost completely destroyed at temperature T < 1keV. This leads to large regions of parameter space where the cosmic 6Li and 7Li problems may be solved simultaneously. Such a scenario may be easily realized, for example, with supersymmetric staus of life time tau > 3x10^6s decaying into gravitinos.
We present a multipolar analysis of the gravitational recoil computed in recent numerical simulations of binary black hole (BH) coalescence, for both unequal masses and non-zero, non-precessing spins. We show that multipole moments up to and including l=4 are sufficient to accurately reproduce the final recoil velocity (within ~2%) and that only a few dominant modes contribute significantly to it (within ~5%). We describe how the relative amplitudes, and more importantly, the relative phases, of these few modes control the way in which the recoil builds up throughout the inspiral, merger, and ringdown phases. We also find that the numerical results can be reproduced by an ``effective Newtonian'' formula for the multipole moments obtained by replacing the radial separation in the Newtonian formulae with an effective radius computed from the numerical data. Beyond the merger, the numerical results are reproduced by a superposition of three Kerr quasi-normal modes (QNMs). Analytic formulae, obtained by expressing the multipole moments in terms of the fundamental QNMs of a Kerr BH, are able to explain the onset and amount of ``anti-kick'' for each of the simulations. Lastly, we apply this multipolar analysis to help explain the remarkable difference between the amplitudes of planar and non-planar kicks for equal-mass spinning black holes.
We consider a curvaton scenario in which the late-time domination and the generation of the curvature perturbation is achieved by a non-oscillatory (NO) curvaton potential. Instead of considering the conventional curvaton oscillation, we consider ``weak trapping'' after preheating, which modifies the evolution of the curvaton density after preheating. The primordial isocurvature perturbation related to the curvaton is once converted into the fluctuation of the number density of the preheat field through inhomogeneous preheating. Then the evolution of the curvatons and the preheat field is controlled by the preheat-field number density. The density of these fields decreases slightly slower than the standard matter density which suggests that these fields will grow with time. Finally, the preheat field decays to reheat the Universe leaving behind the curvature perturbation. In our scenario the task of the standard curvaton is not executed solely by the curvaton itself but is partially shared with the preheat field. NO curvatons can be considered as the hybrid version of the quintessential inflationary model.
Links to: arXiv, form interface, /find, astro-ph, /recent, /0707, /abs, help (Access key information)
We use the ACS BViz data from the HUDF and all other deep HST ACS fields (including the wide-area GOODS fields) to find large samples of star-forming galaxies at z~4 and z~5 and to extend our previous z~6 sample. These samples contain 4671, 1416, and 627 B, V, and i dropouts, respectively, and reach to extremely low luminosities (0.01-0.04 L* or M(UV)~-16 to -17), allowing us to determine the rest-frame UV luminosity function (LF) and faint-end slope alpha at z~4-6 to high accuracy. We find faint-end slopes alpha of -1.73+/-0.05 at z~4, -1.66+/-0.09 at z~5, and -1.74+/-0.16 at z~6 -- suggesting that the faint-end slope is very steep and shows little evolution with cosmic time. We find that M*(UV) brightens considerably in the 0.7 Gyr from z~6 to z~4 (by ~0.7 mag from M*=-20.24+/-0.19 to M*=-20.98+/-0.10). The observed increase in the characteristic luminosity over this range is almost identical to that expected for the halo mass function -- suggesting that the observed evolution is likely due to the hierarchical coalescence and merging of galaxies into larger systems. The evolution in phi* is not significant. The UV luminosity density at z~6 is modestly lower (0.45+/-0.09 times) than that at z~4 (integrated to -17.5 AB mag) though a larger change is seen in the dust-corrected star-formation rate density. We thoroughly examine published LF results and assess the reasons for their wide dispersion. We argue that the results reported here are the most robust available. The extremely steep faint-end slopes alpha found here suggest that lower luminosity galaxies play a significant role in reionizing the universe. Finally, we consider recent search results for galaxies at z~7-8 and use them to extend our estimates of the evolution in M* from z~7-8 to z~4.
Recently, new observations of Li6 in Pop II stars of the galactic halo have shown a surprisingly high abundance of this isotope, about a thousand times higher than its predicted primordial value. In previous papers, a cosmological model for the cosmic ray-induced production of this isotope in the IGM has been developed to explain the observed abundance at low metallicity. In this paper, given this constraint on the Li6, we calculate the non-thermal evolution with redshift of D, Be, and B in the IGM. In addition to cosmological cosmic ray interactions in the IGM, we include additional processes driven by SN explosions: neutrino spallation and a low energy component in the structures ejected by outflows to the IGM. We take into account CNO CRs impinging on the intergalactic gas. Although subdominant in the galactic disk, this process is shown to produce the bulk of Be and B in the IGM, due to the differential metal enrichment between structures (where CRs originate) and the IGM. We also consider the resulting extragalactic gamma-ray background which we find to be well below existing data. The computation is performed in the framework of hierarchical structure formation considering several star formation histories including Pop III stars. We find that D production is negligible and that a potentially detectable Be and B plateau is produced by these processes at the time of the formation of the Galaxy (z ~ 3).
(Abridged) Monitoring of the anomalous X-ray pulsar 1E 1048.1-5937 in 2005-2006 with the RXTE, CXO, and HST has revealed that the source entered a phase of X-ray and near-IR radiative quiescence, simultaneous with timing stability. During its ~2001-2004 active period, the source exhibited two large, long-term X-ray pulsed-flux flares as well as short bursts, and large (>10x) torque changes. A series of four simultaneous observations with CXO and HST approximately equispaced in 2006 showed that its X-ray flux and spectrum and near-IR flux, both variable prior to 2005, stabilized. The near-IR flux (m_{F110W} > 24.8 mag, m_{F160W} ~ 22.70 mag) is considerably fainter in 2006 than previously measured. Recently, in 2007 March, this newfound quiescence was interrupted by a sudden flux enhancement, spectral changes and a pulse morphology change, simultaneous with a large spin-up glitch and near-IR enhancement. Specifically, our RXTE observations revealed a sudden pulsed flux increase by a factor of ~3 in the 2-10 keV band. In Target of Opportunity observations with CXO and Swift, we found that the total X-ray flux increased much more than the pulsed flux, reaching a peak value of >7 times the quiescent value (2-10 keV). The total and pulsed flux are slowly decaying with time but the source continues, in 2007 July, to be much brighter than in quiescence. With these recent data, we find a strong anti-correlation between X-ray flux and pulsed fraction. In addition, we find a correlation between X-ray spectral hardness and flux. Simultaneously with the radiative and timing changes, we observed a significant X-ray pulse morphology change such that the profile went from nearly sinusoidal to having multiple peaks.
We report the discovery of two new accreting pulsating white dwarf stars amongst the cataclysmic variables of the Sloan Digital Sky Survey: SDSSJ074531.91+453829.5 and SDSSJ091945.10+085710.0. We observe high amplitude non-sinusoidal variations of 4.5-7% at a period close to 1230s in the optical light curves of SDSSJ074531.91+453829.5 and a low amplitude variation of 0.7-1.6% near 260s in the light curves of SDSSJ091945.10+085710.0. We infer that these optical variations are a consequence of nonradial g-mode pulsations in the accreting primary white dwarfs of these cataclysmic variables. However we cannot rule out the remote possibility that the 260s period could be the spin period of the accreting white dwarf SDSSJ091945.10+085710.0. We also uncovered a non-variable SDSSJ171145.08+301320.0 during our search; our two observing runs exclude any pulsation related periodicities in the range of 85-1400s with an amplitude greater than or equal to 0.5%. This discovery paper brings the total number of known accreting white dwarf pulsators to eleven.
In this work we investigate the evolution of matter density perturbations for quintessence models with a self-interaction potential that is a combination of exponentials. One of the models is based on the Einstein theory of gravity, while the other is based on the Brans-Dicke scalar tensor theory. We constrain the parameter space of the models using the determinations for the growth rate of perturbations derived from data of the 2-degree Field Galaxy Redshift Survey.
Optical photometric and spectroscopic data are presented that show an association of an ultraluminous X-ray source in NGC 7331 with a young star cluster of mass 1.1e5 solar masses and age 4.25 Myr. If the ULX is part of the bright stellar cluster, then the mass of the progenitor of the compact accretor must have been greater than about 40-50 solar masses in order to already have evolved through the supernova stage to a compact object. The companion star is also likely an evolved massive star. The emission line spectrum of the nebula surrounding the cluster can be interpreted as a result of photoionization by the cluster OB stars with an additional source of shock excitation producing strong [SII], [OI] and NII lines. This additional source appears to be as much as five times more powerful than the supernovae and stellar winds in the cluster can provide. Additional mechanical energy input associated with the ULX itself can help explain the residual shock excited line luminosities of the emission region.
We present time-dependent axisymmetric magnetohydrodynamic simulations of the interaction of a relativistic magnetized wind produced by a proto-magnetar with a surrounding stellar envelope, in the first ~10 seconds after core collapse. We inject a super-magnetosonic wind with \dot E = 10^{51} ergs/s into a cavity created by an outgoing supernova shock. A strong toroidal magnetic field builds up in the bubble of plasma and magnetic field that is at first inertially confined by the progenitor star. This drives a jet out along thepolar axis of the star, even though the star and the magnetar wind are each spherically symmetric. The jet has the properties needed to produce a long-duration gamma-ray burst (GRB). At ~5 s after core bounce, the jet has escaped the host star and the Lorentz factor of the material in the jet at large radii ~10^{11} cm is similar to that in the magnetar wind near the source. Most of the spindown power of the central magnetar escapes via the relativistic jet. There are fluctuations in the Lorentz factor and energy flux in the jet on ~ 0.01-0.1 second timescale. These may contribute to variability in GRB emission (e.g., via internal shocks).
We describe the absolute calibration of the Multiband Imaging Photometer for Spitzer (MIPS) 160 micron channel. After the on-orbit discovery of a near-IR ghost image that dominates the signal for sources hotter than about 2000 K, we adopted a strategy utilizing asteroids to transfer the absolute calibrations of the MIPS 24 and 70 micron channels to the 160 micron channel. Near-simultaneous observations at all three wavelengths are taken, and photometry at the two shorter wavelengths is fit using the Standard Thermal Model. The 160 micron flux density is predicted from those fits and compared with the observed 160 micron signal to derive the conversion from instrumental units to surface brightness. The calibration factor we derive is 41.7 MJy/sr/MIPS160 (MIPS160 being the instrumental units). The scatter in the individual measurements of the calibration factor, as well as an assesment of the external uncertainties inherent in the calibration, lead us to adopt an uncertainty of 5.0 MJy/sr/MIPS160 (12%) for the absolute uncertainty on the 160 micron flux density of a particular source as determined from a single measurement. For sources brighter than about 2 Jy, non-linearity in the response of the 160 micron detectors produces an under-estimate of the flux density: for objects as bright as 4 Jy, measured flux densities are likely to be ~20% too low. This calibration has been checked against that of ISO (using ULIRGS) and IRAS (using IRAS-derived diameters), and is consistent with those at the 5% level.
(abbreviated version of the abstract) We study the physics of cyclotron line formation in the high-energy spectra of accreting X-ray pulsars using Monte Carlo methods, assuming that the line-forming region is a low-density electron plasma in a sub-critical magnetic field. We investigate the dependence of the shape of the fundamental line on angle, geometry, optical depth and temperature. We also discuss variations of the line ratios for non-uniform magnetic fields. These numerical predictions for the line profiles are linked to results from observational data analysis using an XSPEC model based on the Monte Carlo simulations. We apply this model to observational data from RXTE and INTEGRAL. The predicted strong emission wings of the fundamental cyclotron feature are not found in observational data, hinting at a bottom illuminated slab geometry for line formation.
A straight-forward interpretation of standard Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmologies is that objects move apart due to the expansion of space, and that sufficiently distant galaxies must be receding at velocities exceeding the speed of light. Recently, however, it has been suggested that a simple transformation into conformal coordinates can remove superluminal recession velocities, and hence the concept of the expansion of space should be abandoned. This work demonstrates that such conformal transformations do not eliminate superluminal recession velocities for open or flat matter-only FRLW cosmologies, and all possess superluminal expansion. Hence, the attack on the concept of the expansion of space based on this is poorly founded. This work concludes by emphasizing that the expansion of space is perfectly valid in the general relativistic framework, however, asking the question of whether space really expands is a futile exercise.
In this note, we test the holographic dark energy model with some old high redshift objects. The main idea is very simple: the universe cannot be younger than its constituents. We find that the holographic dark energy model can be ruled out, unless a lower Hubble constant is taken.
We present results from Chandra and XMM-Newton spectroscopic observations of the nuclei of z<0.5 radio galaxies and quasars from the 3CRR catalog, and examine in detail the dichotomy in the properties of low- and high-excitation radio galaxies. The X-ray spectra of low-excitation sources (those with weak or absent optical emission lines) are dominated by unabsorbed emission from a parsec-scale jet, with no contribution from accretion-related emission. These sources show no evidence for an obscuring torus, and are likely to accrete in a radiatively inefficient manner. High-excitation sources (those with prominent optical emission lines), on the other hand, show a significant contribution from a radiatively efficient accretion disk, which is heavily absorbed in the X-ray when they are oriented close to edge-on with respect to the observer. However, the low-excitation/high-excitation division does not correspond to the FRI/FRII division: thus the Fanaroff-Riley dichotomy remains a consequence of the interaction between the jet and the hot-gas environment through which it propagates. Finally, we suggest that accretion of the hot phase of the IGM is sufficient to power all low-excitation radio sources, while high-excitation sources require an additional contribution from cold gas that in turn forms the cold disk and torus. This model explains a number of properties of the radio-loud active galaxy population, and has important implications for AGN feedback mechanisms.
We present measurements of the stellar and gaseous velocities in the central 5' of the Local Group spiral M33. The data were obtained with the ARC 3.5m telescope. Blue and red spectra with resolutions from 2 to 4\AA covering the principal gaseous emission and stellar absorption lines were obtained along the major and minor axes and six other position angles. The observed radial velocities of the ionized gas along the photometric major axis of M33 remain flat at ~22 km s^{-1} all the way into the center, while the stellar velocities show a gradual rise from zero to 22 km s^{-1} over that same region. The central star cluster is at or very close to the dynamical center, with a velocity that is in accordance with M33's systemic velocity to within our uncertainties. Velocities on the minor axis are non-zero out to about 1' from the center in both the stars and gas. Together with the major axis velocities, they point at significant deviations from circular rotation. The most likely explanation for the bulk of the velocity patterns are streaming motions along a weak inner bar with a PA close to that of the minor axis, as suggested by previously published IR photometric images. The presence of bar imprints in M33 implies that all major Local Group galaxies are barred. The non-circular motions over the inner 200 pc make it difficult to constrain the shape of M33's inner dark matter halo profile. If the non-circular motions we find in this nearby Sc galaxy are present in other more distant late-type galaxies, they might be difficult to recognize.
The solar chromosphere is very dynamic, due to the presence of large amplitude hydrodynamic waves. Their propagation is affected by NLTE radiative transport in strong spectral lines, which can in turn be used to diagnose the dynamics of the chromosphere. We give a basic introduction into the equations of NLTE radiation hydrodynamics and describe how they are solved in current numerical simulations. The comparison with observation shows that one-dimensional codes can describe strong brightenings quite well, but the overall chromospheric dynamics appears to be governed by three-dimensional shock propagation.
We present a systematic study of the steep decay emission from gamma-ray bursts (GRBs) observed by the Swift X-Ray Telescope (XRT). In contrast to the analysis described in recent literature, we produce composite Burst Alert Telescope (BAT) and XRT light curves by extrapolating the XRT data (2-10 keV) into the BAT energy range (15-25 keV) rather than extrapolating the BAT data into the XRT energy band (0.3-10 keV). Based on the fits to the composite light curves, we have confirmed the existence of an exponential decay component which smoothly connects the BAT prompt data to the XRT steep decay for several GRBs. We also find that the XRT steep decay for some of the bursts can be well fit by a combination of a power-law with an exponential decay model. We discuss this exponential component within the frame work of both the internal and the external shock model.
We review the nucleosynthesis yields of core-collapse supernovae (SNe) for
various stellar masses, explosion energies, and metallicities. Comparison with
the abundance patterns of metal-poor stars provides excellent opportunities to
test the explosion models and their nucleosynthesis. We show that the abundance
patterns of extremely metal-poor (EMP) stars, e.g., the excess of C, Co, Zn
relative to Fe, are in better agreement with the yields of hyper-energetic
explosions (Hypernovae, HNe) rather than normal supernovae.
We note that the variation of the abundance patterns of EMP stars are related
to the diversity of the Supernova-GRB connection. We summarize the diverse
properties of (1) GRB-SNe, (2) Non-GRB HNe/SNe, (3) XRF-SN, and (4) Non-SN GRB.
In particular, the Non-SN GRBs (dark hypernovae) have been predicted in order
to explain the origin of C-rich EMP stars. We show that these variations and
the connection can be modeled in a unified manner with the explosions induced
by relativistic jets. Finally, we examine whether the most luminous supernova
2006gy can be consistently explained with the pair-instability supernova model.
We discuss structural and kinematical properties of the stellar halo and the old globular cluster system (GCS) in the Large Magellanic Cloud (LMC) based on numerical simulations of the LMC formation. We particularly discuss the observed possible GCS's rotational kinematics (V/sigma > 2) that appears to be significantly different from the stellar halo's one with a large velocity dispersion (~50 km/s). We consider that both halo field stars and old GCs can originate from low-mass subhalos virialized at high redshifts (z >6). We investigate the final dynamical properties of the two old components in the LMC's halo formed from merging of low-mass subhalos with field stars and GCs. We find that the GCS composed of old globular clusters (GCs) formed at high redshifts (z > 6) has little rotation (V/sigma ~0.4) and structure and kinematics similar to those of the stellar halo. This inconsistency between the simulated GCS's kinematics and the observed one is found to be seen in models with different parameters. This inconsistency therefore implies that if old, metal-poor GCs in the LMC have rotational kinematics, they are highly unlikely to originate from the low-mass subhalos that formed the stellar halo. We thus discuss a scenario in which the stellar halo was formed from low-mass subhalos with no/few GCs whereas the GCS was formed at the very early epoch of the LMC's disk formation via dissipative minor and major merging of gas-rich subhalos and gas infall. We suggest that there can be a threshold subhalo mass above which GCs can be formed within subhalos at high redshifts and thus that this threshold causes differences in physical properties between stellar halos and GCSs in less luminous galaxies like the LMC.
Speckle interferometric observations made with the 6 m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences in 2000 revealed the triple nature of the nearby ($\pi_{Hip}=51.80\pm1.74$ mas) low-mass young ($\approx200$ Myr) star GJ 900. The configuration of the triple system allowed it to be dynamically unstable. Differential photometry performed from 2000 through 2004 yielded $I$- and $K$-band absolute magnitudes and spectral types for the components to be $I_{A}$=6.66$\pm$0.08, $I_{B}$=9.15$\pm$0.11, $I_{C}$=10.08$\pm$0.26, $K_{A}$=4.84$\pm$0.08, $K_{B}$=6.76$\pm$0.20, $K_{C}$=7.39$\pm$0.31, $Sp_{A}$$\approx$K5--K7, $Sp_{B}$$\approx$M3--M4, $Sp_{C}$$\approx$M5--M6. The ``mass--luminosity'' relation is used to estimate the individual masses of the components: $\mathcal{M}_{A}$$\approx0.64\mathcal{M}_{\odot}$, $\mathcal{M}_{B}$$\approx0.21\mathcal{M}_{\odot}$, $\mathcal{M}_{C}$$\approx0.13\mathcal{M}_{\odot}$. From the observations of the components relative motion in the period 2000--2006, we conclude that GJ 900 is a hierarchical triple star with the possible orbital periods P$_{A-BC}$$\approx$80 yrs and P$_{BC}$$\approx$20 yrs. An analysis of the 2MASS images of the region around GJ 900 leads us to suggest that the system can include other very-low-mass components.
Eta Chamaeleontis is a unique young (~9 Myr) association with 18 systems concentrated in a radius of ~35 arcmin, i.e. 1pc at the cluster distance of 97pc. No other members have been found up to 1.5 degrees from the cluster centre. The cluster mass function is consistent with the IMF of other rich young open clusters in the higher mass range but shows a clear deficit of low mass stars and brown dwarfs with no objects below 0.1Msun. The aim of this paper is to test whether this peculiar mass function could result from dynamical evolution despite the young age of the cluster. We performed N-body numerical calculations starting with a log-normal IMF and different initial conditions in terms of number of systems and cluster radius using the code NBODY3. We simulated the cluster dynamical evolution over 10 Myr and compared the results to the observations. We found that it is possible to reproduce eta Cha when starting with a very compact configuration (with Ninit=40 and R0=0.005pc) which suggests that the IMF of the association might not be abnormal. The high initial density might also explain the deficit of wide binaries that is observed in the cluster.
We investigate the viability of the braneworld model with energy exchange between the brane and bulk, by using the most recent observational data related to the background evolution. The new Supernova Type Ia (SNIa) Gold sample and Supernova Legacy Survey (SNLS) data, the position of the acoustic peak at the last scattering surface from the WMAP observations and the baryon acoustic oscillation peak found in the Sloan Digital Sky Survey (SDSS) are used to constrain the free parameters of this model. To infer its consistency with age of the universe, we compare the age of old cosmological objects with what computed using the best fit values for the model parameters. At 68% level of confidence, the combination of Gold sample SNIa, CMB shift parameter and SDSS databases provides $\Omega_m=0.29_{-0.02}^{+0.03}$, $\Omega_{A}=-0.71_{-0.03}^{+0.03}$ and $\mu=-0.40_{-0.26}^{+0.28}$, hence a spatially flat universe with $\Omega_K=0.00_{-0.04}^{+0.04}$. The same combination with SNLS supernova observation gives $\Omega_m=0.27_{-0.02}^{+0.02}$, $\Omega_{A}=-0.74_{-0.02}^{+0.04}$ and $\mu=0.00_{-0.30}^{+0.30}$ consequently provides a spatially flat universe $\Omega_K=-0.01_{-0.03}^{+0.04}$. These results obviously seem to be compatible with the most recent WMAP results indicating a flat universe.
From uvby photometry of 75 stars in the direction of NGC 7063 we were able to determine membership of some stars and fix the distance (722 +- 105 pc), log age (of 8.146) and reddening (E(b-y) = 0.091 +- 0.039 mag) for the cluster.
We report unfiltered CCD observations of the first confirmed superoutburst of the SU UMa-type dwarf nova SS LMi in October 2006. From a quiescent magnitude of around 21.7 it rose to 16.2, an outburst amplitude of about 5.5 magnitudes. It declined at 0.17 mag/d for 5 days before slowing to 0.11 mag/d for a further 3 days. The light curve revealed common superhumps with a peak-to-peak amplitude of 0.3 magnitude, which decayed and then re-grew concurrently with the change in decline rate. These were followed by a phase-changing transition to late superhumps. Analysis of these observations has revealed evidence for an orbital period of 0.05572(19) d and a common superhump period of 0.05664(2) d, giving a fractional superhump period excess of 0.017(5). From astrometry of SS LMi in outburst we have established for the first time its correct position as RA 10h 34m 05.85(1)s, Dec +31deg 08m 00.00(18)s (J2000). The position commonly given for SS LMi is that of a nearby star.
The connection between long Gamma Ray Bursts (GRBs) and Supernovae (SNe), have been established through the well observed cases of GRB980425/SN 1998bw, GRB030329/SN 2003dh and GRB031203/SN 2003lw. These events can be explained as the prompt collapse to a black hole (BH) of the core of a massive star (M ~ 40 Msun) that had lost its outer hydrogen and helium envelopes. All these SNe exhibited strong oxygen lines, and their energies were much larger than those of typical SNe, thus these SNe are called Hypernovae (HNe). The case of SN 2006aj/GRB060218 appears different: the GRB was weak and soft (an X-Ray Flash, XRF); the SN is dimmer and has very weak oxygen lines. The explosion energy of SN 2006aj was smaller, as was the ejected mass. In our model, the progenitor star had a smaller mass than other GRB/SNe (M ~ 20 Msun), suggesting that a neutron star (NS) rather than a black hole was formed. If the nascent neutron star was strongly magnetized (a so-called magnetar) and rapidly spinning, it may launch a weak GRB or an XRF. The final fate of 20-30 Msun stars show interesting variety, as seen in the very peculiar Type Ib/c SN 2005bf. This mass range corresponds to the NS to BH transition. We also compare the nucleosynthesis feature of HNe with the metal-poor stars and suggest the Hypernova-First Star connection.
Young planets embedded in their protoplanetary disk interact gravitationally
with it leading to energy and angular momentum exchange. This interaction
determines the evolution of the planet through changes to the orbital
parameters. We investigate changes in the orbital elements of a 20 Earth--mass
planet due to the torques from the disk. We focus on the non-linear evolution
of initially non-vanishing eccentricity $e$ and/or inclination $i$. We treat
the disk as a two- or three-dimensional viscous fluid and perform
hydrodynamical simulations with an embedded planet. We find rapid exponential
decay of the planet orbital eccentricity and inclination for small initial
values of $e$ and $i$, in agreement with linear theory. For larger values of $e
> 0.1$ the decay time increases and the decay rate scales as $\dot{e} \propto
e^{-2}$, consistent with existing theoretical models. For large inclinations
($i$ > 6 deg) the inclination decay rate shows an identical scaling $di/dt
\propto i^{-2}$. We find an interesting dependence of the migration on the
eccentricity. In a disk with aspect ratio $H/r=0.05$ the migration rate is
enhanced for small non-zero eccentricities ($e < 0.1$), while for larger values
we see a significant reduction by a factor of $\sim 4$. We find no indication
for a reversal of the migration for large $e$, although the torque experienced
by the planet becomes positive when $e \simeq 0.3$. This inward migration is
caused by the persisting energy loss of the planet.
For non gap forming planets, eccentricity and inclination damping occurs on a
time scale that is very much shorter than the migration time scale. The results
of non linear hydrodynamic simulations are in very good agreement with linear
theory for small $e$ and $i$.
It is shown that Extensive Air Shower (EAS) longitudinal development has a critical point where an equilibrium between the main hadronic component and the secondary electromagnetic one exhibits a brake. This results in a change of slope in quasi-power law function $N_{e}(Eo)$. The latter leads to a knee in the EAS size spectrum at primary energy of about 100 TeV/nucleon. Many ``strange'' experimental results can be successfully explained in the frames of current approach.
We present spectropolarimetric observations of the peculiar Type Ib/c SN 2005bf, in MCG+00-27-005, from 3600-8550\AA. The SN was observed on 2005 April 30.9, 18 days after the first B-band light-curve maximum and 6 days before the second B-band light-curve maximum. The degree of the Interstellar Polarization, determined from depolarized emission lines in the spectrum, is found to be large with $p_{max}(ISP)=1.6%$ and $\theta(ISP)=149$\fdg$7\pm4.0$, but this may be an upper limit on the real value of the ISP. After ISP subtraction, significant polarization is observed over large wavelength regions, indicating a significant degree of global asymmetry, $\gtrsim 10%$. Polarizations of 3.5% and 4% are observed for absorption components of Ca II H&K and IR triplet, and 1.3% for He I 5876\AA and Fe II. On the $Q-U$ plane clear velocity-dependent loop structure is observed for the He I 5876\AA line, suggestive of departures from an axial symmetry and possible clumping of the SN ejecta. Weak High Velocity components of $\mathrm{H\alpha}$, $\mathrm{H\beta}$ and $\mathrm{H\gamma}$ are observed, with velocities of -15 000\kms. The low degree of polarization observed at H$\beta$ suggests that the polarization observed for the other Balmer lines ($\sim 0.4%$ above the background polarization) may rather be due to blending of $\mathrm{H\alpha}$ and $\mathrm{H\gamma}$ with polarized Si II and Fe II lines, respectively. We suggest a model in which a jet of material, that is rich in $\mathrm{^{56}Ni}$, has penetrated the C-O core, but not the He mantle. The jet axis is tilted with respect to the axis of the photosphere. This accounts for the lack of significant polarization of O I 7774\AA, the delayed excitation and, hence, observability of He I and, potentially, the varied geometries of He and Ca.
This paper presents a multiwavelength study of the M8.0 flare and its associated fast halo CME that originated from a bipolar active region NOAA 10759 on 2005 May 13. The source active region has a conspicuous sigmoid structure at TRACE 171 A channel as well as in the SXI soft X-ray images, and we mainly concern ourselves with the detailed process of the sigmoid eruption as evidenced by the multiwavelength data ranging from Halpha, WL, EUV/UV, radio, and hard X-rays (HXRs). The most important finding is that the flare brightening starts in the core of the active region earlier than that of the rising motion of the flux rope. This timing clearly addresses one of the main issues in the magnetic eruption onset of sigmoid, namely, whether the eruption is initiated by an internal tether-cutting to allow the flux rope to rise upward or a flux rope rises due to a loss of equilibrium to later induce tether cutting below it. Our high time cadence SXI and Halpha data shows that the first scenario is relevant to this eruption. As other major findings, we have the RHESSI HXR images showing a change of the HXR source from a confined footpoint structure to an elongated ribbon-like structure after the flare maximum, which we relate to the sigmoid-to-arcade evolution. Radio dynamic spectrum shows a type II precursor that occurred at the time of expansion of the sigmoid and a drifting pulsating structure in the flare rising phase in HXR. Finally type II and III bursts are seen at the time of maximum HXR emission, simultaneous with the maximum reconnection rate derived from the flare ribbon motion in UV. We interpret these various observed properties with the runaway tether-cutting model proposed by Moore et al. in 2001.
We present the results of an ongoing weak lensing survey conducted with the Subaru telescope whose initial goal is to locate and study the distribution of shear-selected structures or halos. Using a Suprime-cam imaging survey spanning 21.82 square degree, we present a catalog of 100 candidate halos located from lensing convergence maps. Our sample is reliably drawn from that subset of our survey area, (totaling 16.72 square degree) uncontaminated by bright stars and edge effects and limited at a convergence signal to noise ratio of 3.69. To validate the sample detailed spectroscopic measures have been made for 26 candidates using the Subaru multi-object spectrograph, FOCAS. All are confirmed as clusters of galaxies but two arise as the superposition of multiple clusters viewed along the line of sight. Including data available in the literature and an ongoing Keck spectroscopic campaign, a total of 41 halos now have reliable redshifts. For one of our survey fields, the XMM LSS (Pierre et al. 2004) field, we compare our lensing-selected halo catalog with its X-ray equivalent. Of 15 halos detected in the XMM-LSS field, 10 match with published X-ray selected clusters and a further 2 are newly-detected and spectroscopically confirmed in this work. Although three halos have not yet been confirmed, the high success rate within the XMM-LSS field (12/15) confirms that weak lensing provides a reliable method for constructing cluster catalogs, irrespective of the nature of the constituent galaxies or the intracluster medium.
We investigate two training-set methods: support vector machines (SVMs) and Kernel Regression (KR) for photometric redshift estimation with the data from the Sloan Digital Sky Survey Data Release 5 and Two Micron All Sky Survey databases. We probe the performances of SVMs and KR for different input patterns. Our experiments show that the more parameters considered, the accuracy doesn't always increase, and only when appropriate parameters chosen, the accuracy can improve. Moreover for different approaches, the best input pattern is different. With different parameters as input, the optimal bandwidth is dissimilar for KR. The rms errors of photometric redshifts based on SVM and KR methods are less than 0.03 and 0.02, respectively. Finally the strengths and weaknesses of the two approaches are summarized. Compared to other methods of estimating photometric redshifts, they show their superiorities, especially KR, in terms of accuracy.
Stars generally form faster than the ambipolar diffusion time, suggesting that several processes short circuit the delay and promote a rapid collapse. These processes are considered here, including turbulence compression in the outer parts of giant molecular cloud (GMC) cores and GMC envelopes, GMC core formation in an initially supercritical state, and compression-induced triggering in dispersing GMC envelopes. The classical issues related to star formation timescales are addressed: high molecular fractions, low efficiencies, long consumption times for CO and HCN, rapid GMC core disruption and the lack of a stable core, long absolute but short relative timescales with accelerated star formation, and the slow motions of protostars. We consider stimuli to collapse from changes in the density dependence of the ionization fraction, the cosmic ray ionization rate, and various dust properties at densities above ~10^5 cm^{-3}. We favor the standard model of subcritical GMC envelops and suggest they would be long lived if not for disruption by rapid star formation in GMC cores. The lifecycle of GMCs is illustrated by a spiral arm section in the Hubble Heritage image of M51, showing GMC formation, star formation, GMC disruption with lingering triggered star formation, and envelope dispersal. There is no delay between spiral arm dustlanes and star formation; the classical notion results from heavy extinction in the dust lane and triggered star formation during cloud dispersal. Differences in the IMF for the different modes of star formation are considered.
Recent hydrodynamic studies of core-collapse supernovae imply that the neutrino-heated ejecta from a nascent neutron star develops to supersonic outflows. These supersonic winds are influenced by the reverse shock from the preceding supernova ejecta, forming the wind termination shock. We investigate the effects of the termination shock in neutrino-driven winds and its roll on the r-process. Supersonic outflows are calculated with a semi-analytic neutrino-driven wind model. Subsequent termination-shocked, subsonic outflows are obtained by applying the Rankine-Hugoniot relations. We find a couple of effects that can be relevant for the r-process. First is the sudden slowdown of the temperature decrease by the wind termination. Second is the entropy jump by termination-shock heating, up to several 100NAk. Nucleosynthesis calculations in the obtained winds are performed to examine these effects on the r-process. We find that 1) the slowdown of the temperature decrease plays a decisive roll to determine the r-process abundance curves. This is due to the strong dependences of the nucleosynthetic path on the temperature during the r-process freezeout phase. Our results suggest that only the termination-shocked winds with relatively small shock radii (~500km) are relevant for the bulk of the solar r-process abundances (A~100-180). The heaviest part in the solar r-process curve (A~180-200), however, can be reproduced both in shocked and unshocked winds. These results may help to constrain the mass range of supernova progenitors relevant for the r-process. We find, on the other hand, 2) negligible roles of the entropy jump on the r-process. This is a consequence that the sizable entropy increase takes place only at a large shock radius (~10,000km) where the r-process has already ceased.
Although systematic measurements of the solar polar magnetic field exist only from mid 1970s, other proxies can be used to infer the polar field at earlier times. The observational data indicate a strong correlation between the polar field at a sunspot minimum and the strength of the next cycle, although the strength of the cycle is not correlated well with the polar field produced at its end. This suggests that the Babcock Leighton mechanism of poloidal field generation from decaying sunspots involves randomness, whereas the other aspects of the dynamo process must be reasonably ordered and deterministic. Only if the magnetic diffusivity within the convection zone is assumed to be high, we can explain the correlation between the polar field at a minimum and the next cycle. We give several independent arguments that the diffusivity must be of this order. In a dynamo model with diffusivity like this, the poloidal field generated at the mid latitudes is advected toward the poles by the meridional circulation and simultaneously diffuses towards the tachocline, where the toroidal field for the next cycle is produced. To model actual solar cycles with a dynamo model having such high diffusivity, we have to feed the observational data of the poloidal field at the minimum into the theoretical model. We develop a method of doing this in a systematic way. Our model predicts that cycle 24 will be a very weak cycle. Hemispheric asymmetry of solar activity is also calculated with our model and compared with observational data.
We present Spitzer Space Telescope infrared photometry of a primary transit of the hot Neptune GJ 436b. The observations were obtained using the 8 microns band of the InfraRed Array Camera (IRAC). The high accuracy of the transit data and the weak limb-darkening in the 8 microns IRAC band allow us to derive (assuming M = 0.44 +- 0.04 Msun for the primary) a precise value for the planetary radius (4.19 +0.21-0.16 Rearth), the stellar radius (0.463 +0.022-0.017 Rsun), the orbital inclination (85.90 +0.19-0.18 degrees) and transit timing (2454280.78186 +0.00015-0.00008 HJD). Assuming current planet models, an internal structure similar to that of Neptune with a small H/He envelope is necessary to account for the measured radius of GJ 436b.
Constraints on the dynamics, dissipation, and production of VHE neutrinos in relativistic jets are derived using opacity calculations and VHE $\gamma$-ray observations. In particular, it is demonstrated how rapid variability of the $\gamma$-ray emission at very high energies ($> 100$ GeV) can be used to map the location of the $\gamma$-spheres, to derive lower limits on the Doppler factor of the $\gamma$-ray emission zone, and to constrain the photopion production opacity. The apparent discrepancy between jet Lorentz factors inferred from superluminal motions and source statistics in the TeV blazars and those derived from the $\gamma$-ray emission is discussed. The relation to the high-energy emission from the HST1 knot in M87 is briefly mentioned. Estimates of neutrino yields in upcoming neutrino telescopes are given for various sources. It is shown that for TeV blazars, the rapid variability of the TeV emission implies neutrino yields well below detection limit.
In the simulation of protoplanetary disc with a power law density profile a disc instability is detected. The instability arises only with a power law profile and is affected by power index. Thus the impact of initial density profile is large within the employed numerical model.
The low-metallicity RV Tauri star MACHO47.2496.8, recently discovered in the Large Magellanic Cloud, is highly enriched in carbon and heavy elements produced by the slow neutron capture process (s-process), and is most probably a genuine post-C(N-type) asymptotic giant branch (AGB) star. We use the analysis of the abundances of MACHO47.2496.8 to constrain free parameters in AGB models. We test which values of the free parameters describing uncertain physical mechanisms in AGB stars, namely the third dredge-up and the features of the 13C neutron source, produce models that better match the abundances observed in MACHO47.2496.8. We carry out stellar population synthesis coupled with s-process nucleosynthesis using a synthetic stellar evolution code. The s-process ratios observed in MACHO47.2496.8 can be matched by the same models that explain the s-process ratios of Galactic AGB and post-AGB stars of metallicity > Z_sun/10, except for the choice of the effectiveness of 13C as a neutron source, which has to be lower by roughly a factor of 3 to 6. The less effective neutron source for lower metallicities is also required when comparing population synthesis results to observations of Galactic halo $s$-enhanced stars, such as Pb stars. The 12C/13C ratio in MACHO47.2496.8 cannot be matched simultaneously and requires the occurrence of extra-mixing processes. The confirmed trend of the decreased efficiency of the 13C neutron source with metallicity requires an explanation from AGB s-process models. The present work is to date the first comparison between theoretical models and the detailed abundances of an extragalactic post-AGB star.
We complete our previous investigation concerning the structure and the stability of ``isothermal'' spheres in general relativity. This concerns objects that are described by a linear equation of state $P=q\epsilon$ so that the pressure is proportional to the energy density. In the Newtonian limit $q\to 0$, this returns the classical isothermal equation of state. We consider specifically a self-gravitating radiation (q=1/3), the core of neutron stars (q=1/3) and a gas of baryons interacting through a vector meson field (q=1). We study how the thermodynamical parameters scale with the size of the object and find unusual behaviours due to the non-extensivity of the system. We compare these scaling laws with the area scaling of the black hole entropy. We also determine the domain of validity of these scaling laws by calculating the critical radius above which relativistic stars described by a linear equation of state become dynamically unstable. For photon stars, we show that the criteria of dynamical and thermodynamical stability coincide. Considering finite spheres, we find that the mass and entropy as a function of the central density present damped oscillations. We give the critical value of the central density, corresponding to the first mass peak, above which the series of equilibria becomes unstable. Finally, we extend our results to $d$-dimensional spheres. We show that the oscillations of mass versus central density disappear above a critical dimension $d_{crit}(q)$. For Newtonian isothermal stars (q=0) we recover the critical dimension $d_{crit}=10$. For the stiffest stars (q=1) we find $d_{crit}=4+\sqrt{13}=7.6055513...$ and for a self-gravitating radiation (q=1/d) we find $d_{crit}=9.9072909...$ very close to 10. Finally, we give analytical solutions of relativistic isothermal spheres in 2D gravity.
We investigate distortions in the velocity fields of disc galaxies and their use to reveal the dynamical state of interacting galaxies at different redshift. For that purpose, we model disc galaxies in combined N-body/hydrodynamic simulations. 2D velocity fields of the gas are extracted from these simulations which we place at different redshifts from z=0 to z=1 to investigate resolution effects on the properties of the velocity field. To quantify the structure of the velocity field we also perform a kinemetry analysis. If the galaxy is undisturbed we find that the rotation curve extracted from the 2D field agrees well with long-slit rotation curves. This is not true for interacting systems, as the kinematic axis is not well defined and does in general not coincide with the photometric axis of the system. For large (Milky way type) galaxies we find that distortions are still visible at intermediate redshifts but partly smeared out. Thus a careful analysis of the velocity field is necessary before using it for a Tully-Fisher study. For small galaxies (disc scale length ~2 kpc) even strong distortions are not visible in the velocity field at z~0.5 with currently available angular resolution. Therefore we conclude that current distant Tully-Fisher studies cannot give reliable results for low-mass systems. Additionally to these studies we confirm the power of near-infrared integral field spectrometers in combination with adaptive optics (such as SINFONI) to study velocity fields of galaxies at high redshift (z~2).
We discuss the possibility of performing a substantial spectroscopic galaxy redshift survey selected via the 21cm emission from neutral hydrogen using the Five-hundred metre Aperture Spherical Telescope (FAST) to be built in China. We consider issues related to the estimation of the source counts and optimizations of the survey, and discuss the constraints on cosmological models that such a survey could provide. We find that a survey taking around 2 years could detect ~10^7 galaxies with an average redshift of ~ 0.15 making the survey complementary to those already carried out at optical wavelengths. These conservative estimates have used the z=0 HI mass function and have ignored the possibility of evolution. The results could be used to constrain \Gamma=\Omega_m h to 5% and the spectral index, n_s, to 7% independent of CMB data. If we also use simulated power spectra from the PLANCK satellite, one can constrain w to be within 5% of -1.
In this work we study the correlation between the soft (1.6--12.4 keV, mostly thermal) and the hard (20--40 and 60--80 keV, mostly non-thermal) X-ray emission in solar flares up to the most energetic events, spanning about 4 orders of magnitude in peak flux, establishing a general scaling law and extending it to the most intense stellar flaring events observed to date. We used the data from the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) spacecraft, a NASA Small Explorer launched in February 2002. RHESSI has good spectral resolution (~1 keV in the X-ray range) and broad energy coverage (3 keV--20 MeV), which makes it well suited to distinguish the thermal from non-thermal emission in solar flares. Our study is based on the detailed analysis of 45 flares ranging from the GOES C-class, to the strongest X-class events, using the peak photon fluxes in the GOES 1.6--12.4 keV and in two bands selected from RHESSI data, i.e.20--40 keV and 60--80 keV. We find a significant correlation between the soft and hard peak X-ray fluxes spanning the complete sample studied. The resulting scaling law has been extrapolated to the case of the most intense stellar flares observed, comparing it with the stellar observations. Our results show that an extrapolation of the scaling law derived for solar flares to the most active stellar events is compatible with the available observations of intense stellar flares in hard X-rays.
The Hubble Space Telescope has provided the first clear evidence for weaker winds of metal-poor massive stars in the Small Magellanic Cloud, confirming theoretical predictions of the metallicity dependence of mass-loss rates and wind terminal velocities. For lower luminosity O-type stars however, derived mass-loss rates are orders of magnitude lower than predicted, and are at present unexplained.
We have detected emission by the CO 5-4 and 6-5 rotational transitions at $z = 5.7722\pm 0.0006$ from the host galaxy of the SDSS quasar J0927+2001 using the Plateau de Bure interferometer. The peak line flux density for the CO 5-4 line is $0.72 \pm 0.09$ mJy, with a line FWHM = $610 \pm 110$ km s$^{-1}$. The implied molecular gas mass is $(1.6 \pm 0.3) \times 10^{10}$ M$_\odot$. We also detect the 90 GHz continuum at $0.12 \pm 0.03$ mJy, consistent with a 47K dust spectrum extrapolated from higher frequencies. J0927+2001 is the second example of a huge molecular gas reservoir within the host galaxy of a quasar within 1 Gyr of the big bang. Observations of J0927+2001 are consistent with a massive starburst coeval with a bright quasar phase in the galaxy, suggesting the rapid formation of both a super-massive black hole through accretion, and the stellar host spheroid, at a time close to the end of cosmic reionization.
Context: The counts of galaxies and AGN in the mid infra-red (MIR) bands are
important instruments for studying their cosmological evolution. However, the
classic spectral line ratios techniques can become misleading when trying to
properly separate AGN from starbursts or even from apparently normal galaxies.
Aims: We use X-ray band observations to discriminate AGN activity in
previously classified MIR-selected starburst galaxies and to derive updated
AGN1 and (Compton thin) AGN2 counts at 15 um.
Methods: XMM observations of the ELAIS-S1 15um sample down to flux limits
~2x10^-15 erg cm^-2 s^-1 (2-10 keV band) were used. We classified as AGN all
those MIR sources with a unabsorbed 2-10 keV X-ray luminosity higher that
~10^42 erg/s.
Results: We find that at least about 13(+/-6) per cent of the previously
classified starburst galaxies harbor an AGN. According to these figures, we
provide an updated estimate of the counts of AGN1 and (Compton thin) AGN2 at 15
um. It turns out that at least 24% of the extragalactic sources brighter than
0.6 my at 15 um are AGN (~13% contribution to the extragalactic background
produced at fluxes brighter than 0.6 mJy).
Two new X-ray expanding rings were detected by the Swift XRT instrument during early follow-up observations of GRB 061019 and GRB 070129, increasing to 5 the number of dust scattering X-ray halos observed around GRBs. Although these two halos were particularly faint, a sensitive analysis can be performed optimizing for the Swift satellite the method developed by Tiengo & Mereghetti (2006) to analyze dust scattering rings observed with XMM-Newton. In the case of GRB 061019, a known giant molecular cloud is identified as the responsible for the scattering process and its distance is accurately measured (d=940 +/- 40 pc) through the dynamics of the expanding ring. In the second case, XRT observed both the main peak of the prompt emission of GRB 070129 and the scattering halo, but the small number of detected halo photons prevents us to discriminate between different dust models.
The Star Formation (SF) rate in galaxies is an important parameter at all redshifts and evolutionary stages of galaxies. In order to understand the increased SF rates in intermediate redshift galaxies one possibility is to study star formation in local galaxies with properties frequently found at this earlier epoch like low metallicity and small size. We present sensitive observations of the molecular gas in M 33, a small Local Group spiral at a distance of 840 kpc which shares many of the characteristics of the intermediate redshift galaxies. The observations were carried out in the CO(2--1) line with the HERA heterodyne array on the IRAM 30 m telescope. A 11\arcmin$\times$22\arcmin region in the northern part of M 33 was observed, reaching a detection threshold of a few 10$^{3}$ \msol. The correlation in this field between the CO emission and tracers of SF (8\mum, 24\mum, \Ha, FUV) is excellent and CO is detected very far North, showing that molecular gas forms far out in the disk even in a small spiral with a subsolar metallicity. One major molecular cloud was discovered in an interarm region with no HI peak and little if any signs of SF -- without a complete survey this cloud would never have been found. The radial dependence of the CO emission has a scale length similar to the dust emission, less extended than the \Ha or FUV. If, however, the $\ratioo$ ratio varies inversely with metallicity, then the scale length of the H$_2$ becomes similar to that of the \Ha or FUV. Comparing the SF rate to the H$_2$ mass shows that M 33, like the intermediate redshift galaxies it resembles, has a significantly higher SF efficiency than large local universe spirals.
In this paper we investigate the role of convection in clusters of galaxies. A number of studies have shown that the convective stability criterion for the intracluster medium (ICM) is very different from the Schwarzchild criterion due to the effects of anisotropic thermal conduction and cosmic rays. Building on these studies, we present a model in which a central active galactic nucleus (AGN) accretes hot intracluster plasma at the Bondi rate and produces cosmic rays that cause the ICM to become convectively unstable. The resulting convection heats the intracluster plasma and regulates its temperature and density profiles. By adjusting a single parameter in the model (the size of the cosmic-ray acceleration region), we are able to achieve a good match to the observed density and temperature profiles in a sample of eight clusters. Our results suggest that convection is an important process in cluster cores. An interesting feature of our solutions is that the cooling rate is more sharply peaked about the cluster center than is the convective heating rate. As a result, in cluster cores in which thermal conduction is unable to balance cooling, a cooling flow arises in the central region with a size R that is typically 5-10 kpc. The cooling flow matches onto a Bondi flow within the central kpc. The mass accretion rate in the Bondi flow is equal to, and controlled by, the rate at which mass flows in through the cooling flow. Our solutions suggest that the AGN regulates the mass accretion rate in these clusters by controlling R: if the AGN power rises above the equilibrium level, R decreases, the mass accretion rate drops, and the AGN power drops back down to the equilibrium level.
We combine GALEX near-UV photometry with a volume-limited sample of local (0.005<z<0.037) SDSS DR4 galaxies to examine the composition and the environmental dependencies of the optical and UV-optical colour-magnitude (C-M) diagrams. We find that ~30% of red sequence galaxies in the optical C-M diagram show signs of ongoing star-formation from their spectra having EW(Halpha)>2A. This contamination is greatest at faint magnitudes (Mr>-19) and in field regions where as many as three-quarters of red sequence galaxies are star-forming, and as such has important consequences for following the build-up of the red sequence. We find that the NUV-r colour instead allows a much more robust separation of passively-evolving and star-forming galaxies, which allows the build-up of the UV-selected red sequence with redshift and environment to be directly interpreted in terms of the assembly of stellar mass in passively-evolving galaxies. We find that in isolated field regions the number density of UV-optical red sequence galaxies declines rapidly at magnitudes fainter than Mr~-19 and appears completely truncated at Mr~-18. This confirms the findings of Haines et al. (2007) that no passively-evolving dwarf galaxies are found more than two virial radii from a massive halo, whether that be a group, cluster or massive galaxy. These results support the downsizing paradigm whereby the red sequence is assembled from the top down, being already largely in place at the bright end by z~1, and the faint end filled in at later epochs in clusters and groups through environment-related processes such as ram-pressure stripping or galaxy harassment.
We present UBVRI broad band, H$\alpha$ narrow band photometry of the star forming complexes in the infra-red bright galaxy NGC 1084. Results of medium resolution spectroscopy of some of the brighter complexes are also discussed. Spectroscopic data is used to better estimate the internal reddening within the galaxy which is found to be highly variable and to calculate metallicity which is close to the solar value. Diagnostic diagram identifies the shocked regions within this galaxy. The narrow band H$\alpha$ flux and its equivalent width are used to determine the star formation rates of the complexes and the distribution of ages. Star formation rates for a few of the complexes are found to be as high as 0.5 $M_{\odot}$/year. The star forming complexes lie in the age range 3 Myr to 6.5 Myr. U-B vs V-I colour-colour mixed population model created using the Starburst99 model colours is used to estimate the ages of the stellar populations present within these regions. Using this technique, it is found that the star formation in NGC 1084 has taken place in a series of short bursts over the last 40 Myr or so. It is proposed that the likely trigger for enhanced star formation is merger with a gas rich dwarf galaxy.
We have obtained observations of the ultraviolet spectrum of AM CVn, an ultra-short-period helium cataclysmic variable, using the Space Telescope Imaging Spectrograph (STIS) aboard the Hubble Space Telescope (HST). We obtained data in time-tag mode during two consecutive orbits of HST, covering 1600-3150 and 1140-1710 Angstrom, respectively. The mean spectrum is approximately flat in f-nu. The absorption profiles of the strong lines of N V, Si IV, C IV, He II, and N IV are blue-shifted and in some cases asymmetric, evidencing a wind that is partly occulted by the accretion disk. There is weak red-shifted emission from N V and He II. The profiles of these lines vary mildly with time. The light curve shows a decline of ~20% over the span of the observations. There is also flickering and a 27 s (or 54 s) "dwarf nova oscillation", revealed in a power-spectrum analysis. The amplitude of this oscillation is larger at shorter wavelengths. We assemble and illustrate the spectral energy distribution (s.e.d.) of AM CVn from the ultraviolet to the near-infrared. Modeling the accretion phenomenon in this binary system can in principle lead to a robust estimate of the mass accretion rate on to the central white dwarf, which is of great interest in characterizing the evolutionary history of the binary system. Inferences about the mass accretion rate depend strongly on the local radiative properties of the disk, as we illustrate. Uncertainty in the distance of AM CVn and other parameters of the binary system presently limit the ability to confidently infer the mass accretion rate.
We investigate how the total radio luminosity of AGN-powered radio sources depends on their accretion luminosity and the central black hole mass. We find that AGNs form two distinct and well separated sequences on the radio-loudness - Eddington-ratio plane. We argue that these sequences mark the real upper bounds of radio-loudness of two distinct populations of AGNs: those hosted respectively by elliptical and disk galaxies. Both sequences show the same dependence of the radio-loudness on the Eddington ratio (an increase with decreasing Eddington ratio), which suggests that another parameter in addition to the accretion rate must play a role in determining the jet production efficiency in active galactic nuclei, and that this parameter is related to properties of the host galaxy. The revealed host-related radio dichotomy breaks down at high accretion rates where the dominant fraction of luminous quasars hosted by elliptical galaxies is radio quiet. We argue that the huge difference between the radio-loudness reachable by AGNs in disc and elliptical galaxies can be explained by the scenario according to which the spin of a black hole determines the outflow's power, and central black holes can reach large spins only in early type galaxies (following major mergers), and not (in a statistical sense) in spiral galaxies.
We present new V and I-band HST/ACS photometry of I Zw 18, the most metal-poor blue compact dwarf (BCD) galaxy in the nearby universe. It has been argued in the past that I Zw 18 is a very young system that started forming stars only < 500 Myr ago, but other work has hinted that older (> 1 Gyr) red giant branch (RGB) stars may also exist. Our new data, once combined with archival HST/ACS data, provide a deep and uncontaminated optical color-magnitude diagram (CMD) that now strongly indicates an RGB. The RGB tip (TRGB) magnitude yields a distance modulus (m-M)_0 = 31.30 +/- 0.17, i.e., D = 18.2 +/- 1.5 Mpc. The time-series nature of our observations allows us to also detect and characterize for the first time three classical Cepheids in I~Zw~18. The time-averaged Cepheid <V> and <I> magnitudes are compared to the VI reddening-free Wesenheit relation predicted from new non-linear pulsation models specifically calculated at the metallicity of I Zw 18. For the one bona-fide classical Cepheid with a period of 8.63 days this implies a distance modulus (m-M)_0 = 31.42 +/- 0.26. The other two Cepheids have unusually long periods (125.0 and 129.8 d) but are consistent with this distance. The coherent picture that emerges is that I Zw 18 is older and farther away than previously believed. This rules out the possibility that I Zw 18 is a truly primordial galaxy formed recently (z < 0.1) in the local universe.
We consider DM that only couples to SM gauge bosons and fills one gauge multiplet, e.g. a fermion 5-plet (which is automatically stable), or a wino-like 3-plet. We revisit the computation of the cosmological relic abundance including non-perturbative corrections. The predicted mass of e.g. the 5-plet increases from 4.4 TeV to 10 TeV, and indirect detection rates are enhanced by 2 orders of magnitude. Next, we show that due to the quasi-degeneracy among neutral and charged components of the DM multiplet, a significant fraction of DM with energy E > 10^17 eV (possibly present among ultra-high energy cosmic rays) can cross the Earth exiting in the charged state and may in principle be detected in neutrino telescopes.
Using recent results from numerical relativity simulations of non-spinning binary black hole mergers we revisit the problem of detecting ringdown waveforms and of estimating the source parameters, considering both LISA and Earth-based interferometers. We find that Advanced LIGO and EGO could detect intermediate-mass black holes of mass up to about 1000 solar masses out to a luminosity distance of a few Gpc. For typical multipolar energy distributions, we show that the single-mode ringdown templates presently used for ringdown searches in the LIGO data stream can produce a significant event loss (> 10% for all detectors in a large interval of black hole masses) and very large parameter estimation errors on the black hole's mass and spin. We estimate that more than 10^6 templates would be needed for a single-stage multi-mode search. Therefore, we recommend a "two stage" search to save on computational costs: single-mode templates can be used for detection, but multi-mode templates or Prony methods should be used to estimate parameters once a detection has been made. We update estimates of the critical signal-to-noise ratio required to test the hypothesis that two or more modes are present in the signal and to resolve their frequencies, showing that second-generation Earth-based detectors and LISA have the potential to perform no-hair tests.
General class of nonlocal cosmological models is considered. A new method for solving nonlocal Friedman equations is proposed, and solutions of the Friedman equations with nonlocal operator are presented. The cosmological properties of these solutions are discussed. Especially indicated is p-adic cosmological model in which we have obtained nonsingular bouncing solution and string field theory tachyon model in which we have obtained full solution of nonlocal Friedman equations with w=-1 at large times. The possibility of obtaining realistic value of cosmological constant from nonlocal cosmological models is also discussed.
We consider a curvaton scenario in which the late-time domination and the generation of the curvature perturbation is achieved by a non-oscillatory (NO) curvaton potential. Instead of considering the conventional curvaton oscillation, we consider ``weak trapping'' after preheating, which modifies the evolution of the curvaton density after preheating. The primordial isocurvature perturbation related to the curvaton is once converted into the fluctuation of the number density of the preheat field through inhomogeneous preheating. Then the evolution of the curvatons and the preheat field is controlled by the preheat-field number density. The density of these fields decreases slightly slower than the standard matter density which suggests that these fields will grow with time. Finally, the preheat field decays to reheat the Universe leaving behind the curvature perturbation. In our scenario the task of the standard curvaton is not executed solely by the curvaton itself but is partially shared with the preheat field. NO curvatons can be considered as the hybrid version of the quintessential inflationary model.
Non-linear effects on supernova neutrino oscillations, associated with neutrino self-interactions, are known to induce collective flavor transitions near the supernova core for theta_13 \neq 0. In scenarios with very shallow electron density profiles, these transformations have been shown to couple with ordinary matter effects, jointly producing spectral distortions both in normal and inverted hierarchy. In this work we consider a complementary scenario, characterized by higher electron density, as indicated by post-bounce shock-wave simulations. In this case, early collective flavor transitions are decoupled from later, ordinary matter effects. Moreover, such transitions become more amenable to both numerical computations and analytical interpretations in inverted hierarchy, while they basically vanish in normal hierarchy. We numerically evolve the neutrino density matrix in the region relevant for self-interaction effects. In the approximation of averaged intersection angle between neutrino trajectories, our simulations neatly show the collective phenomena of synchronization, bipolar oscillations, and spectral split, recently discussed in the literature. In the more realistic (but computationally demanding) case of non-averaged neutrino trajectories, our simulations do not show new significant features, apart from the smearing of ``fine structures'' such as bipolar nutations. Our results seem to suggest that, at least for non-shallow matter density profiles, averaging over neutrino trajectories plays a minor role in the final outcome. In this case, the swap of nu_e and nu_{\mu,\tau} spectra above a critical energy may represent an unmistakable signature of the inverted hierarchy, especially for theta_{13} small enough to render further matter effects irrelevant.
Links to: arXiv, form interface, /find, astro-ph, /recent, /0707, /abs, help (Access key information)
Malin 1 has long been considered a prototype giant, dark matter dominated Low Surface Brightness galaxy. Two recent studies, one based on a re-analysis of VLA HI observations and the other on an archival Hubble I-band image, throw a new light on this enigmatic galaxy and on its dark/luminous matter properties.
We classify 329 late-type giants within 1 parsec of Sgr A*, using the adaptive optics integral field spectrometer SINFONI on the VLT. These observations represent the deepest spectroscopic data set so far obtained for the Galactic Center, reaching a 50% completeness threshold at the approximate magnitude of the helium-burning red clump (Ks ~ 15.5 mag.). Combining our spectroscopic results with NaCo H and Ks photometry, we construct an observed Hertzsprung-Russell diagram, which we quantitatively compare to theoretical distributions of various star formation histories of the inner Galaxy, using a chi-squared analysis. Our best-fit model corresponds to continuous star formation over the last 12 Gyr with a top-heavy initial mass function (IMF). The similarity of this IMF to the IMF observed for the most recent epoch of star formation is intriguing and perhaps suggests a connection between recent star formation and the stars formed throughout the history of the Galactic Center.
We have used the integral field spectrograph OSIRIS and laser guide star adaptive optics at Keck Observatory to obtain high angular resolution (0.06"), moderate spectral resolution (R ~ 3800) images of the bipolar jet from the Herbig Ae star LkHa 233, seen in near-IR [Fe II] emission at 1.600 & 1.644 microns. This jet is narrow and tightly collimated, with an opening angle of only 9 degrees, and has an average radial velocity of ~ 100 km/s. The jet and counterjet are asymmetric, with the red-shifted jet much clumpier than its counterpart at the angular resolution of our observations. The observed properties are in general similar to jets seen around T Tauri stars, though it has a relatively large mass flux of (1.2e-7 +- 0.3e-7) M_sun/year, near the high end of the observed mass flux range around T Tauri stars. We also spatially resolve an inclined circumstellar disk around LkHa 233, which obscures the star from direct view. By comparison with numerical radiative transfer disk models, we estimate the disk midplane to be inclined i = 65 +- 5 degrees relative to the plane of the sky. Since the star is seen only in scattered light at near-infrared wavelengths, we detect only a small fraction of its intrinsic flux. Because previous estimates of its stellar properties did not account for this, either LkHa 233 must be located closer than the previously believed, or its true luminosity must be greater than previously supposed, consistent with its being a ~4 M_sun star near the stellar birthline.
We describe a new technique for heterodyne spectroscopy, which we call
Least-Squares Frequency Switching, or LSFS. This technique avoids the need for
a traditional reference spectrum, which--when combined with the on-source
spectrum--introduces both noise and systematic artifacts such as ``baseline
wiggles''. In contrast, LSFS derives the spectrum directly, and in addition the
instrumental gain profile. The resulting spectrum retains nearly the full
theoretical sensitivity and introduces no systematic artifacts.
Here we discuss mathematical details of the technique and use numerical
experiments to explore optimum observing schemas. We outline a modification
suitable for computationally difficult cases as the number of spectral channels
grows beyond several thousand. We illustrate the method with three real-life
examples. In one of practical interest, we created a large contiguous bandwidth
aligning three smaller bandwidths end-to-end; radio astronomers are often faced
with the need for a larger contiguous bandwidth than is provided with the
available correlator.
We investigate the impact of photometric signal-to-noise (S/N) on the precision of photometric redshifts in multi-band imaging surveys, using both simulations and real data. We simulate the optical 4-band (BVRz) Deep Lens Survey (DLS, Wittman etal 2002), and use the publicly available Bayesian Photometric Redshift code BPZ by Benitez (2000). The simulations include a realistic range of magnitudes and colors and vary from infinite S/N to S/N=5. The real data are from DLS photometry and two spectroscopic surveys, and explore a range of S/N by adding noise to initially very high S/N photometry. Precision degrades steadily as S/N drops, both because of direct S/N effects and because lower S/N is linked to fainter galaxies with a weaker magnitude prior. If a simple S/N cut were used, S/N>17 in R (corresponding, in the DLS, to lower S/N in other bands) would be required to keep the scatter in Deltaz = (zspec-zphot)/(1+zspec) to less than 0.1. However, cutting on ODDS (a measure of the peakiness of the probability density function provided by BPZ) greater than 0.4 provides roughly double the number of usable galaxies with the same scatter. Ellipticals form the tightest zspec-zphot relation, and cutting on type=elliptical provides better precision than the ODDS>0.9 cut, but this eliminates the vast majority of galaxies in a deep survey. In addition to being more efficient than a type cut, ODDS also has the advantages of working with all types of galaxies (although ellipticals are overrepresented) and of being a continuous parameter for which the severity of the cut can be adjusted as desired.
We explore the possibility that the transit signature of an Earth-size planet can be detected in spectroscopic velocity shifts via the Rossiter effect. Under optimistic but not unrealistic conditions, it should be possible to detect a large terrestrial-size planet. While not suitable for discovering planets, this method can be used to confirm suspected planets.
We report precise Doppler measurements of GJ317 (M3.5V) that reveal the presence of a planet with a minimum mass Msini = 1.2 Mjup in an eccentric, 692.9 day orbit. GJ317 is only the third M dwarf with a Doppler-detected Jovian planet. The residuals to a single-Keplerian fit show evidence of a possible second orbital companion. The inclusion of an additional Jupiter-mass planet (P = 2700 days, Msini = 0.83 Mjup) improves the quality of fit significantly, reducing the rms from 12.5 m/s to 6.32 m/s. A false-alarm test yields a 1.1% probability that the curvature in the residuals of the single-planet fit is due to random fluctuations, lending additional credibility to the two-planet model. However, our data only marginally constrain a two-planet fit and further monitoring is necessary to fully characterize the properties of the second planet. To study the effect of stellar mass on Jovian planet occurrence we combine our samples of M stars, Solar-mass dwarfs and intermediate-mass subgiants. We find a positive correlation between stellar mass and the occurrence rate of Jovian planets within 2.5 AU; the former A-type stars in our sample are nearly 5 times more likely than the M dwarfs to harbor a giant planet. Our analysis shows that the correlation between Jovian planet occurrence and stellar mass remains even after accounting for the effects of stellar metallicity.
We present an observation of XMM-Newton that unambiguously reveals the ``Seyfert 2'' nature of the Broad Line Radio Galaxy 3C 445. For the first time the soft excess of this source has been resolved. It consists of unobscured scattered continuum flux and emission lines, likely produced in a warm photoionized gas near the pole of an obscuring torus. The presence of circumnuclear (likely stratified) matter is supported by the complex obscuration of the nuclear region. Seventy percent of the nuclear radiation (first component) is indeed obscured by a column density ~4*10^{23} cm^{-2}, and 30 % (second component) is filtered by ~7* 10^{22} cm^{-2}. The first component is nuclear radiation directly observed by transmission through the thicker regions. The second one is of more uncertain nature. If the observer has a deep view into the nucleus but near the edge of the torus, it could be light scattered by the inner wall of the torus and/or by photoionized gas within the Broad Line Region observed through the thinner rim of the circumnuclear matter.
We obtained a wide-band spectrum of the Compton-thick Seyfert 2 galaxy Mrk 3 with Suzaku. The observed spectrum was clearly resolved into weak, soft power-law emission, a heavily absorbed power-law component, cold reflection, and many emission lines. The heavily absorbed component, absorbed by gas with a column density of 1.1x10^24 cm^-2, has an intrinsic 2--10 keV luminosity of ~1.6x10^43 erg s^-1, and is considered to be direct emission from the Mrk 3 nucleus. The reflection component was interpreted as reflection of the direct light off cold, thick material; the reflection fraction $R$ was 1.36+/-0.20. The cold material is inferred to be located > 1 pc from the central black hole of Mrk 3 due to the low ionization parameter of iron (xi < 1 erg cm s^-1) and the narrow iron line width (s < 22 eV). A Compton shoulder to the iron line was detected, but the intensity of the shoulder component was less than that expected from spherically distributed Compton-thick material. The weak, soft power-law emission is considered to be scattered light by ionized gas. The existence of many highly-ionized lines from O, Ne, Mg, Si, S, and Fe in the observed spectrum indicates that the ionized gas has a broad ionized structure, with xi=10--1000. The scattering fraction with respect to the direct light was estimated to be 0.9+/-0.2%, which indicates that the column density of the scattering region is about 3.6x10^22 cm^-2. This high-quality spectrum obtained by Suzaku can be considered a template for studies of Seyfert 2 galaxies.
We report the detection of correlated anisotropies in the Cosmic Far-Infrared Background at 160 microns. We measure the power spectrum in the Spitzer/SWIRE Lockman Hole field. It reveals unambiguously a strong excess above cirrus and Poisson contributions, at spatial scales between 5 and 30 arcminutes, interpreted as the signature of infrared galaxy clustering. Using our model of infrared galaxy evolution we derive a linear bias b=1.74 \pm 0.16. It is a factor 2 higher than the bias measured for the local IRAS galaxies. Our model indicates that galaxies dominating the 160 microns correlated anisotropies are at z~1. This implies that infrared galaxies at high redshifts are biased tracers of mass, unlike in the local Universe.
Recently wide publicity has been given to a claim by T. Vachaspati that "black holes do not exist", that the objects known as black holes in astrophysics should rather be called "black stars" and they not only do not have event horizons but actually can be the source of spectacular gamma ray bursts. In this short essay (no flimsier than the original preprint where these extravagant claims appeared) I demonstrate that these ill-considered claims are clearly wrong. Yet they present a good occasion to reflect on some well known but little discussed conceptual difficulties which arise when applying relativistic terminology in an astrophysical context.
The paper describes the different methods, used in the MAGIC experiment, to unfold experimental energy distributions of cosmic ray particles (gamma-rays). Questions and problems related to the unfolding are discussed. Various procedures are proposed which can help to make the unfolding robust and reliable. The different methods and procedures are implemented in the MAGIC software and are used in most of the analyses.
We report on the results from an ongoing program aimed at testing Newton's law of gravity in the low acceleration regime using globular clusters. It is shown that all clusters studied so far do behave like galaxies, that is, their velocity dispersion profile flattens out at large radii where the acceleration of gravity goes below 1e-8 cm/s/s, instead of following the expected Keplerian fall off. In galaxies this behavior is ascribed to the existence of a dark matter halo. Globular clusters, however, do not contain dark matter, hence this result might indicate that our present understanding of gravity in the weak regime of accelerations is incomplete and somehow incorrect.
We analyzed the spectroscopic data from the PN and the MOS cameras in the 0.4-10 keV band. We also used an archival BeppoSAX 1-50 keV observation of IRAS 09104+4109 to investigate possible variations of the quasar emission. The X-ray emission in the EPIC band is dominated by the intra-cluster medium thermal emission. We found that the quasar contributes ~35% of the total flux in the 2-10 keV band. Both a transmission- (through a Compton-thin absorber with a Compton optical depth of \tau_C~0.3, i.e. Nh~5 x 10^{23} cm^-2) and a reflection-dominated (\tau_C>1) model provide an excellent fit to the quasar continuum emission. However, the value measured for the EW of Fe Kalpha emission line is only marginally consistent with the presence of a Compton-thick absorber in a reflection-dominated scenario, which had been suggested by a previous, marginal (i.e. 2.5\sigma) detection with the hard X-ray (15-50 keV), non-imaging BeppoSAX/PDS instrument. Moreover, the value of luminosity in the 2-10 keV band measured by the transmission-dominated model is fully consistent with that expected on the basis of the bolometric luminosity of IRAS 09104+4109. From the analysis of the XMM-Newton data we therefore suggest the possibility that the absorber along the line of sight to the nucleus of IRAS 09104+4109 is Compton-thin. Alternatively, the absorber column density could have changed from Compton-thick to -thin in the five years elapsed between the observations. If this is the case, then IRAS 09104+4109 is the first 'changing-look' quasar ever detected.
The problem of extinction is the most important issue to be dealt with in the process of obtaining true absolute magnitudes of core-collapse supernovae (SNe). The plane-parallel model which gives absorption dependent on galaxy inclination, widely used in the past, was shown not to describe extinction adequately. We try to apply an alternative model which introduces radial ependence of extinction. A certain trend of dimmer SNe with decreasing radius from the center of a galaxy was found, for a chosen sample of stripped-envelope SNe.
We estimate the two-point correlation function of dark matter haloes, with masses >10^{13} h^{-1} Mo, that have or not significant substructure. The haloes are identified with a friends of friends algorithm in a large LCDM simulation at two redshift snapshots (z=0 and 1), while halo substructure is determined using an observationally driven method. We find in both epochs a clear and significant signal by which haloes with substructure are more clustered than those with no-substructure. This is true for all the considered halo mass ranges, although for the highest halo masses the signal is noisy and present only out to ~20 h^{-1} Mpc. There is also a smooth increase of the halo correlation length with increasing amplitude of the halo substructure. We also find that substructured haloes are typically located in high-density large-scale environments, while the opposite is true for non-substructured haloes. If the haloes found in high-density regions have a relatively earlier formation time, as suggested by recent works, then they do indeed have more time to cluster than haloes, of a similar mass, which form later in the low-density regions. In such a case one would have naively expected that the former (earlier formed) haloes would typically be dynamically more relaxed than the latter (later formed). However, the higher merging and interaction rate,expected in high-density regions, could disrupt their relatively relaxed dynamical state and thus be the cause for the higher fraction of haloes with substructure found in such regions.
In this paper we show how advanced visualization tools can help the researcher in investigating and extracting information from data. The focus is on VisIVO, a novel open source graphics application, which blends high performance multidimensional visualization techniques and up-to-date technologies to cooperate with other applications and to access remote, distributed data archives. VisIVO supports the standards defined by the International Virtual Observatory Alliance in order to make it interoperable with VO data repositories. The paper describes the basic technical details and features of the software and it dedicates a large section to show how VisIVO can be used in several scientific cases.
We have studied the $\nu + \bar{\nu} \to e^+ + e^- $ energy deposition rate in a rotating compact star. This reaction is important for the study of gamma ray bursts. The General Relativistic (GR) effects on the energy deposition rate have been incorporated. We find that the efficiency of the process is larger for a rotating star. The total energy deposition rate increases by more than an order of magnitude due to rotation. The dependence of this energy deposition rate on the deformation parameter of the star has also been discussed.
We study the case of a solar-type star penetrating deeply within the tidal
radius of a massive black hole. We focus on the compression phase leading to a
so-called pancake configuration of the star at the instant of maximal
compression. The aim is to provide reliable estimates of the thermodynamical
quantities involved in the pancake star, and to solve a controversy about
whether or not thermonuclear reactions can be triggered in the core of a
tidally compressed star.
We have set up a one-dimensional hydrodynamical code based on the
high-resolution shock-capturing Godunov-type approach in order to study the
compression phase undergone by the star in the direction orthogonal to its
orbital plane, taking into account the development of shock waves during that
phase.
We show the existence of two regimes of compression depending on whether
shock waves develop after or before the instant of maximal compression. In both
cases we confirm high compression and heating factors in the stellar core, able
to trigger a thermonuclear detonation. We show that the shock waves carry
outwards a brief but very high peak of temperature from the centre to the
surface of the star. We tentatively conclude that the phenomenon could give
rise to hard electromagnetic radiation, to be compared to some X-ray flares
already observed in some galactic nuclei harbouring massive black holes.
Finally, we estimate that the rate of pancake stars should be about $10^{-5}$
per galaxy per year; if generated in hard X- or $\gamma$-rays band, several
events of this kind per year should be detectable within the full observable
universe.
During the epoch of reionization, Ly-alpha photons emitted by the first stars
can couple the neutral hydrogen spin temperature to the kinetic gas
temperature, providing the opportunity to observe the gas in emission or
absorption in the 21-cm line. Given the bright foregrounds, it is of prime
importance to determine precisely the fluctuations signature of the signal, to
be able to extract it by its correlation power.
LICORICE is a Monte-Carlo radiative transfer code, coupled to the dynamics
via an adaptative Tree-SPH code. We present here the Ly-alpha part of the
implementation, and validate it through three classical tests. Contrary to
previous works, we do not assume that P_alpha, the number of scatterings of
Ly-alpha photons per atom per second, is proportional to the Ly-alpha
background flux, but take into account the scatterings in the Ly-alpha line
wings. The latter have the effect to steepen the radial profile of P_alpha
around each source, and re-inforce the contrast of the fluctuations. In the
particular geometry of cosmic filaments of baryonic matter, Ly-alpha photons
are scattered out of the filament, and the large scale structure of P_alpha is
significantly anisotropic. This could have strong implications for the possible
detection of the 21-cm signal.
We describe measurements of the X-ray reflectance in the range 2 to 10 keV of samples representative of coated silicon wafers that are proposed for the fabrication of the XEUS (X-ray Evolving Universe Spectrometer) mission. We compare the reflectance of silicon samples coated with bare Pt, with that for samples with an additional 10nm thick carbon over-coating. We demonstrate a significant improvement in reflectance in the energy range ~1 to 4 keV, and at a grazing incidence angle of 10 mrad (0.57 degrees). We consider the resulting effective area that could be attained with an optimized design of the XEUS telescope. Typically an improvement of 10 to 60 % in effective area, depending on photon energy, can be achieved using the carbon overcoat.
We report on the Achromatic Interfero Coronagraph, a focal imaging device which aims at rejecting the energy contribution of a point-like source set on-axis, so as to make detectable its angularly-close environment (applicable to stellar environment: circumstellar matter, faint companions, planetary systems, but also conceivably to Active Galatic Nucleii and multiple asteroids). With AIC, starlight rejection is based on destructive interference, which allows exploration of the star's neighbouring at angular resolution better than the diffraction limit of the hosting telescope. Thanks to the focus crossing property of light, rejection is achromatic thus yielding a large spectral bandwidth of work. Descriptions and comments are given regarding the principle, the device itself, the constraints and limitations, and the theoretical performance. Results are presented which demonstrate the close-sensing capability and which show images of a companion obtained in laboratory and 'on the sky' as well. A short pictorial description of alternative AIC concepts, CIAXE and Open-Air CIAXE, currently under study, is given.
The one-particle distribution function is of importance both in non-relativistic and relativistic statistical physics. In the relativistic framework, Lorentz invariance is possibly its most fundamental property. The present article on the subject is a contrastive one: we review, discuss critically, and, when necessary, complete, the treatments found in the standard literature.
Detection of 5 events by the Liquid Scintillation Detector (LSD) on February, 23, 1987 was interpreted in the literature as the detection of neutrinos from the first stage of the two-stage supernova collapse. We pose rigid constraints on the properties of the first stage of the collapse, taking into account neutrino flavour conversion due to the MSW-effect and general properties of supernova neutrino emission. The constraints depend on the unknown neutrino mass hierarchy and mixing angle \theta_{13}.
We have performed high-resolution cosmological N-body simulations of a concordance LCDM model to study the evolution of virialized, dark matter haloes in the presence of primordial non-Gaussianity. Following a standard procedure, departures from Gaussianity are modeled through a quadratic Gaussian term in the primordial gravitational potential, characterized by a dimensionless non-linearity strength parameter f_NL. We find that the halo mass function and its redshift evolution closely follow the analytic predictions of Matarrese et al.(2000). The existence of precise analytic predictions makes the observation of rare, massive objects at large redshift an even more attractive test to detect primordial non-Gaussian features in the large scale structure of the universe.
Aims: We define the relationship between the double-mode pulsation of Cepheids and metallicity in a more accurate way, determine the empirical metallicities of double-mode Cepheids from homogeneous, high-resolution spectroscopic data, and study of the period-ratio -- metallicity dependence. Methods: The high S/N echelle spectra obtained with the FEROS spectrograph were analyzed using a self-developed IRAF script, and the iron abundances were determined by comparing with synthetic spectra assuming LTE. Results: Accurate [Fe/H] values of 17 galactic beat Cepheids were determined. All these stars have solar or slightly subsolar metallicity. Their period ratio P1/P0 shows strong correlation with their derived [Fe/H] values. The corresponding period ratio -- metallicity relation has been evaluated.
We present Spitzer and Chandra observations of the nearby (~260 pc) embedded stellar cluster in the Serpens Cloud Core. We observed, using Spitzer's IRAC and MIPS instruments, in six wavelength bands from 3 to 70 ${\mu}m$, to detect thermal emission from circumstellar disks and protostellar envelopes, and to classify stars using color-color diagrams and spectral energy distributions (SEDs). These data are combined with Chandra observations to examine the effects of circumstellar disks on stellar X-ray properties. Young diskless stars were also identified from their increased X-ray emission. We have identified 138 YSOs in Serpens: 22 class 0/I, 16 flat spectrum, 62 class II, 17 transition disk, and 21 class III stars; 60 of which exhibit X-ray emission. Our primary results are the following: 1.) ten protostars detected previously in the sub-millimeter are detected at lambda < 24 microns, seven at lambda < 8 microns, 2.) the protostars are more closely grouped than more evolved YSOs (median separation : ~0.024 pc, and 3.) the luminosity and temperature of the X-ray emitting plasma around these YSOs does not show any significant dependence on evolutionary class. We combine the infrared derived values of AK and X-ray values of NH for 8 class III objects and find that the column density of hydrogen gas per mag of extinctions is less than half the standard interstellar value, for AK > 1. This may be the result of grain growth through coagulation and/or the accretion of volatiles in the Serpens cloud core.
Galaxies acting as gravitational lenses are surrounded by, at most, a handful of images. This apparent paucity of information forces one to make the best possible use of what information is available to invert the lens system. In this paper, we explore the use of a genetic algorithm to invert in a non-parametric way strong lensing systems containing only a small number of images. Perhaps the most important conclusion of this paper is that it is possible to infer the mass distribution of such gravitational lens systems using a non-parametric technique. We show that including information about the null space (i.e. the region where no images are found) is prerequisite to avoid the prediction of a large number of spurious images, and to reliably reconstruct the lens mass density. While the total mass of the lens is usually constrained within a few percent, the fidelity of the reconstruction of the lens mass distribution depends on the number and position of the images. The technique employed to include null space information can be extended in a straightforward way to add additional constraints, such as weak lensing data or time delay information.
Motivated by recent results on the location of the radio emission in pulsar magnetospheres, we have developed a model which can account for the large diversity found in the average profile shapes of pulsars. At the centre of our model lies the idea that radio emission at a particular frequency arises from a wide range of altitudes above the surface of the star and that it is confined to a region close to the last open field lines. We assert that the radial height range over which emission occurs is responsible for the complex average pulse shapes rather than the transverse (longitudinal) range proposed in most current models. By implementing an abrupt change in the height range to discriminate between young, short-period, highly-energetic pulsars and their older counterparts, we obtain the observed transition between the simple and complex average pulse profiles observed in each group respectively. Monte Carlo simulations are used to demonstrate the match of our model to real observations.
We study the implications of recent indications for a red spectrum of primordial density perturbations for the detection of inflationary gravitational waves (IGWs) with forthcoming cosmic microwave background experiments. We find that if inflation occurs with a single field with an inflaton potential minimized at V=0, then Planck will be able to detect IGWs at better than 2$\sigma$ confidence level, unless the inflaton potential is a power law with a very weak power. The proposed satellite missions of the Cosmic Vision and Inflation Probe programs will be able to detect IGWs from all the models we have surveyed at better than 5$\sigma$ confidence level. We provide an example of what is required if the IGW background is to remain undetected even by these latter experiments.
We investigate the environments and clustering properties of starburst galaxies selected from the 2dF Galaxy Redshift Survey (2dFGRS) in order to determine which, if any, environmental factors play a role in triggering a starburst. We quantify the local environments, clustering properties and luminosity functions of our starburst galaxies and compare to random control samples. The starburst galaxies are also classified morphologically in terms of their broad Hubble type and evidence of tidal merger/interaction signatures. We find the starburst galaxies to be much less clustered on large (5-15 Mpc) scales compared to the overall 2dFGRS galaxy population. In terms of their environments, we find just over half of the starburst galaxies to reside in low to intermediate luminosity groups, and a further ~30 per cent residing in the outskirts and infall regions of rich clusters. Their luminosity functions also differ significantly from that of the overall 2dFGRS galaxy population, with the sense of the difference being critically dependent on the way their star formation rates are measured. In terms of pin-pointing what might trigger the starburst, it would appear that factors relating to their local environment are most germane. Specifically, we find clear evidence that the presence of a near neighbour of comparable luminosity/mass within 20 kpc is likely to be important in triggering a starburst. We also find that a significant fraction (20-30 per cent) of our starburst galaxies have morphologies indicative of either an ongoing or recent tidal interaction and/or merger. These findings notwithstanding, there remain a significant portion of starburst galaxies where local environmental influences are not in any obvious way playing a triggering role, leading us to conclude that starbursts can also be internally driven.
Based on analysis of photometric observations of nearby M type stars obtained
with ASAS, 31 periodic variables were detected. The determined periods are
assumed to be related to rotation periods of the investigated stars. Among them
10 new variables with periods longer than 10 days were found, which brings the
total number of slowly rotating M stars with known rotation periods to 12
objects.
X-ray activity and rotation evolution of M stars follows the trends observed
in G-K type stars. Rapidly rotating stars are very active and activity
decreases with increasing rotation period but the period-activity relation is
mass-dependent which suggests that the rotation period alone is not a proper
measure of activity. The investigated stars were grouped according to their
mass and the empirical turnover time was determined for each group. It
increases with decreasing mass more steeply than for K type stars for which a
flat dependence had been found. The resulting Rossby number-activity relation
shows an exponential decrease of activity with increasing Rossby number.
The analysis of space motions of 27 single stars showed that all rapidly
rotating and a few slowly rotating stars belong to young disk (YD) whereas all
old disk (OD) stars are slowly rotating. The median rotation period of YD stars
is about 2 days and that of OD stars is equal to 47 days, i.e. nearly 25 times
longer. The average X-ray flux of OD stars is about 1.7 dex lower than YD stars
in a good agreement with the derived Rossby number-activity formula
supplemented with rotation-age relation and in a fair agreement with recent
observations but in a disagreement with the Skumanich formula supplemented with
the activity-rotation relation.
We study the optimization of the Apodized Pupil Lyot Coronagraph (APLC) in
the context of exoplanet imaging with ground-based telescopes. The APLC
combines an apodization in the pupil plane with a small Lyot mask in the focal
plane of the instrument. It has been intensively studied in the literature from
a theoretical point of view, and prototypes are currently being manufactured
for several projects. This analysis is focused on the case of Extremely Large
Telescopes, but is also relevant for other telescope designs.
We define a criterion to optimize the APLC with respect to telescope
characteristics like central obscuration, pupil shape, low order segment
aberrations and reflectivity as function of the APLC apodizer function and mask
diameter. Specifically, the method was applied to two possible designs of the
future European-Extremely Large Telescope (E-ELT).
Optimum configurations of the APLC were derived for different telescope
characteristics. We show that the optimum configuration is a stronger function
of central obscuration size than of other telescope parameters. We also show
that APLC performance is quite insensitive to the central obscuration ratio
when the APLC is operated in its optimum configuration, and demonstrate that
APLC optimization based on throughput alone is not appropriate.
Five-minute oscillations on the Sun (acoustic and surface gravity waves) are excited by subsurface turbulent convection. However, in sunspots the excitation is suppressed because strong magnetic field inhibits convection. We use 3D simulations to investigate how the suppression of excitation sources affects the distribution of the oscillation power in sunspot regions. The amplitude of random acoustic sources was reduced in circular-shaped regions to simulate the suppression in sunspots. The simulation results show that the amplitude of the oscillations can be approximately 2-4 times lower in the sunspot regions in comparison to the quiet Sun, just because of the suppressed sources. Using SOHO/MDI data we measured the amplitude ratio for the same frequency bands outside and inside sunspots, and found that this ratio is approximately 3-4. Hence, the absence of excitation sources inside sunspots makes a significant contribution (about 50% or higher) to the observed amplitude ratio and must be taken into account in sunspot seismology.
We consider N -- charge, intersecting brane antibrane configurations in M theory which are smeared uniformly in the common transverse space and may describe our universe. We study the consequences of U dualities and find that they imply relations among the scale factors. We find using Einstein's equations that U dualities also imply a relation among the density \rho and the pressure p_i for the single charge case. We present an ansatz for \rho and p_i for the N -- charge case which yields all the U duality relations among the scale factors. We then study configurations with identical charges, and also with net charges vanishing. We find among other things that, independent of the details of the brane antibrane dynamics, such four charge configurations lead asymptotically to an effective (3 + 1) -- dimensional expanding universe.
We find the quasinormal modes of the charged scalar and Dirac fields in the background of the rotating charged black holes, described by the Kerr-Newman-de Sitter solution. The dependence of the quasinormal spectrum upon the black hole parameters mass M, angular momentum a, charge Q, as well as on values of the \Lambda-term and field charge q is investigated. Special attention is given to the near extremal limit of the black hole charge. In particular, we find that for both scalar and Dirac fields, charged perturbations decay quicker for q>0 and slower for q<0 for values of black holes charge Q less than than some threshold value, which is close to the extremal value of charge and depend on parameters of the black holes.
We suggest two realistic f(R) and one F(G) modified gravities which are consistent with local tests and cosmological bounds. The typical property of such theories is the presence of the effective cosmological constant epochs in such a way that early-time inflation and late-time cosmic acceleration are naturally unified within single model. It is shown that classical instability does not appear here and Newton law is respected. Some discussion of possible anti-gravity regime appearence and related modification of the theory is done.
We follow the inspiral and merger of equal-mass black holes (BHs) by the moving puncture technique and demonstrate that both the exterior solution and the asymptotic gravitational waveforms are unchanged when the initial interior solution is replaced by constraint-violating ``junk'' initial data. We apply this result to evolve conformal thin-sandwich (CTS) binary BH initial data by filling their excised interiors with arbitrary, but smooth, initial data and evolving with standard puncture gauge choices. The waveforms generated for both puncture and filled-CTS initial data are remarkably similar, and there are only minor differences between irrotational and corotational CTS BH binaries. Even the interior solutions appear to evolve to the same constraint-satisfying solution at late times, independent of the initial data.
The effective evolution of an inhomogeneous universe model in any theory of
gravitation may be described in terms of spatially averaged variables. In
Einstein's theory, restricting attention to scalar variables, this evolution
can be modeled by solutions of a set of Friedmann equations for an effective
volume scale factor, with matter and backreaction source terms. The latter can
be represented by an effective scalar field (`morphon field') modeling Dark
Energy.
The present work provides an overview over the Dark Energy debate in
connection with the impact of inhomogeneities, and formulates strategies for a
comprehensive quantitative evaluation of backreaction effects both in
theoretical and observational cosmology. We recall the basic steps of a
description of backreaction effects in relativistic cosmology that lead to
refurnishing the standard cosmological equations, but also lay down a number of
challenges and unresolved issues in connection with their observational
interpretation.
The present status of this subject is intermediate: we have a good
qualitative understanding of backreaction effects pointing to a global
instability of the standard model of cosmology; exact solutions and
perturbative results modeling this instability lie in the right sector to
explain Dark Energy from inhomogeneities. It is fair to say that, even if
backreaction effects turn out to be less important than anticipated by some
researchers, the concordance high-precision cosmology, the architecture of
current N-body simulations, as well as standard perturbative approaches all
fall short in correctly describing the Late Universe.
A destabilization in the transfer energy flux from the vacuum to radiation, for two vacuum decay laws relevant to the dark energy problem, is analyzed using the Landau-Lifshitz fluctuation hydrodynamic theory. Assuming thermal (or near thermal) equilibrium between the vacuum and radiation, at the earliest epoch of the Universe expansion, we show that the law due to renormalization-group running of the cosmological constant term, with parameters chosen not to spoil the primordial nucleosynthesis scenario, does soon drive the flux to fluctuate beyond its statistical average value thereby distorting the cosmic background radiation spectrum beyond observational limits. While the law coming from the saturated holographic dark energy does not lead the flux to wildly fluctuate, a more realistic non--saturated form shows again such anomalous behavior.
We demonstrate fast counting and multiphoton detection abilities of a Silicon Photo Multiplier (SiPM). In fast counting mode we are able to detect two consecutive photons separated by only 2.3 ns corresponding to 430 MHz. The counting efficiency for small optical intensities at a wavelength of 532 nm was found to be around 8.3% with a dark count rate of 50 kHz at T=-7 degrees Celsius. Using the SiPM in multiphoton detection mode, we find a good signal discrimination for different numbers of simultaneous detected photons.
We point out that the existence of metastable, tau > 10^3 s, negatively charged electroweak-scale particles (X^-) alters the predictions for lithium and other primordial elemental abundances for A>4 via the formation of bound states with nuclei during BBN. In particular, we show that the bound states of X^- with helium, formed at temperatures of about T=10^8K, lead to the catalytic enhancement of Li6 production, which is eight orders of magnitude more efficient than the standard channel. In particle physics models where subsequent decay of X^- does not lead to large non-thermal BBN effects, this directly translates to the level of sensitivity to the number density of long-lived X^-, particles (\tau>10^5 s) relative to entropy of n_{X^-}/s < 3\times 10^{-17}, which is one of the most stringent probes of electroweak scale remnants known to date.
Links to: arXiv, form interface, /find, astro-ph, /recent, /0707, /abs, help (Access key information)
We describe a new method to measure the escape fraction fesc of ionizing radiation from distant star-forming galaxies using the afterglow spectra of long-duration gamma-ray bursts (GRBs). Optical spectra of GRB afterglows allow us to evaluate the optical depth of the host ISM, according to the neutral hydrogen column density N(HI) observed along the sightlines toward the star-forming regions where the GRBs are found. Different from previous effort in searching for faint, transmitted Lyman continuum photons, our method is not subject to background subtraction uncertainties and does not require prior knowledge of either the spectral shape of the host galaxy population or the IGM Lya forest absorption along these GRB sightlines. Because most GRBs occur in sub-L_* galaxies, our study also offers the first constraint on fesc for distant low-mass galaxies that dominate the cosmic luminosity density. We have compiled a sample of 27 GRBs at redshift z>2 for which the underlying N(HI) in the host ISM are known. These GRBs together offer a statistical sampling of the integrated optical depth to ionizing photons along random sightlines from star-forming regions in the host galaxies, and allow us to estimate the mean escape fraction <fesc> averaged over different viewing angles. We find <fesc>=0.02\pm 0.02 and place a 95% c.l. upper limit <fesc> <= 0.075 for these hosts. We discuss possible biases of our approach and implications of the result. Finally, we propose to extend this technique for measuring <fesc> at z~0.2 using spectra of core-collapse supernovae.
Accretion rates onto AGN are likely to be extremely variable on short timescales; much shorter than the typical cooling time of X-ray emitting gas in elliptical galaxies and galaxy clusters. Using the Langevin approach it is shown that, for a simple feedback system, this can induce variability in the AGN power output that is of much larger amplitude, and persists for longer timescales, than the initial fluctuations. An implication of this is that rich galaxy clusters are expected to show the largest and longest-lived fluctuations. Stochastic variations in the accretion rate also mean that the AGN injects energy across a wide range of timescales. This allows the AGN to maintain a much closer balance with its surroundings than if it was periodically activated. The possible non-linear correlation between Bondi accretion rate and jet power, found by Allen et al 2006, can be explained if the instantaneous accretion rate, scaled by jet power, varies log-normally. This explanation also implies that the duty cycle of AGN activity increases with the radiative losses of the surroundings, in qualitative agreement with Best et al 2005.
Motivated by the discovery of extremely bright supernovae SNe1999as and 2006gy, we have investigated how much 56Ni mass can be synthesized in core-collapse massive supernovae (SNe). We calculate the evolution of several very massive stars with initial masses M <~ 100Msun from the main-sequence to the beginning of the Fe-core collapse and simulate their explosions and nucleosynthesis. In order to avoid complications associated with strong mass-loss, we only consider metal-poor stars with initial metallicity Z= Zsun/200. However, our results are applicable to higher metallicity models with similar C+O core masses. We find that the synthesized 56Ni mass increases with the increasing explosion energy and progenitor mass. For the explosion energy of E_51 = E/10^51 erg =30, for example, the 56Ni masses of M(56Ni) = 2.2, 2.3, 5.0, and 6.6 Msun can be produced for the progenitors with initial masses of 30, 50, 80 and 100 Msun (or C+O core masses M(CO) = 11.4, 19.3, 34.0 and 42.6 Msun), respectively. We find that producing M(56Ni) ~ 4Msun as seen in SN1999as is possible for M(CO) >~ 34Msun and E_51 >~ 20. Producing M(56Ni) ~ 13Msun as suggested for SN2006gy requires a too large explosion energy for M(CO) < ~ 43Msun, but it may be possible with a reasonable explosion energy if M(CO) >~ 60Msun.
We present optical photo-polarimetric observations with high temporal resolution of the blazar AO 0235+164. Our data, the first to test the photo-polarimetric behaviour of this object at very short time-scales, show significant micro-variability in total flux, colour index, linear polarization degree, and position angle. Strong inter-night variations are also detected for these parameters. Although no correlation between colour index and total flux was found, our data seem to support the general bluer-when-brighter trend already known for this object. The polarization degree, in turn, shows no correlation with total flux, but a clear trend in the sense that colour index is redder (the spectrum is softer) when the measured polarization is higher.
We consider the role of the galactic kinetic Sunyaev Zeldovich (SZ) effect as a CMB foreground. While the galactic thermal Sunyaev Zeldovich effect has previously been studied and discarded as a potential CMB foreground, we find that the kinetic SZ effect is dominant in the galactic case. We analyse the detectability of the kinetic SZ effect by means of an optimally matched filter technique applied to a simulation of an ideal observation. We obtain no detection, getting a S/N ratio of 0.1, thereby demonstrating that the kinetic SZ effect can also safely be ignored as a CMB foreground. However we provide maps of the expected signal for inclusion in future high precision data processing. Furthermore, we rule out the significant contamination of the polarised CMB signal by second scattering of galactic kinetic Sunyaev-Zeldovich photons, since we show that the scattering of the CMB quadrupole photons by galactic electrons is a stronger effect than the Sunyaev Zeldovich second scattering, and has already been shown to produce no significant polarised contamination. We confirm the latter assessment also by means of an optimally matched filter.
We have obtained photometry in B and R for seven confirmed or probable polar-ring galaxies from the Polar-Ring Catalog of Whitmore et al. (1990). The rings show a range of colors from B-R \approx 0.6 to B-R \approx 1.7. The bluest rings have bright HII regions, which are direct evidence for recent star formation. The minimum age of the reddest ring, that in PRC B-20, is somewhat uncertain because of a lack of knowledge of the internal reddening and metallicity, but appears to be at least 1.2 Gyr. As such, this ring is likely to be stable for at least several rotation periods. This ring is an excellent candidate for future studies that might better determine if it is truly old.
Using archival International AGN Watch observations we find a correlation between the asymmetry of the H-beta line and the system luminosity: the line becomes bluer as the system gets brighter. We also find a differential lag between the red and blue wings of the line: the blue wing lags the red by ~4 days, suggesting an inflow component of the BLR.
We apply the Delaunay Tessellation Field Estimator (DTFE) to reconstruct and analyze the matter distribution and cosmic velocity flows in the Local Universe on the basis of the PSCz galaxy survey. The prime objective of this study is the production of optimal resolution three-dimensional maps fully volume-covering of the volume-weighted velocity and density fields throughout the nearby Universe, out to a distance of 150 Mpc/h. Based on the Voronoi and Delaunay tessellation defined by the spatial galaxy sample, DTFE involves the estimate of density values on the basis of the volume of the related Delaunay tetrahedra and the subsequent use of theDelaunay tessellation as natural multidimensional (linear) interpolation grid for the corresponding density and velocity fields throughout the sample volume. The linearized model of the spatial galaxy distribution and the corresponding peculiar velocities of the PSCz galaxy sample, produced by Brachini et al. (1999), forms the input sample for the DTFE study. The DTFE maps reproduce the high-density supercluster regions in optimal detail, both their internal structure as well as their elongated or flattened shape. The corresponding velocity flows trace the bulk and shear flows marking the region extending from the Pisces-Perseus supercluster, via the Local superclusters, towards the Hydra-Centaurus and the Shapley concentration. The most outstanding and unique feature of the DTFE maps is the sharply defined radial outflow regions in and around underdense voids, marking the dynamical importance of voids in the Local Universe. The maximum expansion rate of voids defines a sharp cutoff in the DTFE velocity divergence pdf. We found that on the basis of this cutoff DTFE manages to consistently reproduce the value of O_m ~ 0.35 underlying the linearized velocity dataset.
We review recent progress in high-resolution imaging of scattered light from disks around young stellar objects. Many new disks have been discovered or imaged in scattered light, and improved instrumentation and observing techniques have led to better disk images at optical, near-infrared, and thermal-infrared wavelengths. Multi-wavelength datasets are particularly valuable, as dust particle properties have wavelength dependencies. Modeling the changes in scattered-light images with wavelength gives direct information on the dust properties. This has now been done for several different disks. The results indicate that modest grain growth has taken place in some of these systems. Scattered-light images also provide useful constraints on the disk structure, especially when combined with long-wavelength SEDs. There are tentative suggestions in some disks that the dust may have begun to settle. The next few years should see this work extended to many more disks; this will clarify our understanding of the evolution of protoplanetary dust and disks.
Context: In a recent work, we tried to obtain a calibration of the two
components of the pre-main sequence binary system RS Cha by means of
theoretical stellar models. We found that the only way to reproduce the
observational parameters of RS Cha with standard stellar models is to decrease
the initial abundances of carbon and nitrogen derived from the GN93 solar
mixture of heavy elements by a few tenths of dex.
Aims: In this work, we aim to reproduce the observational properties of the
RS Cha stars with stellar evolution models based on the new AGS05 solar mixture
recently derived from a three-dimensional solar model atmosphere. The AGS05
mixture is depleted in carbon, nitrogen and oxygen with respect to the GN93
mixture.
Methods: We calculated new stellar models of the RS Cha components using the
AGS05 mixture and appropriate opacity tables. We sought models that
simultaneously satisfy the observations of the two components (masses, radii,
luminosities, effective temperatures and metallicity).
Results: We find that it is possible to reproduce the observational data of
the RS Cha stars with AGS05 models based on standard input physics. From these
models, the initial helium content of the system is Y~0.255 and its age is
~9.13 +- 0.12 Myr.
We present chemical abundances in a sample of luminous cool stars located within 30 pc of the Galactic Center. Abundances of carbon, nitrogen, oxygen, calcium, and iron were derived from high-resolution infrared spectra in the H- and K-bands. The abundance results indicate that both [O/Fe] and [Ca/Fe] are enhanced respectively by averages of +0.2 and +0.3 dex, relative to either the Sun or the Milky Way disk at near solar Fe abundances. The Galactic Center stars show a nearly uniform and nearly solar iron abundance. The mean value of A(Fe) = 7.59 +- 0.06 agrees well with previous work. The total range in Fe abundance among Galactic Center stars, 0.16 dex, is significantly narrower than the iron abundance distributions found in the literature for the older bulge population. Our snapshot of the current-day Fe abundance within 30 pc of the Galactic Center samples stars with an age less than 1 Gyr; a larger sample in time (or space) may find a wider spread in abundances.
(Abridged)The X-ray measurements of the ICM metallicity are becoming more frequent due to the availability of powerful X-ray telescope with excellent spatial and spectral resolutions. The information which can be extracted from the measurements of the alpha-elements, like Oxygen, Magnesium and Silicon with respect to the Iron abundance is extremely important to better understand the stellar formation and its evolutionary history. In this paper we investigate possible source of bias connected to the plasma physics when recovering metal abundances from X-ray spectra. To do this we analyze 6 simulated galaxy clusters processed through the new version of our X-ray MAp Simulator, which allows to create mock XMM-Newton EPIC MOS1 and MOS2 observations. By comparing the spectroscopic results to the input values we find that: i) Fe is recovered with high accuracy for both hot (T>3 keV) and cold (T<2 keV) systems; at intermediate temperatures, however, we find a systematic overestimate which depends on the number counts; ii) O is well recovered in cold clusters, while in hot systems its measure may overestimate by a factor up to 2-3; iii) Being a weak line, the measurement of Mg is always difficult; despite of this, for cold systems (T<2 keV) we do not find any systematic behavior, while for very hot systems (T>5 keV) the spectroscopic measurement may be strongly overestimated up to a factor of 4; iv) Si is well recovered for all the clusters in our sample. We investigate in detail the nature of the systematic effects and biases found. We conclude that they are mainly connected with the multi-temperature nature of the projected observed spectra and to the intrinsic limitation of the XMM-Newton EPIC spectral resolution that does not always allow to disentangle among the emission lines produced by different elements.
We show that standard algorithms for anisotropic diffusion based on centered differencing (including the recent symmetric algorithm) do not preserve monotonicity. In the context of anisotropic thermal conduction, this can lead to the violation of the entropy constraints of the second law of thermodynamics, causing heat to flow from regions of lower temperature to higher temperature. In regions of large temperature variations, this can cause the temperature to become negative. Test cases to illustrate this for centered asymmetric and symmetric differencing are presented. Algorithms based on slope limiters, analogous to those used in second order schemes for hyperbolic equations, are proposed to fix these problems. While centered algorithms may be good for many cases, the main advantage of limited methods is that they are guaranteed to avoid negative temperature (which can cause numerical instabilities) in the presence of large temperature gradients. In particular, limited methods will be useful to simulate hot, dilute astrophysical plasmas where conduction is anisotropic and the temperature gradients are enormous, e.g., collisionless shocks and disk-corona interface.
We present an expanded sample of low-mass black holes (BHs) found in galactic nuclei. Using standard virial mass techniques to estimate BH masses, we select from the Fourth Data Release of the Sloan Digital Sky Survey all broad-line active galaxies with masses < 2 x 10^6 M_sun. BHs in this mass regime provide unique tests of the relationship between BHs and galaxies, since their late-type galaxy hosts do not necessarily contain classical bulges. Furthermore, they provide observational analogs of primordial seed BHs and are expected, when merging, to provide strong gravitational signals for future detectors such as LISA. From our preliminary sample of 19, we have increased the total sample by an order of magnitude to 174, as well as an additional 55 (less secure) candidates. The sample has a median BH mass of <M_BH> = 1.3 x 10^6 M_sun, and in general the objects are radiating at high fractions of their Eddington limits. We investigate the broad spectral properties of the sample; 55 are detected by \rosat, with soft X-ray luminosities in the range 10^40 to 7 x 10^43 ergs/sec. Much like the preliminary sample, these objects are predominantly radio-quiet (R = f_6cm/f_4400A < 10), but 11 objects are detected at 20 cm, with radio powers (10^21-10^23 W/Hz) that may arise from either star formation or nuclear activity; only 1% of the sample is radio-loud. We further confirm that, with <M_g>=-19.3 and <g-r> = 0.7 mag, the host galaxies are low-mass, late-type systems. At least 40% show disk-like morphologies, and the combination of host galaxy colors and higher-order Balmer absorption lines indicate intermediate-age stellar populations in a subset of the sample.
In the nonlinear regime of cosmic clustering, the mass density field of the cosmic baryon fluid is highly non-Gaussian. It shows different dynamical behavior from collisionless dark matter. Nevertheless, the evolved field of baryon fluid is scale-covariant in the range from the Jeans length to a few ten h^{-1} Mpc, in which the dynamical equations and initial perturbations are scale free. We show that in the scale-free range, the non-Gaussian features of the cosmic baryon fluid, governed by the Navier-Stokes equation in an expanding universe, can be well described by a log-Poisson hierarchical cascade. The log-Poisson scheme is a random multiplicative process (RMP), which causes non-Gaussianity and intermittency even when the original field is Gaussian. The log-Poisson RMP contains two dimensionless parameters: $\beta$ for the intermittency and $\gamma$ for the most singular structure. All the predictions given by the log-Poisson RMP model, including the hierarchical relation, the order dependence of the intermittent exponent, the moments, and the scale-scale correlation, are in good agreement with the results given by hydrodynamic simulations of the standard cold dark matter model. The intermittent parameter $\beta$ decreases slightly at low redshift and indicates that the density field of baryon fluid contains more singular structures at lower redshifts. The applicability of the model is addressed.
We report on Australia Telescope observations of the massive star forming region G305.2+0.2 at 1.2 cm. We detected emission in five molecules towards G305A, confirming its hot core nature. We determined a rotational temperature of 26 K for methanol. A non-LTE excitation calculation suggests a kinematic temperature of order 200 K. A time dependent chemical model is also used to model the gas phase chemistry of the hot core associated with G305A. A comparison with the observations suggest an age of between 2 x10^4 and 1.5 x10^5 years. We also report on a feature to the SE of G305A which may show weak Class I methanol maser emission in the line at 24.933 GHz. The more evolved source G305B does not show emission in any of the line tracers, but strong Class I methanol maser emission at 24.933 GHz is found 3\arcsec to the east. Radio continuum emission at 18.496 GHz is detected towards two \hii regions. The implications of the non-detection of radio continuum emission toward G305A and G305B are also discussed.
We study galaxy mergers using a high-resolution cosmological hydro/N-body simulation with star formation, and compare the measured merger timescales with theoretical predictions based on the Chandrasekhar formula. In contrast to Navarro et al., our numerical results indicate, that the commonly used equation for the merger timescale given by Lacey and Cole, systematically underestimates the merger timescales for minor mergers and overestimates those for major mergers. This behavior is partly explained by the poor performance of their expression for the Coulomb logarithm, \ln (m_pri/m_sat). The two alternative forms \ln (1+m_pri/m_sat) and 1/2\ln [1+(m_pri/m_sat)^2] for the Coulomb logarithm can account for the mass dependence of merger timescale successfully, but both of them underestimate the merger time scale by a factor 2. Since \ln (1+m_pri/m_sat) represents the mass dependence slightly better we adopt this expression for the Coulomb logarithm. Furthermore, we find that the dependence of the merger timescale on the circularity parameter \epsilon is much weaker than the widely adopted power-law \epsilon^{0.78}, whereas 0.94*{\epsilon}^{0.60}+0.60 provides a good match to the data. Based on these findings, we present an accurate and convenient fitting formula for the merger timescale of galaxies in cold dark matter models.
[Abridged] The magnetic and kinematic properties of the photospheric Evershed flow are relatively well known, but we are still far from a complete understanding of its nature. The evolution of the flow with time, which is mainly due to appearance of velocity packets called Evershed clouds (ECs), may provide information to further constrain its origin. Here we undertake a detailed analysis of the evolution of the Evershed flow by studying the properties of ECs. In this first paper we determine the sizes, proper motions, location in the penumbra, and frequency of appearance of ECs, as well as their typical Doppler velocities, linear and circular polarization signals, Stokes V area asymmetries, and continuum intensities. High-cadence, high-resolution, full vector spectropolarimetric measurements in visible and infrared lines are used to derive these parameters. We find that ECs appear in the mid penumbra and propage outward along filaments with large linear polarization signals and enhanced Evershed flows. The frequency of appearance of ECs varies between 15 and 40 minutes in different filaments. ECs exhibit the largest Doppler velocities and linear-to-circular polarization ratios of the whole penumbra. In addition, lines formed deeper in the atmosphere show larger Doppler velocities, much in the same way as the ''quiescent'' Evershed flow. According to our observations, ECs can be classified in two groups: type I ECs, which vanish in the outer penumbra, and type II ECs, which cross the outer penumbral boundary and enter the sunspot moat. Most of the observed ECs belong to type I. On average, type II ECs can be detected as velocity structures outside of the spot for only about 14 min. Their proper motions in the moat are significantly reduced with respect to the ones they had in the penumbra.
We present "On The Fly" maps of the CO(1-0) and CO(2-1) emission covering a 10' X 10' region of the NGC 6946. Using our CO maps and archival VLA HI observations we create a total gas surface density map, Sigma_gas, for NGC 6946. The predominantly molecular inner gas disk transitions smoothly into an atomic outer gas disk, with equivalent atomic and molecular gas surface densities at R = 3.5' (6 kpc). We estimate that the total H2 mass is 3 X 10^9 Mo, roughly 1/3 of the interstellar hydrogen gas mass, and about 2% of the dynamical mass of the galaxy at our assumed distance of 6 Mpc. The value of the CO(2-1)/CO(1-0) line ratio ranges from 0.35 to 2; 50% of the map is covered by very high ratio, >1, gas. The very high ratios are predominantly from interarm regions and appear to indicate the presence of wide-spread optically thin gas. Star formation tracers are better correlated with the total neutral gas disk than with the molecular gas by itself implying SFR is proportional to Sigma_gas. Using the 100 FIR and 21 cm continuum from NGC 6946 as star formation tracers, we arrive at a gas consumption timescale of 2.8 Gyr, which is relatively uniform across the disk. The high star formation rate at the nucleus appears to be due to a large accumulation of molecular gas rather than a large increase in the star formation efficiency. The mid-plane gas pressure in the outer (R > 10 kpc) HI arms of NGC 6946 is close to the value at the radial limit (10 kpc) of our observed CO disk. If the mid-plane gas pressure is a factor for the formation of molecular clouds, these outer HI gas arms should contain molecular gas which we do not see because they are beyond our detection limit.
The Southern part of the Pierre Auger Observatory is nearing completion, and has been in stable operation since January 2004 while it has grown in size. The large sample of data collected so far has led to a significant improvement in the measurement of the energy spectrum of UHE cosmic rays over that previously reported by the Pierre Auger Observatory, both in statistics and in systematic uncertainties. We summarize two measurements of the energy spectrum, one based on the high-statistics surface detector data, and the other of the hybrid data, where the precision of the fluorescence measurements is enhanced by additional information from the surface array. The complementarity of the two approaches is emphasized and results are compared. Possible astrophysical implications of our measurements, and in particular the presence of spectral features, are discussed.
The protostar B335 was observed in the 1.3 mm continuum and in the H2CO 312 - 211 line with an angular resolution of about 8 arcsec. The mass of the inner envelope detected by the dust continuum emission is about 0.02 Msun. The H2CO spectrum at the protostellar position shows a blue-skewed double peak profile, suggesting that the kinematics of the inner envelope is dominated by infall motion. When the blueshifted and the redshifted peaks were imaged separately, however, there is a small east-west displacement between the maximum positions. This displacement suggests that some part of the H2CO emission might come from the outflowing gas. A combined effect of the infalling envelope and the outflow on the radiative transfer is discussed. This effect can make the line profile asymmetry severer than what is expected from infall-only models.
We report the discovery of a quadruply imaged quasar, SDSSJ125107.57+293540.5, selected from the Sloan Digital Sky Survey. Follow-up imaging reveals that the system consists of four blue point-like components in a typical cusp lens geometry surrounding a central red galaxy. The source redshift is 0.802 and the lens redshift is 0.410. The maximum image separation between the lensed components is 1"79. While the image configuration is well reproduced by standard mass models with reasonable parameter values, the flux ratios predicted by these models differ from the observed ratios in all bands. This is suggestive of small-scale structures in this lens, although the definitive identification of the anomaly requires more accurate photometry and astrometry.
We present a UVES/VLT high resolution atlas of three L dwarfs and one T dwarf system, spectral classes at which most of the objects are brown dwarfs. Our atlas covers the optical region from H$\alpha$ up to the near infrared at 1 $\mu$m. We present spectral details of ultra-cool atmospheres at very high resolution ($R \sim 33 000$) and compare the spectra to model calculations. Our comparison shows that molecular features from VO and CaH, and atomic features from Cs and Rb are reasonably well fit by current models. On the other hand, features due to TiO, CrH, and water, and atomic Na and K reveal large discrepancies between model calculations and our observations.
We report the discovery and high-resolution, high S/N, spectroscopic analysis of the ultra-metal-poor red giant HE 0557-4840, which is the third most heavy-element deficient star currently known. Its atmospheric parameters are T_eff = 4900 K, log g = 2.2, and [Fe/H]= -4.75. This brings the number of stars with [Fe/H] < -4.0 to three, and the discovery of HE 0557-4840 suggests that the metallicity distribution function of the Galactic halo does not have a "gap" between [Fe/H] = -4.0, where several stars are known, and the two most metal-poor stars, at [Fe/H] ~ -5.3. HE 0557-4840 is carbon rich - [C/Fe] = +1.6 - a property shared by all three objects with [Fe/H] < -4.0, suggesting that the well-known increase of carbon relative to iron with decreasing [Fe/H] reaches its logical conclusion - ubiquitous carbon richness - at lowest abundance. We also present abundances (nine) and limits (nine) for a further 18 elements. For species having well-measured abundances or strong upper limits, HE 0557-4840 is "normal" in comparison with the bulk of the stellar population at [Fe/H] ~ -4.0 - with the possible exception of Co. We discuss the implications of these results for chemical enrichment at the earliest times, in the context of single ("mixing and fallback") and two-component enrichment models. While neither offers a clear solution, the latter appears closer to the mark. Further data are required to determine the oxygen abundance and improve that of Co, and hence more strongly constrain the origin of this object.
This study is devoted to the experimental analysis of the Strato-rotational Instability (SRI). This instability affects the classical cylindrical Couette flow when the fluid is stably stratified in the axial direction. In agreement with recent theoretical and numerical analyses, we describe for the first time in detail the destabilization of the stratified flow below the Rayleigh line (i.e. the stability threshold without stratification). We confirm that the unstable modes of the SRI are non axisymmetric, oscillatory, and take place as soon as the azimuthal linear velocity decreases along the radial direction. This new instability is relevant for accretion disks.
We set constraints on O(E/M) Lorentz Violation in QED in an effective field theory framework. A major consequence of such assumptions is the modification of the dispersion relations for electrons/positrons and photons, which in turn can affect the electromagnetic output of astrophysical objects. We compare the information provided by multiwavelength observations with a full and self-consistent computation of the broad-band spectrum of the Crab Nebula. We cast constraints of order 10^{-5} at 95% confidence level on the Lorentz Violation parameters.
Context: Our previous models of a giant planet migrating through an inner protoplanet/planetesimal disk find that the giant shepherds a portion of the material it encounters into interior orbits, whilst scattering the rest into external orbits. Scattering tends to dominate, leaving behind abundant material that can accrete into terrestrial planets. Aims: We add to the possible realism of our model by simulating type I migration forces which cause an inward drift, and strong eccentricity and inclination damping of protoplanetary bodies. This extra dissipation might be expected to enhance shepherding at the expense of scattering, possibly modifying our previous conclusions. Methods: We employ an N-body code that is linked to a viscous gas disk algorithm capable of simulating: gas accretion onto the central star; gap formation in the vicinity of the giant planet; type II migration of the giant planet; type I migration of protoplanets; and the effect of gas drag on planetesimals. We use the code to re-run three scenarios from a previous work where type I migration was not included. Results: The additional dissipation introduced by type I migration enhances the inward shepherding of material but does not severely reduce scattering. We find that > 50% of the solids disk material still survives the migration in scattered exterior orbits: most of it well placed to complete terrestrial planet formation at < 3 AU. The shepherded portion of the disk accretes into hot-Earths, which survive in interior orbits for the duration of our simulations. Conclusions: Water-rich terrestrial planets can form in the habitable zones of hot-Jupiter systems and hot-Earths and hot-Neptunes may also be present. These systems should be targets of future planet search missions.
Aims. Falomo et al. (2005) discovered a disk-like galaxy at ~ 1.2 arcsec from
the QSO Q0045-3337 by means of ESO VLT adaptive optics. They estimated a galaxy
Einstein radius (for a point mass) of comparable size, thus pointing up the
existence of a new, rare, spiral lens candidate, despite no evident image
splitting.
Here we discuss the possible lensing effect of the galaxy in some more
detail.
Methods. We performed two dimensional surface photometry on the VLT image of
the galaxy, confirming its spiral nature. We then verified if simple mass
models, partially constrained by observational data, require unrealistic
parameters to produce a still hidden second quasar image. We also evaluated the
respective viability of an instrumental or a lensing origin of the observed QSO
deformation.
Results. After galaxy model subtraction, we found a residual image, likely
not related to gravitational lensing. Existing data are not sufficient to
assess the presence of image splitting, nor to constrain the number of images
or discriminate between galaxy mass models.
Conclusion. Further observations are mandatory to progress in the study of
this remarkable system, that could shed more light on the lensing behaviour of
spiral galaxies.
We present the results of hydrodynamical simulations of low mass protoplanets embedded in circumbinary accretion disks. The aim is to examine the migration and long term orbital evolution of the protoplanets, in order to establish the stability properties of planets that form in circumbinary disks. Simulations were performed using a grid--based hydrodynamics code. First we present a set of calculations that study how a binary interacts with a circumbinary disk. We evolve the system for 10^5 binary orbits, which is the time needed for the system to reach a quasi-equilibrium state. From this time onward the apsidal lines of the disk and the binary are aligned, and the binary eccentricity remains essentially unchanged with a value of e_b ~ 0.08. Once this stationary state is obtained, we embed a low mass protoplanet in the disk and let it evolve under the action of the binary and disk forces. We consider protoplanets with masses of 5, 10 and 20 Earth masses. In each case, we find that inward migration of the protoplanet is stopped at the edge of the tidally truncated cavity formed by the binary. This effect is due to positve corotation torques, which can counterbalance the net negative Lindblad torques in disk regions where the surface density profile has a sufficiently large positive gradient. Halting of migration occurs in a region of long-term stability, suggesting that low mass circumbinary planets may be common, and that gas giant circumbinary planets should be able to form in circumbinary disks.
We report a probable gravitational lens J0316+4328, one of 19 candidate asymmetric double lenses (2 images at a high flux density ratio) from CLASS. Observations with the Very Large Array (VLA), MERLIN and the Very Long Baseline Array (VLBA) imply that J0316+4328 is a lens with high confidence. It has 2 images separated by 0.40", with 6 GHz flux densities of 62 mJy and 3.2 mJy. The flux density ratio of ~19 (constant over the frequency range 6-22 GHz) is the largest for any 2 image gravitational lens. High resolution optical imaging and deeper VLBI maps should confirm the lensing interpretation and provide inputs to detailed lens models. The unique configuration will give strong constraints on the lens galaxy's mass profile.
A spatially resolved analysis of the lobes of the radio galaxy Pictor A has been performed for the first time starting from a 50 ksec XMM-Newton observation. Magnetic field, B_{IC}, particle density, particle to magnetic field energy density ratios have been measured. Our study shows that B_{IC} varies through the lobes. On the contrary, a rather uniform distribution of the particles is observed. In both the lobes, the equipartition magnetic field, B_{eq}, is bigger than the Inverse Compton value, B_{IC}, calculated from the radio to X-ray flux ratio.
It is well known that the bright and remote Galactic globular cluster NGC2419 has a very peculiar structure. In particular its half-light radius is significantly larger than that of ordinary globular clusters of similar luminosity, being as large as that of the brightest nuclei of dwarf elliptical galaxies. In this context it is particularly worth to check the reliability of the existing surface brightness profiles for this cluster and of the available estimates of its structural parameters. Combining different datasets I derive the surface brightness profile going from the cluster center out to ~ 480 arcsec, i.e. ~25 core radii. (Abridged). The newly obtained surface brightness profile is in excellent agreement with that provided by Trager, King & Djorgovski for r>= 4 arcsec; it is best fitted by a King model having r_c=0.32 arcmin, mu_V(0)=19.55 and C=1.35. Also new independent estimates of the total integrated V magnitude (V_t=10.47 +/- 0.07) and of the half-light radius (r_h=0.96 arcmin +/- 0.2 arcmin) have been obtained. (Abridged). The structure of NGC2419 is now reliably constrained by (at least) two fully independent observational profiles that are in good agreement one with the other. Also the overall agreement between structural parameters independently obtained by different authors is quite satisfying.
Several experiments in the near future will test dark energy through its effects on the linear growth of matter perturbations. It is therefore important to find simple and at the same time general parametrizations of the linear growth rate. We show that a simple fitting formula that generalizes previous expressions reproduces the growth function in models that allow for a growth faster than standard, as for instance in scalar-tensor models. We use data from galaxy and Lyman-$\alpha$ power spectra to constrain the linear growth rate. We find $\gamma=0.6_{-0.3}^{+0.4}$ for the growth rate index and $\eta=0.0_{-0.2}^{+0.3}$ for the additional growth parameter we introduce.
The Hall effect arises in a plasma when electrons are able to drift with the
magnetic field but ions cannot. In a fully-ionized plasma this occurs for
frequencies between the ion and electron cyclotron frequencies because of the
larger ion inertia. Typically this frequency range lies well above the
frequencies of interest (such as the dynamical frequency of the system under
consideration) and can be ignored. In a weakly-ionized medium, however, the
Hall effect arises through a different mechanism -- neutral collisions
preferentially decouple ions from the magnetic field. This typically occurs at
much lower frequencies and the Hall effect may play an important role in the
dynamics of weakly-ionised systems such as the Earth's ionosphere and
protoplanetary discs.
To clarify the relationship between these mechanisms we develop an
approximate single-fluid description of a partially ionized plasma that becomes
exact in the fully-ionized and weakly-ionized limits. Our treatment includes
the effects of ohmic, ambipolar, and Hall diffusion. We show that the Hall
effect is relevant to the dynamics of a partially ionized medium when the
dynamical frequency exceeds the ratio of ion to bulk mass density times the
ion-cyclotron frequency, i.e. the Hall frequency. The corresponding length
scale is inversely proportional to the ion to bulk mass density ratio as well
as to the ion-Hall beta parameter.
In this work we present a study of the strong optical collisional emission lines of Ne and Ar in an heterogeneous sample of ionized gaseous nebulae for which it is possible to derive directly the electron temperature and hence the chemical abundances of neon and argon. We calculate using a grid of photoionization models new ionization correction factors for these two elements and we study the behaviour of Ne/O and Ar/O abundance ratios with metallicity. We find a constant value for Ne/O, while there seems to be some evidence for the existence of negative radial gradients of Ar/O over the disks of some nearby spirals. We study the relation between the intensities of the emission lines of [NeIII] at 3869 \AA and [OIII] at 4959 \AA and 5007 \AA. This relation can be used in empirical calibrations and diagnostic ratios extending their applicability to bluer wavelengths and therefore to samples of objects at higher redshifts. Finally, we propose a new diagnostic using [OII], [NeIII] and Hdelta emission lines to derive metallicities for galaxies at high z.
We computed flat rotation curves from scalar-tensor theories in their weak field limit. Our model, by construction, fits a flat rotation profile for velocities of stars. As a result, the form of the scalar field potential and DM distribution in a galaxy are determined. By taking into account the constraints for the fundamental parameters of the theory $(\lambda, \alpha)$, it is possible to obtain analytical results for the density profiles. For positive and negative values of $\alpha$, the DM matter profile is as cuspy as NFW's.
This paper presents the results of a study of X-ray spectral and flux variability on time scales from months to years, of the 123 brightest objects (including 46 type-1 AGN and 28 type-2 AGN) detected with XMM-Newton in the Lockman Hole field. We detected flux variability with a significance >3sigma in ~50% of the objects, including 68+-11% and 48+-15% among our samples of type-1 and type-2 AGN. However we found that the fraction of sources with best quality light curves that exhibit flux variability on the time scales sampled by our data is >80%, i.e the great majority of the AGN population may actually vary in flux on long time scales. The mean relative intrinsic amplitude of flux variability was found to be ~0.15 although with a large dispersion in measured values, from ~0.1 to ~0.65. The flux variability properties of our samples of AGN do not significantly depend on the redshift or X-ray luminosity of the objects and seem to be similar for the two AGN types. Using a broad band X-ray colour we found that the fraction of sources showing spectral variability with a significance >3sigma is ~40% i.e. less common than flux variability. Spectral variability was found to be more common in type-2 AGN than in type-1 AGN with a significance >99%. This result is consistent with the fact that part of the soft emission in type-2 AGN comes from scattered radiation, and this component is expected to be much less variable than the hard component. The observed flux and spectral variability properties of our objects cannot be explained as being produced by variability of one spectral component alone, for example changes in the continuum shape associated with changes in the mass accretion rate, or variability in the amount of X-ray absorption. At least two spectral components must vary in order to explain the X-ray variability of our objects.
Axion-Like Particles (ALPs) are predicted by many extensions of the Standard Model and give rise to characteristic dimming and polarization effects in a light beam travelling in a magnetic field. We show that photon-ALP oscillations in extragalactic magnetic fields can lead to the detection of ALPs in gamma-ray astronomy. More specifically, we demonstrate that photon-ALP mixing produces an observable distortion in the energy spectra of gamma-ray sources at cosmological distances for a wide range of experimentally allowed values of the ALP mass and its two-photon coupling. This effect is expected to be detectable with Imaging Atmospheric Cherenkov Telescopes like H.E.S.S., MAGIC, CANGAROO III and VERITAS, as well as with the gamma-ray satellites AGILE and GLAST.
An accurate method to measure the abundance of high-redshift galaxies consists in the observation of absorbers along the line of sight toward a background quasar. Here, we present abundance measurements of 13 z>3 sub-Damped Lyman-alpha Systems (quasar absorbers with HI column density 19 < log N(HI) < 20.3 cm^-2) based on the high resolution observations with VLT UVES spectrograph. These observations more than double the metallicity information for sub-DLAs previously available at z>3. This new data, combined with other sub-DLA measurements from the literature, confirm the stronger metallicity redshift evolution than for the classical Damped Lyman-alpha absorbers. Besides, these observations are used to compute for the first time the fraction of gas ionised from photo-ionisation modelling in a sample of sub-DLAs. Based on these results, we calculate that sub-DLAs contribute no more than 6% of the expected amount of metals at z~2.5. We therefore conclude that even if sub-DLAs are found to be more metal-rich than classical DLAs, they are insufficient to close the so-called ``missing metals problem''.
We present the first 3D hydrodynamical simulations of ram pressure stripping of a disc galaxy orbiting in a galaxy cluster. Along the orbit, the ram pressure that this galaxy experiences varies with time. In this paper, we focus on the evolution of the radius and mass of the remaining gas disc and compare it with the classical analytical estimate proposed by Gunn & Gott 1972. We find that this simple estimate works well in predicting the evolution of the radius of the remaining gas disc. Only if the ram pressure increases faster than the stripping timescale, the disc radius remains larger than predicted. However, orbits with such short ram pressure peaks are unlikely to occur in other than compact clusters. Unlike the radius evolution, the mass loss history for the galaxy is not accurately described by the analytical estimate. Generally, in the simulations the galaxy loses its gas more slowly than predicted.
Half of the Seyfert-2 galaxies escaped detection of broad lines in their polarised spectra observed so far. Some authors have suspected that these non-HBLRs contain real Sy2 nuclei without intrinsic broad line region hidden behind a dust torus. If this were true, then their nuclear structure would fundamentally differ from that of Sy2s with polarised broad lines: in particular, they would not be explained by orientation-based AGN unification. Further arguments for two physically different Sy2 populations have been derived from the warm and cool IRAS F25/F60 ratios. These ratios, however, refer to the entire host galaxies and are unsuitable to conclusively establish the absence of a nuclear dust torus. Instead, a study of the Seyfert-2 dichotomy should be performed on the basis of nuclear properties only. Here we present the first comparison between [OIII] 5007A and mid-infrared imaging at matching spatial resolution. Exploring the Seyfert-2 dichotomy we find that the distributions of nuclear mid-infrared/[OIII] luminosity ratios are indistinguishable for Sy1s and Sy2s with and without detected polarised broad lines and irrespective of having warm or cool IRAS F25/F60 ratios. We find no evidence for the existence of a population of real Sy2s with a deficit of nuclear dust emission. Our results suggest 1) that all Seyfert nuclei possess the same physical structure including the putative dust torus and 2) that the cool IRAS colours are caused by a low contrast of AGN to host galaxy. Then the Seyfert-2 dichotomy is explained in part by unification of non-HBLRs with narrow-line Sy1s and to a larger rate by observational biases caused by a low AGN/host contrast and/or an unfavourable scattering geometry.
High-cadence, synchronized, multiwavelength optical observations of a solar active region (NOAA 10794) are presented. The data were obtained with the Dunn Solar Telescope at the National Solar Observatory/Sacramento Peak using a newly developed camera system : the Rapid Dual Imager. Wavelet analysis is undertaken to search for intensity related oscillatory signatures, and periodicities ranging from 20 to 370 s are found with significance levels exceeding 95%. Observations in the H-alpha blue wing show more penumbral oscillatory phenomena when compared to simultaneous G-band observations. The H-alpha oscillations are interpreted as the signatures of plasma motions with a mean velocity of 20 km/s. The strong oscillatory power over H-alpha blue-wing and G-band penumbral bright grains is an indication of the Evershed flow with frequencies higher than previously reported.
Perturbations in the ionization fraction after recombination affect the Compton cooling of density perturbations. Once the gas temperature starts to decouple from the CMB temperature, ionization fraction perturbations can have a significant influence on the subsequent gas temperature perturbation evolution. This directly affects the 21cm spin temperature of the gas, and also modifies the small-scale baryon perturbation evolution via the difference in baryon pressure. The effect on the gas temperature perturbations can be significant on all scales, and galactic-scale baryon perturbations are modified at the percent level at redshifts z >~ 100 where numerical simulations are typically started.
The probability of a star hosting a planet that is detectable in radial velocity surveys increases Ppl(Z) oc 10^2Z, where Z is metallicity. Core accretion models reproduce this trend, since the protoplanetary disk of a high metallicity star has a high density of solids and so forms cores which accrete gas before the primordial gas disk dissipates. This paper considers the origin of the form of Ppl(Z). We introduce a simple model in which detectable planets form when the mass of solids in the protoplanetary disk, Ms, exceeds a critical value. In this model the form of Ppl(Z) is a direct reflection of the distribution of protoplanetary disk masses, Mg, and the observed Ppl(Z) is reproduced if P(Mg>Mg') oc 1/Mg'^2. We argue that a protoplanetary disk's sub-mm dust mass is a pristine indicator of the mass available for planet-building and find the observed sub-mm disk mass distribution is consistent with the observed Ppl(Z) if Ms>0.5M_J is required to form detectable planets. Any planet formation model which imposes a critical solid mass for planet formation would reproduce the observed Ppl(Z), and core accretion models are empirically consistent with a threshold criterion. We identify 7 protoplanetary disks which, by rigid application of this criterion, would be expected to form detectable planets. A testable prediction is that Ppl(Z) should flatten both for Z>0.5dex and as more distant and lower mass planets are discovered. Further, combining this model with one in which the evolution of a star's debris disk is also influenced by the solid mass in its protoplanetary disk, results in the prediction that debris disks detected around stars with planets should be more infrared luminous than those around stars without planets in tentative agreement with recent observations.
We have observed 1ES 1426+428 with INTEGRAL detecting it up to $\sim$150 keV. The spectrum is hard, confirming that this source is an extreme BL Lac object, with a synchrotron component peaking, in a $\nu F_\nu$ plot, at or above 100 keV, resembling the hard states of Mkn 501 and 1ES 2344+514. All these three sources are TeV emitters, with 1ES 1426+428 lying at a larger redshift (z=0.129): for this source the absorption of high energy photons by the IR cosmic background is particularly relevant. The observed hard synchrotron tail helps the modeling of its spectral energy distribution, giving information on the expected intrinsic shape and flux in the TeV band. This in turn constrains the amount of the poorly known IR background.
The properties and composition of the outer crust of nonaccreting cold neutron stars are studied by applying the model of Baym, Pethick, and Sutherland, which was extended by including higher order corrections of the atomic binding, screening, exchange and zero-point energy. The most recent experimental nuclear data from the atomic mass table of Audi, Wapstra, and Thibault from 2003 is used. Extrapolation to the drip line is utilized by various state-of-the-art theoretical nuclear models (finite range droplet, relativistic nuclear field and non-relativistic Skyrme Hartree-Fock parameterizations). The different nuclear models are compared with respect to the mass and radius of the outer crust for different neutron star configurations and the nuclear compositions of the outer crust.
Although still poorly understood, the chemistry that occurs on the surfaces of interstellar dust particles profoundly affects the growth of molecules in the interstellar medium. An important set of surface reactions produces icy mantles of many monolayers in cold and dense regions. The monolayers are dominated by water ice, but also contain CO, CO_{2}, and occasionally methanol as well as minor constituents. In this paper, the rate of production of water-ice dominated mantles is calculated for different physical conditions of interstellar clouds and for the first time images of the morphology of interstellar ices are presented. For this purpose, the continuous-time random-walk Monte Carlo simulation technique has been used. The visual extinction, density, and gas and grain temperatures are varied. It is shown that our stochastic approach can reproduce the important observation that ice mantles only grow in the denser regions.
We characterize the binary population in the young and nearby OB association Scorpius OB2 using available observations of visual, spectroscopic, and astrometric binaries with intermediate-mass primaries. We take into account observational biases by comparing the observations with simulated observations of model associations. The available data indicate a large binary fraction (> 70% with 3sigma confidence), with a large probability that all intermediate mass stars in Sco OB2 are part of a binary system. The binary systems have a mass ratio distribution of the form f(q) ~ q^-0.4. Sco OB2 has a semi-major axis distribution of the form f(log a) ~ constant (Opik's law), in the range 5-5e6 Rsun. The log-normal period distribution of Duquennoy & Mayor results in too few spectroscopic binaries, even if the model binary fraction is 100%. Sco OB2 is a young association with a low stellar density; its current population is expected to be very similar to the primordial population. The fact that practically all stars in Sco OB2 are part of a binary (or multiple) system demonstrates that multiplicity is a fundamental factor in the star formation process, at least for intermediate mass stars.
We describe the results of a 2003 Chandra ACIS-I observation of SN1978K. The spectrum shows little flux below 0.6 keV, in contrast to the 2002 ACIS-S observation that showed flux to 0.4 keV. Fitting the ACIS-I spectrum alone leads to two solutions depending upon the value of the column density. A joint fit using a dual thermal plasma model applied to the ACIS-I and a contemporaneous XMM spectrum, which if fit alone also leads to a two-column solution, yields a single column density fit. The fitted temperature of the joint fit for the soft component remains constant with the errors from previous Chandra, XMM, and ASCA data. The hard temperature recovers from its 2000-2002 decline and corresponds to an increase in the column density during that time. The hard (2-10 keV) light curve is confirmed to be declining. The derived number density represents a lower limit of 1e5 depending upon the adopted filling factor of the emitting volume, leading to an estimated mass cooling rate of 0.1-0.15 solar masses per year.
The measurement of Doppler velocity shifts in spectra is a ubiquitous theme in astronomy, usually handled by computing the cross-correlation of the signals, and finding the location of its maximum. This paper addresses the problem of the determination of wavelength or velocity shifts among multiple spectra of the same, or very similar, objects. We implement the classical cross-correlation method and experiment with several simple models to determine the location of the maximum of the cross-correlation function. We propose a new technique, 'self-improvement', to refine the derived solutions by requiring that the relative velocity for any given pair of spectra is consistent with all others. By exploiting all available information, spectroscopic surveys involving large numbers of similar objects may improve their precision significantly. As an example, we simulate the analysis of a survey of G-type stars with the SDSS instrumentation. Applying 'self-improvement' refines relative radial velocities by more than 50% at low signal-to-noise ratio. The concept is equally applicable to the problem of combining a series of spectroscopic observations of the same object, each with a different Doppler velocity or instrument-related offset, into a single spectrum with an enhanced signal-to-noise ratio.
We survey the kinematics of over one hundred and fifty candidate (and potentially star-forming) dense cores in the Perseus molecular cloud with pointed N2H+(1-0) and simultaneous C18O(2-1) observations. Our detection rate of N2H+ is 62%, rising to 84% for JCMT SCUBA-selected targets. In agreement with previous observations, we find that the dense N2H+ targets tend to display nearly thermal linewidths, particularly those which appear to be starless (using Spitzer data), indicating turbulent support on the small scales of molecular clouds is minimal. For those N2H+ targets which have an associated SCUBA dense core, we find their internal motions are more than sufficient to provide support against the gravitational force on the cores. Comparison of the N2H+ integrated intensity and SCUBA flux reveals fractional N2H+ abundances between 10^-10 and 10^-9. We demonstrate that the relative motion of the dense N2H+ gas and the surrounding C18O gas is less than the sound speed in the vast majority of cases (~90%). The point-to-point motions we observe within larger extinction regions appear to be insufficient to provide support against gravity, although we sparsely sample these regions.
We report on neon abundances derived from {\it Spitzer} high resolution spectral data of eight Wolf-Rayet (WR) stars using the forbidden line of [\ion{Ne}{3}] 15.56 microns. Our targets include four WN stars of subtypes 4--7, and four WC stars of subtypes 4--7. We derive ion fraction abundances $\gamma$ of Ne^{2+} for the winds of each star. The ion fraction abundance is a product of the ionization fraction $Q_{\rm i}$ in stage i and the abundance by number ${\cal A}_E$ of element E relative to all nuclei. Values generally consistent with solar are obtained for the WN stars, and values in excess of solar are obtained for the WC stars.
The observed parameters of the young superstar cluster M82-A1 and its associated compact HII region are here shown to indicate a low heating efficiency or immediate loss, through radiative cooling, of a large fraction of the energy inserted by stellar winds and supernovae during the early evolution of the cluster. This implies a bimodal hydrodynamic solution which leads to a reduced mass deposition rate into the ISM, with a much reduced outflow velocity. Furthermore, to match the observed parameters of the HII region associated to M82-A1, the resultant star cluster wind is here shown to ought to be confined by a high pressure interstellar medium. The cluster wind parameters, as well as the location of the reverse shock, its cooling length and the radius of the standing outer HII region are derived analytically. All of these properties are then confirmed with a semi-analytical integration of the flow equations, which provides us also with the run of the hydrodynamic variables as a function of radius. The impact of the results is discussed and extended to other massive and young superstar clusters surrounded by a compact HII region.
We report the results of infrared (8 micron) transit and secondary eclipse photometry of the hot Neptune exoplanet, GJ436b using Spitzer. The nearly photon-limited precision of these data allow us to measure an improved radius for the planet, and to detect the secondary eclipse. The transit (centered at HJD = 2454280.78149 +/-0.00016) shows the flat-bottomed shape typical of infrared transits, and it precisely defines the planet-to-star radius ratio (0.0839 +/-0.0005), independent of the stellar properties. However, we obtain the planetary radius, as well as the stellar mass and radius, by fitting to the transit curve simultaneously with an empirical mass-radius relation for M-dwarfs (M=R). We find Rs=Ms=0.47 +/-0.02 in solar units, and Rp=27,600 +/-1170 km (4.33 +/-0.18 Earth radii). This radius significantly exceeds the radius of a naked ocean planet, and requires a gasesous hydrogen-helium envelope. The secondary eclipse occurs at phase 0.587 +/-0.005, proving a significant orbital eccentricity (e=0.15 +/-0.012). The amplitude of the eclipse (5.7 +/-0.8e-4) indicates a brightness temperature for the planet of T=712 +/-36K. If this is indicative of the planet's physical temperature, it suggests the occurrence of tidal heating in the planet. An uncharacterized second planet likely provides ongoing gravitational perturbations, to maintain GJ436b's orbit eccentricity over long time scales.
We examined the morphology-density relations for galaxy samples selected by luminosity and by mass in each of five massive X-ray clusters from z=0.023 to z=0.83 for 674 spectroscopically-confirmed members. Rest-frame optical colors and visual morphologies were obtained primarily from Hubble Space Telescope images. The visual morphologies ensure consistency with the extensive published results on galaxy evolution in dense environments. Morphology-density relations (MDR) are derived in each cluster from a complete, luminosity-selected sample of 452 galaxies with a magnitude limit M_V < M^{*}_{V} + 1. The change in the early-type fraction with redshift matches previous work for massive clusters of galaxies. We performed a similar analysis, deriving MDRs for complete, mass-selected samples of 441 galaxies with a mass-limit of 10^{10.6} M_{\sun}. Our mass limit includes faint objects, the equivalent of =~1 mag below M^{*} for the red cluster galaxies, and encompasses =~70% of the stellar mass in cluster galaxies. The MDRs in the mass-selected sample at densities of \Sigma > 50 gal Mpc^{-2} are similar to the luminosity-selected sample but show larger early-type fractions, with a weak indication of a shallower slope. However, the trend with redshift in the fraction of elliptical and S0's with masses > 10^{10.6} M_{\sun} differs significantly between the mass- and luminosity-selected samples. The early-type galaxy fraction changes much less for mass-selected samples, and is consistent with being constant at 92 +/- 4% at \Sigma> 500 gal Mpc^{-2} and 83 +/- 3% at 50 < \Sigma < 500 gal Mpc^{-2}. This suggests that galaxies of mass lower than > 10^{10.6} M_{\sun} play a significant role in the evolution of the early-type fraction in luminosity-selected samples. (Abstract abridged)
We review the literature concerning how the cosmic magnetic fields pervading nearly all galaxies actually got started. some observational evidence involves the chemical abundance of the light elements Be and B, while another one is based on strong magnetic fields seen in high red shift galaxies. Seed fields, whose strength is of order 10^{-20} gauss, easily sprung up in the era preceding galaxy formation. Several mechanisms are proposed to amplify these seed fields to microgauss strengths. The standard mechanism is the Alpha-Omega dynamo theory. It has a major difficulty that makes unlikely to provide the sole origin. The difficulty is rooted in the fact that the total flux is constant. This implies that flux must be removed from the galactic discs. This requires that the field and flux be separated, for otherwise interstellar mass must be removed from the deep galactic gravitational and then their strength increased by the alpha omega theory.
The Sloan Digital Sky Survey (SDSS) and photometric/spectroscopic surveys in the GOODS-South field (the Chandra Deep Field-South, CDFS) are used to construct volume-limited, stellar mass-selected samples of galaxies at redshifts 0<z<1. The CDFS sample at 0.6<z<1.0 contains 207 galaxies complete down to M=4x10^10 Msol (for a ``diet'' Salpeter IMF), corresponding to a luminosity limit for red galaxies of M_B=-20.1. The SDSS sample at 0.020<z<0.045 contains 2003 galaxies down to the same mass limit, which corresponds to M_B=-19.3 for red galaxies. Morphologies are determined with an automated method, using the Sersic parameter n and a measure of the residual from the model fits, called ``bumpiness'', to distinguish different morphologies. These classifications are verified with visual classifications. In agreement with previous studies, 65-70% of the galaxies are located on the red sequence, both at z~0.03 and at z~0.8. Similarly, 65-70% of the galaxies have n>2.5. The fraction of E+S0 galaxies is 43+/-3%$ at z~0.03 and 48+/-7% at z~0.8, i.e., it has not changed significantly since z~0.8. When combined with recent results for cluster galaxies in the same redshift range, we find that the morphology-density relation for galaxies more massive than 0.5M* has remained constant since at least z~0.8. This implies that galaxies evolve in mass, morphology and density such that the morphology-density relation does not change. In particular, the decline of star formation activity and the accompanying increase in the stellar mass density of red galaxies since z~1 must happen without large changes in the early-type galaxy fraction in a given environment.
Moduli space dynamics of multi-D-vortices from D2${\bar {\rm D}}$2 (equivalently, parallel straight D-strings from D3${\bar {\rm D}}$3) is systematically studied. For the BPS D-vortices, we show through exact calculations that the motion of randomly-distributed n D-vortices is governed by a relativistic Lagrangian of free massive point-particles. The head-on collision of two identical D-vortices reproduces 90-degree scattering. It is also shown that the force between two non-BPS vortices is repulsive. Since the obtained moduli space dynamics of multi-BPS-D-vortices is exact, direct applications to fast-moving cosmic superstrings are possible.
We study the cosmological evolution of extended branes in 6D warped flux compactification models. The branes are endowed with the three ordinary spatial dimensions, which are assumed to be homogeneous and isotropic, as well as an internal extra dimension compactified on a circle. We embed these codimension 1 branes in a static bulk 6D spacetime, whose geometry is a solution of 6D Einstein-Maxwell or Einstein-Maxwell-dilaton theories, corresponding to a warped flux compactification. The brane matter consists of a complex scalar field which is coupled to the bulk U(1) gauge field. In both models, we show that there is critical point which the brane cannot cross as it moves in the bulk. We study the cosmological behaviour, especially when the brane approaches this critical point or one of the two conical singularities.
We discuss recent laboratory experiments with rotating superconductors and show that three so far unexplained experimentally observed effects (anomalous acceleration signals, anomalous gyroscope signals, Cooper pair mass excess) can be physically explained in terms of a possible interaction of dark energy with Cooper pairs. Our approach is based on a Ginzburg-Landau-like model of electromagnetic dark energy, where gravitationally active photons obtain mass in the superconductor. We show that this model can account simultaneously for the anomalous acceleration and anomalous gravitomagnetic fields around rotating superconductors measured by Tajmar et al. and for the anomalous Cooper pair mass in superconductive Niobium, measured by Cabrera and Tate. It is argued that these three different physical effects are ultimately different experimental manifestations of the simultaneous spontaneous breaking of gauge invariance, and of the principle of general covariance in superconductive materials.
We report direct numerical simulations of dynamo generation for flow generated using a Taylor-Green forcing. We find that the bifurcation is subcritical, and show its bifurcation diagram. We connect the associated hysteretic behavior with hydrodynamics changes induced by the action of the Lorentz force. We show the geometry of the dynamo magnetic field and discuss how the dynamo transition can be induced when an external field is applied to the flow.
We match collapsing inhomogeneous as well as spatially homogeneous but anisotropic spacetimes to vacuum static exteriors with a negative cosmological constant and planar or hyperbolic symmetry. The collapsing interiors include the inhomogeneous solutions of Szekeres and of Barnes, which in turn include the Lemaitre-Tolman and the McVittie solutions. The collapse can result in toroidal or higher genus asymptotically AdS black holes.
In homogeneous and isotropic loop quantum cosmology, gravity can behave repulsively at Planckian energy densities leading to the replacement of the big bang singularity with a big bounce. Yet in any bouncing scenario it is important to include non-linear effects from anisotropies which typically grow during the collapsing phase. We investigate the dynamics of a Bianchi I anisotropic model within the framework of loop quantum cosmology. Using effective semi-classical equations of motion to study the dynamics, we show that the big bounce is still predicted with only differences in detail arising from the inclusion of anisotropies. We show that the anisotropic shear term grows during the collapsing phase, but remains finite through the bounce. Immediately following the bounce, the anisotropies decay and with the inclusion of matter with equation of state $w < +1$, the universe isotropizes in the expanding phase.
Binary black-hole systems with spins aligned with the orbital angular momentum are of special interest, as studies indicate that this configuration is preferred in nature. If the spins of the two bodies differ, there can be a prominent beaming of the gravitational radiation during the late plunge, causing a recoil of the final merged black hole. We perform an accurate and systematic study of recoil velocities from a sequence of equal-mass black holes whose spins are aligned with the orbital angular momentum, and whose individual spins range from a = +0.584 to -0.584. In this way we extend and refine the results of a previous study and arrive at a consistent maximum recoil of 448 +- 5 km/s for anti-aligned models as well as to a phenomenological expression for the recoil velocity as a function of spin ratio. This relation highlights a nonlinear behavior, not predicted by the PN estimates, and can be readily employed in astrophysical studies on the evolution of binary black holes in massive galaxies. An essential result of our analysis is the identification of different stages in the waveform, including a transient due to lack of an initial linear momentum in the initial data. Furthermore we are able to identify a pair of terms which are largely responsible for the kick, indicating that an accurate computation can be obtained from modes up to l=3. Finally, we provide accurate measures of the radiated energy and angular momentum, finding these to increase linearly with the spin ratio, and derive simple expressions for the final spin and the radiated angular momentum which can be easily implemented in N-body simulations of compact stellar systems. Our code is calibrated with strict convergence tests and we verify the correctness of our measurements by using multiple independent methods whenever possible.
Links to: arXiv, form interface, /find, astro-ph, /recent, /0707, /abs, help (Access key information)
We investigate the evolution of the faint-end slope of the luminosity function, $\alpha$, using semi-analytical modeling of galaxy formation. In agreement with observations, we find that the slope can be fitted well by $\alpha (z) =a+b z$, with a=-1.13 and b=-0.1. The main driver for the evolution in $\alpha$ is the evolution in the underlying dark matter mass function. Sub-L_* galaxies reside in dark matter halos that occupy a different part of the mass function. At high redshifts, this part of the mass function is steeper than at low redshifts and hence $\alpha$ is steeper. Supernova feedback in general causes the same relative flattening with respect to the dark matter mass function. The faint-end slope at low redshifts is dominated by field galaxies and at high redshifts by cluster galaxies. The evolution of $\alpha(z)$ in each of these environments is different, with field galaxies having a slope b=-0.14 and cluster galaxies b=-0.05. The transition from cluster-dominated to field-dominated faint-end slope occurs roughly at a redshift $z_* \sim 2$, and suggests that a single linear fit to the overall evolution of $\alpha(z)$ might not be appropriate. Furthermore, this result indicates that tidal disruption of dwarf galaxies in clusters cannot play a significant role in explaining the evolution of $\alpha(z)$ at z< z_*. In addition we find that different star formation efficiencies a_* in the Schmidt-Kennicutt-law and supernovae-feedback efficiencies $\epsilon$ generally do not strongly influence the evolution of $\alpha(z)$.
Type Ia supernovae are thought to be thermonuclear explosions of accreting white dwarfs that reach a critical mass limit. Despite their importance as cosmological distance indicators, the nature of their progenitors has remained controversial. Here we report the detection of circumstellar material in a normal Type Ia supernova. The expansion velocities, densities and dimensions of the circumstellar envelope indicate that this material was ejected from the progenitor system. The relatively low expansion velocities appear to favor a progenitor system where a white dwarf accretes material from a companion star which is in the red-giant phase at the time of explosion.
We present the results of a spectroscopic monitoring campaign of the OB-star companions to the eclipsing X-ray pulsars SMC X-1, LMC X-4 and Cen X-3. High-resolution optical spectra obtained with UVES on the ESO Very Large Telescope are used to determine the radial-velocity orbit of the OB (super)giants with high precision. The excellent quality of the spectra provides the opportunity to measure the radial-velocity curve based on individual lines, and to study the effect of possible distortions of the line profiles due to e.g. X-ray heating on the derived radial-velocity amplitude. Several spectral lines show intrinsic variations with orbital phase. The magnitude of these variations depends on line strength, and thus provides a criterion to select lines that do not suffer from distortions. The undistorted lines show a larger radial-velocity amplitude than the distorted lines, consistent with model predictions. Application of our line-selection criteria results in a mean radial-velocity amplitude K(Opt) of 20.2 +/- 1.1, 35.1 +/- 1.5, and 27.5 +/- 2.3 km/s (1 sigma errors), for the OB companion to SMC X-1, LMC X-4 and Cen X-3, respectively. Adding information on the projected rotational velocity of the OB companion (derived from our spectra), the duration of X-ray eclipse and orbital parameters of the X-ray pulsar (obtained from literature), we arrive at a neutron star mass of 1.06^{+0.11}_{-0.10}, 1.25^{+0.11}_{-0.10} and 1.34^{+0.16}_{-0.14} M{sun} for SMC X-1, LMC X-4 and Cen X-3, respectively. The mass of SMC X-1 is near the minimum mass (~1 M{sun}) expected for a neutron star produced in a supernova. We discuss the implications of the measured mass distribution on the neutron-star formation mechanism, in relation to the evolutionary history of the massive binaries.
We describe observations of aromatic features at 7.7 and 11.3 um in AGN of three types including PG, 2MASS and 3CR objects. The feature has been demonstrated to originate predominantly from star formation. Based on the aromatic-derived star forming luminosity, we find that the far-IR emission of AGN can be dominated by either star formation or nuclear emission; the average contribution from star formation is around 25% at 70 and 160 um. The star-forming infrared luminosity functions of the three types of AGN are flatter than that of field galaxies, implying nuclear activity and star formation tend to be enhanced together. The star-forming luminosity function is also a function of the strength of nuclear activity from normal galaxies to the bright quasars, with luminosity functions becoming flatter for more intense nuclear activity. Different types of AGN show different distributions in the level of star formation activity, with 2MASS> PG> 3CR star formation rates.
Aims: In this paper we study whether the shock-in-jet model, widely used to
explain the outbursting behaviour of quasars, can be used to explain the radio
flaring behaviour of the microquasar Cygnus X-3.
Method: We have used a method developed to model the synchrotron outbursts of
quasar jets, which decomposes multifrequency lightcurves into a series of
outbursts. The method is based on the Marscher & Gear (1985) shock model, but
we have implemented the modifications to the model suggested by Bjornsson &
Aslaksen (2000), which make the flux density increase in the initial phase less
abrupt. We study the average outburst evolution as well as specific
characteristics of individual outbursts and physical jet properties of Cyg X-3.
Results: We find that the lightcurves of the February-March 1994 and
September 2001 outbursts can be described with the modified shock model. The
average evolution shows that instead of the expected synchrotron plateau, the
flux density is still increasing during the synchrotron stage. We also find
that high frequency peaking outbursts are shorter in duration than the ones
peaking at lower frequencies. Finally, we show that the method can be used,
complementary to radio interferometric jet imaging, for deriving the physical
parameters such as the magnetic field strength and the energy density of
relativistic electrons in the jet of Cyg X-3.
Using the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE), we have observed the BL Lac objects 3C 66A and OJ 287. These are members of the class of low-frequency-peaked BL Lac objects (LBLs) and are two of the three LBLs predicted by Costamante and Ghisellini to be potential sources of very high energy (>100 GeV) gamma-ray emission. The third candidate, BL Lacertae, has recently been detected by the MAGIC collaboration. Our observations have not produced detections; we calculate a 99% CL upper limit of flux from 3C 66A of 0.15 Crab flux units and from OJ 287 our limit is 0.52 Crab. These limits assume a Crab-like energy spectrum with an effective energy threshold of 185 GeV.
We present submillimeter polarimetric observations of the Giant Molecular Cloud (GMC) NGC 6334, obtained using the Hertz instrument at the Caltech Submillimeter Observatory on Mauna Kea. We obtain constraints on GMC magnetic fields by interpreting these Hertz data together with (a) previously published larger-scale submillimeter polarization maps of the GMCs NGC 6334 and G333.6-0.2 obtained using the SPARO instrument at South Pole, and (b) simulated GMC polarization maps from published magnetohydrodynamic turbulence simulations. The agreement between observations and simulations is good only when the ratio R(F:U) of fluctuating to uniform field amplitudes lies in the range 0.6 < R(F:U) < 2.0, and when the ratio R(T:K) of total magnetic energy (including both uniform and fluctuating components) to turbulent kinetic energy lies in the range 0.9 < R(T:K) < 1.8. We also compare our results with those obtained by other investigators.
We study the ``normal'' decay phase of the X-ray afterglows of gamma-ray bursts (GRBs), which follows the shallow decay phase, using the events simultaneously observed in the R-band. The classical external shock model, in which neither the delayed energy injection nor time-dependency of shock micro-physics is considered, shows that the decay indices of the X-ray and R-band light curves, $\alpha_{\rm X}$ and $\alpha_{\rm O}$, obey a certain relation, and that in particular, $\alpha_{\rm O}-\alpha_{\rm X}$ should be larger than -1/4. For our selected 14 samples, we have found that 7 events violate the limit taking into account 1$\sigma$ error, so that a fraction of events are outliers of the classical external shock model at the ``normal'' decay phase.
We have surveyed the 30 Myr-old cluster NGC 2547 for planetary debris disks using Spitzer. At 4.5-8 um we are sensitive to the photospheric level down to mid-M stars (0.2 Msol) and at 24 um to early-G stars (1.2 Msol). We find only two to four stars with excesses at 8 um out of ~400-500 cluster members, resulting in an excess fraction <~1 percent at this wavelength. By contrast, the excess fraction at 24 um is ~40 percent (for B-F types). Out of four late-type stars with excesses at 8 um two marginal ones are consistent with asteroid-like debris disks. Among stars with strong 8 um excesses one is possibly from a transitional disk, while another one can be a result of a catastrophic collision. Our survey demonstrates that the inner 0.1-1 AU parts of disks around solar-type stars clear out very thoroughly by 30 Myrs of age. Comparing with the much slower decay of excesses at 24 and 70 um, disks clear from the inside out, of order 10 Myr for the inner zones probed at 8 um compared with a hundred or more Myr for those probed with the two longer wavelengths.
We present the results of a long-term HiRes spectroscopic campaign on the O-type stars in NGC 6231. We revise the spectral classification and multiplicity of these objects and we constrain fundamental properties of the O-star population. Almost three quarters of the O-type stars in the cluster are members of a binary system. The minimum binary fraction is 0.63, with half the O-type binaries having an orbital period of the order of a few days. The eccentricities of all the short-period binaries are revised downward, and now match a normal period-eccentricity distribution. The mass-ratio distribution shows a large preference for O+OB binaries, ruling out the possibility that, in NGC 6231, the companion of an O-type star is drawn from a Salpeter IMF. Obtained on a complete and homogeneous population of O-type stars, these constraints further provide strong observational guidelines for the formation and early-evolution of O stars.
We have derived the oxygen abundance for a sample of nearby galaxies in the Data Release 5 of the Sloan Digital Sky Survey (SDSS) which possess at least two independent spectra of one or several HII regions with a detected [OIII]4363 auroral line. Since, for nearby galaxies, the [OII]3727 nebular line is out of the observed wavelength range, we propose a method to derive (O/H)_ff abundances using the classic Te method coupled with the ff relation. (O/H)_7325 abundances have also been determined, based on the [OII]7320,7330 line intensities, and using a small modification of the standard Te method. The (O/H)_ff and (O/H)_7325 abundances have been derived with both the one- and two-dimensional t_2 - t_3 relations. It was found that the (O/H)_ff abundances derived with the parametric two-dimensional t_2 - t_3 relation are most reliable. Oxygen abundances have been determined in 29 nearby galaxies, based on 84 individual abundance determinations in HII regions. Because of our selection methods, the metallicity of our galaxies lies in the narrow range 8.2 < 12 + log (O/H) < 8.4. The radial distribution of oxygen abundances in the disk of the spiral galaxy NGC 4490 is determined for the first time.
We studied the thermal properties and chemical composition of the X-ray emitting plasma of a sample of bright members of the Taurus Molecular Cloud to investigate possible differences among classical and weak-lined T Tauri stars and possible dependences of the abundances on the stellar activity level and/or on the presence of accretion/circumstellar material. We used medium-resolution X-ray spectra obtained with the sensitive EPIC/PN camera in order to analyse the possible sample. The PN spectra of 20 bright (L_X ~ 10^30 - 10^31 erg/s) Taurus members, with at least ~ 4500 counts, were fitted using thermal models of optically thin plasma with two components and variable abundances of O, Ne, Mg, Si, S, Ar, Ca, and Fe. Extensive preliminary investigations were employed to study the performances of the PN detectors regarding abundance determinations, and finally to check the results of the fittings. We found that the observed X-ray emission of the studied stars can be attributed to coronal plasma having similar thermal properties and chemical composition both in the classical and in the weak-lined T Tauri stars. The results of the fittings did not show evidence for correlations of the abundance patterns with activity or accretion/disk presence. The iron abundance of these active stars is significantly lower than (~ 0.2 of) the solar photospheric value. An indication of slightly different coronal properties in stars with different spectral type is found from this study. G-type and early K-type stars have, on average, slightly higher Fe abundances (Fe ~ 0.24 solar) with respect to stars with later spectral type (Fe ~ 0.15 solar), confirming previous findings from high-resolution X-ray spectroscopy; stars of the former group are also found to have, on average, hotter coronae.
We present Chandra observations of a small sample of nearby classical double radio galaxies which have more than one radio hotspot in at least one of their lobes. The X-ray emission from the hotspots of these comparatively low-power objects is expected to be synchrotron in origin, and therefore to provide information about the locations of high-energy particle acceleration. In some models of the relationship between the jet and hotspot the hotspots that are not the current jet termination point should be detached from the energy supply from the active nucleus and therefore not capable of accelerating particles to high energies. We find that in fact some secondary hotspots are X-ray sources, and thus probably locations for high-energy particle acceleration after the initial jet termination shock. In detail, though, we show that the spatial structures seen in X-ray are not consistent with naive expectations from a simple shock model: the current locations of the acceleration of the highest-energy observable particles in powerful radio galaxies need not be coincident with the peaks of radio or even optical emission.
The spatial cosmic matter distribution on scales of a few up to more than a hundred Megaparsec displays a salient and pervasive foamlike pattern. Voronoi tessellations are a versatile and flexible mathematical model for such weblike spatial patterns. They would be the natural asymptotic result of an evolution in which low-density expanding void regions dictate the spatial organization of the Megaparsec Universe, while matter assembles in high-density filamentary and wall-like interstices between the voids. We describe the results of ongoing investigations of a variety of aspects of cosmologically relevant spatial distributions and statistics within the framework of Voronoi tessellations. Particularly enticing is the finding of a profound scaling of both clustering strength and clustering extent for the distribution of tessellation nodes, suggestive for the clustering properties of galaxy clusters. Cellular patterns may be the source of an intrinsic ``geometrically biased'' clustering.
We present multi-object spectroscopy of young, massive stars in the Local Group galaxy IC 1613. We provide the spectral classification and a detailed spectral catalog for 54 OBA stars in this galaxy. The majority of the photometrically selected sample is composed of B- and A-type supergiants. The remaining stars include early O-type dwarfs and the only Wolf-Rayet star known in this galaxy. Among the early B stars we have serendipitously uncovered 6 Be stars, the largest spectroscopically confirmed sample of this class of objects beyond the Magellanic Clouds. We measure chemical abundances for 9 early-B supergiants, and find a mean oxygen abundance of 12+log(O/H)=7.90 +/- 0.08. This value is consistent with the result we obtain for two HII regions in which we detect the temperature-sensitive [OIII]4363 auroral line.
We study non-linear structure formation in the presence of dark energy. The influence of dark energy on the growth of large-scale cosmological structures is exerted both through its background effect on the expansion rate, and through its perturbations as well. In order to compute the rate of formation of massive objects we employ the Spherical Collapse formalism, which we generalize to include fluids with pressure. We show that the resulting non-linear evolution equations are identical to the ones obtained in the Pseudo-Newtonian approach to cosmological perturbations, in the regime where an equation of state serves to describe both the background pressure relative to density, and the pressure perturbations relative to the density perturbations as well. We then consider a wide range of constant and time-dependent equations of state (including phantom models) parametrized in a standard way, and study their impact on the non-linear growth of structure. The main effect is the formation of dark energy structure associated with the dark matter halo: non-phantom equations of state induce the formation of a dark energy halo, damping the growth of structures; phantom models, on the other hand, generate dark energy voids, enhancing structure growth. Finally, we employ the Press-Schechter formalism to compute how dark energy affects the number of massive objects as a function of redshift.
Studying transversal structure in extragalactic jets is crucial for understanding their physics. The Japanese led space VLBI project VSOP has offered arguably the best opportunity for such studies, by reaching baseline lengths of up to 36,000 km and resolving structures down to an angular size of 0.3 mas at 5 GHz. VSOP observations of the jet in 0836+710 at 1.6 and 5 GHz have enabled tracing the radial structure of the flow on scales from 2 mas to 200 mas and determining the wavelengths of individual oscillatory modes responsible for the formation of the structure observed. We conclude that these modes are produced by Kelvin-Helmholtz instability in a sheared relativistic flow. Our results point towards the stratification of the jet and the growth of different modes at different jet radii. We also discuss the implications of the driving frequency on the physics of the active nucleus of the quasar.
In this paper we present a complete computation of the Cosmic Microwave Background (CMB) anisotropies up to third order from gravitational perturbations accounting for scalar, vector and tensor perturbations. We then specify our results to the large scale limit, providing the evolution of the gravitational potentials in a flat universe filled with matter and cosmological constant which characterizes the Integrated Sachs-Wolfe effect. As a byproduct in the large scale approximation we are able to give non-perturbative solutions for the photon geodesic equations. Our results are the first step to provide a complete theoretical prediction for cubic non-linearities which are particularly relevant for characterizing the level of non-Gaussianity in the CMB through the detection of the four-point angular connected correlation function (trispectrum). For this purpose we also allow for generic initial conditions due to primordial non-Gaussianity.
We use new interior models of cold planets to investigate the mass-radius
relationships of solid exoplanets, considering planets made primarily of iron,
silicates, water, and carbon compounds. We find that the mass-radius
relationships for cold terrestrial-mass planets of all compositions we
considered follow a generic functional form that is not a simple power law:
$\log_{10} R_s = k_1 + 1/3 \log_{10}(M_s) - k_2 M_s^{k_3}$ for up to $M_p
\approx 20 M_{\oplus}$, where $M_s$ and $R_s$ are scaled mass and radius
values. This functional form arises because the common building blocks of solid
planets all have equations of state that are well approximated by a modified
polytrope of the form $\rho = \rho_0 + c P^n$.
We find that highly detailed planet interior models, including temperature
structure and phase changes, are not necessary to derive solid exoplanet bulk
composition from mass and radius measurements. For solid exoplanets with no
substantial atmosphere we have also found that: with 5% fractional uncertainty
in planet mass and radius it is possible to distinguish among planets composed
predominantly of iron or silicates or water ice but not more detailed
compositions; with $\sim$~5% uncertainty water ice planets with $\gtrsim 25%$
water by mass may be identified; the minimum plausible planet size for a given
mass is that of a pure iron planet; and carbon planet mass-radius relationships
overlap with those of silicate and water planets due to similar zero-pressure
densities and equations of state. We propose a definition of "super Earths''
based on the clear distinction in radii between planets with significant gas
envelopes and those without.
We present the GALEX far FUV and near NUV ultraviolet imaging of three nearby shell galaxies, namely NGC 2865, NGC 5018 and NGC 7135. The system of shells and fine structures visible in the optical is detected in the NUV image of NGC 2865 and in both NUV and FUV images of NGC 7135. The NUV image of NGC 5018 does not present shell structures. We detect absorption features in the nuclear region of all three galaxies. NGC 2865 has a nearly flat colour profile with (FUV-NUV)~2 throughout the whole galaxy. NGC 7135 is blue in the center (FUV-NUV)~0 and as red as (FUV-NUV)~1.5 in the outskirts, including the faint shell-like feature. We investigate the ability of the nuclear GALEX (FUV-NUV) colour to provide information about rejuvenation phenomena in the stellar populations of the shell galaxies. To this aim, we derive from theory the relationship between the Mg2, Hbeta, HgammaA, HdeltaA Lick line-strength indices and the (FUV-NUV) colour. We extend the study to a sample of early-type galaxies with emission lines in their optical spectra (Annibali et al. 2007). In the index vs.(FUV-NUV) colour diagrams, most of the galaxies are well explained by passively evolving SSPs. On the average, ages and metallicities of the galaxies in our sample estimated from optical line-strength indices are consistent with those inferred from the (FUV-NUV) colour. In general, all the colours but for (FUV-NUV) and (FUV-V), become nearly age insensitive when 1-2 Gyr have elapsed from the last star forming event. Considering composite stellar population models with a recent burst of star formation, we suggest that the position of the NGC 7135 and NGC 2865 nuclei in the (FUV-NUV)-Hbeta plane could be explained in term of a recent rejuvenation episode. (Abridged)
We report the results of speckle-interferometric observations of 109 high proper-motion metal-poor stars made with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. We resolve eight objects -- G102-20, G191-55, BD+19$^\circ$~1185A, G89-14, G87-45, G87-47, G111-38, and G114-25 -- into individual components and we are the first to astrometrically resolve seven of these stars. New resolved systems included two triple (G111-38, G87-47) and one quadruple (G89-14) star. The ratio of single-to-binary-to-triple-to-quadruple systems among the stars of our sample is equal to 71:28:6:1.
While most sources above 10^5Lsun have already formed an Ultracompact HII region (UCHII), this is not necessarily the case for sources of lower luminosity. Characterizing sources in the transition phase, i.e., very luminous objects without any detectable free-free emission, is important for a general understanding of massive star formation. Therefore, we observed the luminous High-Mass Protostellar Object IRAS23151+5912 with the Submillimeter Array at 875mum in the submm continuum and spectral line emission at sub-arcsecond resolution. The 875mum submm continuum emission has been resolved into at least two condensations. The previously believed driving source of one of the outflows, the infrared source IRS1, is ~0.9'' offset from the main submm peak. Over the entire 4GHz bandwidth we detect an intermediate dense spectral line forest with 27 lines from 8 different species, isotopologues or vibrationally-torsionally excited states. Temperature estimates based on the CH3OH line series result in values of T(Peak1)~150+-50K and T(Peak2)~80~30K for the two submm peak positions, respectively. The SiO(8-7) red- and blue-shifted line maps indicate the presence of two molecular outflows. In contrast, the vibrationally-torsionally excited CH3OH line exhibits a velocity gradient approximately perpendicular to one of the outflows. With a size of approximately 5000AU and no Keplerian rotation signature, this structure does not resemble a genuine accretion disk but rather a larger-scale rotating toroid that may harbor a more common accretion disk at its so far unresolved center.
We analyze the line radiative transfer in protoplanetary disks using several approximate methods and a well-tested Accelerated Monte Carlo code. A low-mass flaring disk model with uniform as well as stratified molecular abundances is adopted. Radiative transfer in low and high rotational lines of CO, C18O, HCO+, DCO+, HCN, CS, and H2CO is simulated. The corresponding excitation temperatures, synthetic spectra, and channel maps are derived and compared to the results of the Monte Carlo calculations. A simple scheme that describes the conditions of the line excitation for a chosen molecular transition is elaborated. We find that the simple LTE approach can safely be applied for the low molecular transitions only, while it significantly overestimates the intensities of the upper lines. In contrast, the Full Escape Probability (FEP) approximation can safely be used for the upper transitions ($J_{\rm up} \ga 3$) but it is not appropriate for the lowest transitions because of the maser effect. In general, the molecular lines in protoplanetary disks are partly subthermally excited and require more sophisticated approximate line radiative transfer methods. We analyze a number of approximate methods, namely, LVG, VEP (Vertical Escape Probability) and VOR (Vertical One Ray) and discuss their algorithms in detail. In addition, two modifications to the canonical Monte Carlo algorithm that allow a significant speed up of the line radiative transfer modeling in rotating configurations by a factor of 10--50 are described.
The gamma-ray background is still a subject under great debate.
All phenomena in the universe emitting gamma-rays can contribute directly as
diffuse emission or as an isotropic component from unresolved point sources.
The question of the origin of the extragalactic component cannot be answered
without determining the galactic emission. To discuss in detail all models
resulting in gamma-ray background contributions is far beyond the scope of this
paper. Therefore the focus will be on recent publications on the extragalactic
high energy (>100 MeV) part of the gamma-ray background.
Aims: To investigate the spectra and the evolutionary stages of two peculiar emission-line stars: RJHA 49 and SS73 21. Methods: We used low and high resolution optical data. Line identifications and measurements were performed for several features in their spectra. Results: For each object, we have derived the extinction and the excitation temperature from a set of [Fe II] lines, and the electron density from [N II] lines. For RJHA 49, no detailed spectroscopic study was done so far. Regarding SS73 21, our low resolution spectrum have confirmed the main characteristics found in previous works. On the other side, from our high resolution data, we have found that the Halpha line presents a double-peak, in contrast with the suggestion in the literature that it should reveal a P-Cygni profile. Surprisingly, we found a few He I transitions resembling P-Cygni profiles (e.g. He I 5876), directly suggesting that mass loss is active in SS73 21. We also discussed the nature of these two objects based on the data obtained. Although the evolutionary status of SS73 21 seems well established from previous studies (a proto-planetary nebula), the situation for RJHA 49 is not so clear mainly due to its unknown distance. However, from the strength of [N II] 5754 relative to [O I] 6300, the possibility of RJHA 49 being a LBV object is reduced, and a B[e]-supergiant or a proto-planetary nebula status is more plausible.
We report on Swift observations of four z>2 radio-loud quasars (0212+735, 0537-286, 0836+710, and 2149-307), classified as blazars. The sources, well-known emitters at soft-medium X-rays, were detected at >5sigma with the BAT experiment in 15-150 keV. No flux variability was detected within the XRT and BAT exposures, with the exception of 0836+710 which shows an increase of a factor 4 of the 15-150 keV flux on a timescale of one month. The 0.3-10 keV spectra are well fitted by power law models, with rather hard continua (photon indices Gamma_XRT ~1.3-1.5); similarly, the 15-150 keV spectra are described by power laws with Gamma_BAT ~1.3-1.8. The XRT data exhibit spectral curvature, which can be modeled either in terms of excess absorption along the line of sight, or a downward-curved broken power law. In the former case, if the excess N_H is at the rest-frame of the source, columns of N_H^z=(0.3-6)x10^22 cm^-2 are measured. Modeling of the SEDs of the four quasars shows that the emission at the higher frequencies, >~ 10^16 Hz, is dominated by the jet, while the steep optical-to-UV continua, observed with the UVOT, can be attributed to thermal emission from the accretion disk. The disk luminosity is between 1% and 10% the jet power, similar to other powerful blazars.
More than half of stars reside in binary or multiple star systems and many planets have been found in binary systems. From theoretical point of view, however, whether or not the planetary formation proceeds in a binary system is a very complex problem, because secular perturbation from the companion star can easily stir up the eccentricity of the planetesimals and cause high-velocity, destructive collisions between planetesimals. Early stage of planetary formation process in binary systems has been studied by restricted three-body approach with gas drag and it is commonly accepted that accretion of planetesimals can proceed due to orbital phasing by gas drag. However, the gas drag becomes less effective as the planetesimals become massive. Therefore it is still uncertain whether the collision velocity remains small and planetary accretion can proceed, once the planetesimals become massive. We performed {\it N}-body simulations of planetary formation in binary systems starting from massive planetesimals whose size is about 100-500 km. We found that the eccentricity vectors of planetesimals quickly converge to the forced eccentricity due to the coupling of the perturbation of the companion and the mutual interaction of planetesimals if the initial disk model is sufficiently wide in radial distribution. This convergence decreases the collision velocity and as a result accretion can proceed much in the same way as in isolated systems. The basic processes of the planetary formation, such as runaway growth and oligarchic growth and final configuration of the protoplanets are essentially the same in binary systems and single star systems, at least in the late stage where the effect of gas drag is small.
XMM-Newton and Chandra observations of the transient 7.8 s pulsar XTE J1829-098 are used to characterize its pulse shape and spectrum, and to facilitate a search for an optical or infrared counterpart. In outburst, the absorbed, hard X-ray spectrum with Gamma = 0.76+/-0.13 and N_H = (6.0+/-0.6) x 10^{22} cm^{-2} is typical of X-ray binary pulsars. The precise Chandra localization in a faint state leads to the identification of a probable infrared counterpart at R.A. = 18h29m43.98s, decl. = -09o51'23.0" (J2000.0) with magnitudes K=12.7, H=13.9, I>21.9, and R>23.2. If this is a highly reddened O or B star, we estimate a distance of 10 kpc, at which the maximum observed X-ray luminosity is 2x10^{36} ergs s^{-1}, typical of Be X-ray transients or wind-fed systems. The minimum observed luminosity is 3x10^{32}(d/10 kpc)^2 ergs s^{-1}. We cannot rule out the possibility that the companion is a red giant. The two known X-ray outbursts of XTE J1829-098 are separated by ~1.3 yr, which may be the orbital period or a multiple of it, with the neutron star in an eccentric orbit. We also studied a late M-giant long-period variable that we found only 9" from the X-ray position. It has a pulsation period of ~1.5 yr, but is not the companion of the X-ray source.
We present the catalogue of X-ray sources detected by the two Wide Field Cameras (WFCs) in complete observations on board BeppoSAX during its 6 years of operational lifetime, between April 1996 and April 2002. The BeppoSAX WFCs were coded mask instruments sensitive in the 2-28 keV energy band with a 40x40 square degree fields of view, pointing in opposite directions and perpendicularly to the BeppoSAX Narrow Field Instruments (NFI). The WFCs were usually operated simultaneously to NFI observations, each lasting up to several days. WFCs observed thus the entire sky several times with a typical sensitivity of 2 to 10 mCrab. A systematic analysis of all WFC observations in the BeppoSAX archive has been carried out using the latest post-mission release of the WFC analysis software and calibrations. The catalogue includes 8253 detections of 253 distinct sources. We describe the basic statistical properties of the sample and present a six-year history of two celestial calibration X-ray sources.
We present the results of the simultaneous deep XMM and Chandra observations of the bright Seyfert 1.9 galaxy MCG-5-23-16, which is thought to have one of the best known examples of a relativistically broadened iron K-alpha line. The time averaged spectral analysis shows that the iron K-shell complex is best modeled with an unresolved narrow emission component (FWHM < 5000 km/s, EW ~ 60 eV) plus a broad component. This latter component has FWHM ~ 44000 km/s and EW ~ 50 eV. Its profile is well described by an emission line originating from an accretion disk viewed with an inclination angle ~ 40^\circ and with the emission arising from within a few tens of gravitational radii of the central black hole. The time-resolved spectral analysis of the XMM EPIC-pn spectrum shows that both the narrow and broad components of the Fe K emission line appear to be constant in time within the errors. We detected a narrow sporadic absorption line at 7.7 keV which appears to be variable on a time-scale of 20 ksec. If associated with Fe XXVI Ly-alpha this absorption is indicative of a possibly variable, high ionization, high velocity outflow. The variability of this absorption feature appears to rule out a local (z=0) origin. The analysis of the XMM RGS spectrum reveals that the soft X-ray emission of MCG-5-23-16 is likely dominated by several emission lines superimposed on an unabsorbed scattered power-law continuum. The lack of strong Fe L shell emission together with the detection of a strong forbidden line in the O VII triplet is consistent with a scenario where the soft X-ray emission lines are produced in a plasma photoionized by the nuclear emission.
We present deep HST/ACS images and Keck spectroscopy of MC2 1635+119, a QSO hosted by a galaxy previously classified as an undisturbed elliptical. Our new images reveal dramatic shell structure indicative of a merger event in the relatively recent past. The brightest shells in the central regions of the host are distributed alternately in radius, with at least two distinct shells on one side of the nucleus and three on the other, out to a distance of ~13 kpc. The light within the five shells comprises ~6% of the total galaxy light. Lower surface brightness ripples or tails and other debris extend out to a distance of ~65 kpc. A simple N-body model for a merger reproduces the inner shell structure and gives an estimate for the age of the merger between ~30 Myr and ~1.7 Gyr, depending on a range of reasonable assumptions. While the inner shell structure is suggestive of a minor merger, the total light contribution from the shells and extended structures are more indicative of a major merger. The spectrum of the host galaxy is dominated by a population of intermediate age (~1.4 Gyr), indicating a strong starburst episode that may have occurred at the time of the merger event. We speculate that the current QSO activity may have been triggered in the recent past by either a minor merger, or by debris from an older (~Gyr) major merger that is currently ``raining'' back into the central regions of the merger remnant.
We discuss our radio (Australia Telescope Compact Array and Australian Long Baseline Array) and X-ray (XMM-Newton) monitoring observations of the unusual ultraluminous supernova SN 1978K in NGC 1313 at ~25 years after the explosion. SN 1978K is a rare example of a Type IIn supernova that has remained bright enough to have long-term X-ray and radio observations. The observations probe the dense medium that was ejected by the progenitor star prior to its explosion; the star might have been a Luminous Blue Variable. The radio imaging shows that the source remains compact, but it may be marginally resolved. The radio monitoring shows deviations from a smooth decay suggesting that inhomogeneities are present in the radio emitting region. It appears that a major change occurred in the mass-loss rate of the progenitor star shortly before the supernova event. The X-ray emission between 2000 and 2006 is consistent with the radiation coming from two shocks. All the X-ray data can be fit using the same model (with no systematic evolution or short-term variability) but this has a surprising requirement: the X-ray emitting regions have a very large abundance of helium. This would be consistent with the X-ray emitting shocks being located in a helium-rich layer that was ejected by the progenitor star, or helium-rich material was ejected in the supernova explosion. The unusual properties of the supernova motivated a search for an associated gamma-ray burst (GRB). We show that SN 1978K was inside the ~4 sigma error box of GRB 771029. If this association is correct, the GRB was exceptionally underluminous. However, the quality of the gamma-ray burst locations at that time was poor, and this is likely just a chance alignment.
Different types of superfluid ground states have been investigated in systems of two species of fermions with Fermi surfaces that do not match. This study is relevant for cold atomic systems, condensed matter physics and quark matter. In this Letter we consider this problem in the case the fermionic quasi-particles can transmute into one another and only their total number is conserved. We study the stability of the superfluid ground state and the nature of the quantum phase transitions for the cases the attractive interaction is among the same or different types of fermions. We find a new superfluid state with features similar to breached pairing superfluidity including gapless excitations.
We study the behavior of Goldstone bosons in color-flavor-locked (CFL) quark matter at nonzero temperature. Chiral symmetry breaking in this phase of cold and dense matter gives rise to pseudo-Goldstone bosons, the lightest of these being the charged and neutral kaons K^+ and K^0. At zero temperature, Bose-Einstein condensation of the kaons occurs. Since all fermions are gapped, this kaon condensed CFL phase can, for energies below the fermionic energy gap, be described by an effective theory for the bosonic modes. We use this effective theory to investigate the melting of the condensate: we determine the temperature-dependent kaon masses self-consistently using the two-particle irreducible effective action, and we compute the transition temperature for Bose-Einstein condensation. Our results are important for studies of transport properties of the kaon condensed CFL phase, such as bulk viscosity.
The implications of extra sterile neutrinos for the Double Chooz experiment is expounded. The so-called ``3+2'' mass spectrum with 2 sterile neutrinos mixed with the active ones, is still allowed by the global neutrino data including MiniBooNE. We probe its impact on the resultant reactor antineutrino signal at the near and far detector of the Double Chooz experiment. The oscillations driven by the additional mass squared difference due to the sterile states bring an energy independent constant suppression at both the near and far detectors. We study to what extent the measurement of $\theta_{13}$ would get affected due to the presence of sterile mixing. We also give the projected sensitivity that Double Chooz will have to constrain the extra mixing angles associated with the sterile states.
We consider the cosmology of the Ricci-tensor-squared gravity in the Palatini variational approach. The gravitational action of standard general relativity is modified by adding a function f(R^abR_ab) to the Einstein-Hilbert action, and the Palatini variation is used to derive the field equations. A general method of obtaining the background and first-order covariant and gauge-invariant perturbation equations is outlined. As an example, we consider the cosmological constraints on such theories arising from the supernova type Ia and cosmic microwave background observations. We find that the best fit to the data is a non-null leading-order correction to Einstein gravity, but the current data exhibit no significant preference over the concordance model. The growth of non-relativistic matter density perturbations at late times is also analyzed, and we find that a scale-dependent (positive or negative) sound-speed-squared term generally appears in the growth equation for small-scale density perturbations. We also estimate the observational bound imposed by the matter power spectrum for the model with f(R^abR_ab) = alpha(R^abR_ab)^beta to be roughly |\beta| \lesssim O(10^{-5}) so long as the dark matter does not possess compensating anisotropic stresses.
We examine brane induced gravity on codimension-1 branes, a.k.a DGP gravity, as a theory of five-dimensional gravity containing a certain class four-dimensional branes. From this perspective, the model suffers from a number of pathologies which went unnoticed before. By generalizing the 5D geometry from Minkowski to Schwarzschild, we find that when the bulk mass is large enough, the brane hits a pressure singularity at finite radius. Further, on the self-accelerating branch, the five-dimensional energy is unbounded from below, implying that the self-accelerating backgrounds are unstable. Even in an empty Minkowski bulk, standard Euclidean techniques suggest that the spontaneous nucleation of self-accelerating branes is unsuppressed. If so, quantum effects will strongly modify any classical intuition about the theory. We also note that unless considered as Z_2-orbifold boundaries, self-accelerating branes correspond to `wormhole' configurations, which introduces the usual problematic issues associated with wormholes. Altogether these pathologies present a serious challenge that any proposed UV completion of the DGP model must overcome.
In this letter we present the result of a spin-dependent groundstate-energy calculation for fermionic boundstates in the spacetime around a rotating blackhole. Using a slow rotation approximation and a minimax variational approach we find boundstate energies of 0 to 5 percent of the fermions flatspace restmass. The groundstate displays a spin-dependent splitting with an energy difference of about 10 percent of the binding energy. For a dilute gas of primordial mini blackholes with gravitationally bound electrons spin-flip transitions could possibly give rise to observable signatures in the observed soft X-ray spectrum for sources at cosmological distances.
The calculation of transport properties of Fermi liquids, based on the formalism developed by Abrikosov and Khalatnikov, requires the knowledge of the probability of collisions between quasiparticles in the vicinity of the Fermi surface. We have carried out a numerical study of the shear viscosity of pure neutron matter, whose value plays a pivotal role in determining the stability of rotating neutron stars, in which these processes are described using a state-of-the-art nucleon-nucleon potential model. Within our approach medium modifications of the scattering cross section are consistently taken into account, through an effective interaction obtained from the matrix elements of the bare interaction between correlated states. Inclusion of medium effects lead to a large increase of the viscosity at densities larger than $\sim 0.1$ fm^{-3}.
Links to: arXiv, form interface, /find, astro-ph, /recent, /0707, /abs, help (Access key information)