A recent astroph posting argued that the Gould (2003a) halo sample is substantially contaminated with thick-disk stars, which would then ``wash out'' any signature of granularity in the halo velocity distribution due to streams. If correct, this would imply that the limits placed by Gould (2003b) on streams are not valid. Here I investigate such contamination using six different indicators: (1) morphology of the underlying reduced proper motion diagram used to select halo stars; (2) comparison of kinematic and parallax-based distance scales; (3) comparison of derived halo parameters for the Gould (2003a) sample with other determinations; (4) a precision color-color diagram for a random subsample; (5) the 3-dimensional velocity distribution of a random subsample; (6) metallicity distribution versus kinematic cuts on a random subsample. I estimate that the contamination is of order 2%. Thus, the upper limits on the density of nearby streams derived by Gould (2003b) remain valid. In particular, at 95% confidence, no more than 5% of local halo stars (within about 300 pc) are in any one coherent stream. Determining whether or not this local measurement is consistent with CDM remains an outstanding question.
(abridged) We present kinematic results for a sample of 387 stars located near Leo I based on spectra obtained with the MMT's Hectochelle spectrograph near the MgI/Mgb lines. We estimate the mean velocity error of our sample to be 2.4 km/s, with a systematic error of < 1 km/s. We produce a final sample of 328 Leo I red giant members, from which we measure a mean heliocentric radial velocity of 282.9 +/- 0.5 km/s, and a mean radial velocity dispersion of 9.2 +/- 0.4 km/s for Leo I. The dispersion profile of Leo I is flat out to beyond its classical `tidal' radius. We fit the profile to a variety of equilibrium dynamical models and can strongly rule out models where mass follows light. Two-component Sersic+NFW models with tangentially anisotropic velocity distributions fit the dispersion profile well, with isotropic models ruled out at a 95% confidence level. The mass and V-band mass-to-light ratio of Leo I estimated from equilibrium models are in the ranges 5-7 x 10^7 M_sun and 9-14 (solar units), respectively, out to 1 kpc from the galaxy center. Leo I members located outside a `break radius' (about 400 arcsec = 500 pc) exhibit significant velocity anisotropy, whereas stars interior appear to have isotropic kinematics. We propose the break radius represents the location of the tidal radius of Leo I at perigalacticon of a highly elliptical orbit. Our scenario can account for the complex star formation history of Leo I, the presence of population segregation within the galaxy, and Leo I's large outward velocity from the Milky Way. The lack of extended tidal arms in Leo I suggests the galaxy has experienced only one perigalactic passage with the Milky Way, implying that Leo I may have been injected into its present orbit by a third body a few Gyr before perigalacticon.
Several luminosity indicators have been found for Gamma-Ray Bursts (GRBs) wherein measurable light curve and spectral properties are well-correlated with the peak luminosity. Several papers have each applied one different luminosity relation to find redshifts for BATSE GRBs and claim to identify specific bursts with z>8. The existence of such high redshift events is not surprising, as BATSE has enough sensitivity to see them and GRBs are expected out to the redshift of the first star formation. To improve results we used five luminosity relations with updated calibrations to determine redshifts with error bars. Combining these relations, we calculated the redshifts of 36 BATSE GRBs with claimed z>8. Our results include 13 bursts with our derived best redshift z_best>8, which looks promising at first. But the calculated redshift uncertainties are significantly large in these selected cases. With only one exception, all of our bursts have z_1siglow<9. The one exception (BATSE trigger 2035) is likely a short duration burst at z>~4. Our best case for a very high redshift event is BATSE trigger 3142 with z_best>20 and z_1siglow=8.9, however we can only say z>4.1 at the two-sigma confidence level. In all, we cannot point toward any one BATSE burst as confidently having z>8. One implication is to greatly weaken prior claims that GRBs have a steeply rising rate-density out to high redshifts.
In this paper we present the design, calibration method, and initial results of the Dual-Beam Imaging Polarimeter (DBIP). This new instrument is designed to measure the optical polarization properties of point sources, in particular Main Belt asteroids. This instrument interfaces between the Tek 2048x2048 camera and the University of Hawaii's 88-inch telescope, and is available for facility use. Using DBIP we are able to measure linear polarization with a 1-sigma Poisson signal noise of 0.03% per measurement and a systematic error of order 0.06% +/- 0.02%. Additionally, we discuss measurements of the polarization of the asteroid 16 Psyche which were taken as part of the instrument commissioning. We confirm Psyche's negative polarization of -1.037% +/- 0.006% but find no significant modulation of the signal with rotation above the 0.05% polarization level.
CONTEXT: The variable X-ray spectra of AGN systematically show steep power-law high states and hard-spectrum low states. The hard low state has previously been found to be a component with only weak variability. The origin of this component and the relative importance of effects such as absorption and relativistic blurring are currently not clear. AIMS: In a follow-up of previous principal components analysis, we aim to determine the relative importance of scattering and absorption effects on the time-varying X-ray spectrum of the narrow-line Seyfert 1 galaxy Mrk~766. METHODS: Time-resolved spectroscopy, slicing XMM and Suzaku data down to 25 ks elements, is used to investigate whether absorption or scattering components dominate the spectral variations in Mrk 766.Time-resolved spectroscopy confirms that spectral variability in Mrk 766 can be explained by either of two interpretations of principal components analysis. Detailed investigation confirm rapid changes in the relative strengths of scattered and direct emission or rapid changes in absorber covering fraction provide good explanations of most of the spectral variability. However, a strong correlation between the 6.97 keV absorption line and the primary continuum together with rapid opacity changes show that variations in a complex and multi-layered absorber, most likely a disk wind, are the dominant source of spectral variability in Mrk 766
We presents the main physical properties of very young stellar populations seen with FUSE in 24 individual starbursts. These characteristics have been obtained using the evolutionary spectral synthesis technique in the far-ultraviolet range with the LavalSB code. For each starburst, quantitative values for age, metallicity, initial mass function slope, stellar mass, and internal extinction have been obtained and discussed in details. Limits of the code have been tested. One main conclusion is that most starbursts (and probably all of them) cannot be represented by any continuous star formation burst in the far-ultraviolet. Also, quantitative values of various optical diagnostics related to these stellar populations have been predicted. Underlying stellar populations, dominated by B-type stars, have been detected in NGC 1140, NGC 4449, and possibly NGC 3991. We characterized the young stellar populations of less than 5 Myr in Seyfert 2 nuclei.
We construct the Hubble diagram (HD) of Gamma-Ray Bursts (GRBs) with redshifts reaching up to $z \sim 6$, by using five luminosity vs. luminosity indicator relations calibrated with the Cardassian cosmology. This model has a major interesting feature: despite of being matter-dominated and flat, it can explain the present accelerate expansion of the universe. This is the first study of this class of models using high redshift GRBs. We have performed a $\chi$-square statistical analysis of the GRBs calibrated with the Cardassian model, and also combined them with both the current Cosmic Microwave Background and Baryonic Acoustic Oscillation data. Our results show consistency between the current observational data and the model predictions. In particular, the best-fit parameters obtained from the $\chi^2$-analysis are in agreement with those obtained from the Concordance Cosmology ($\Lambda$-CDM). We determine the redshift at which the universe would start to follow the Cardassian expansion, i. e., \zc, and both the redshift at which the universe had started to accelerate, i. e., \zac, and the age-redshift relation $H_0t_0$. Our results also show that the universe, from the point of view of GRBs, had undergo a transition to acceleration at a redshift $z \approx 0.2-0.7$, which agrees with the SNIa results. Hence, after confronting the Cardassian scenario with the GRBs HD and proving its consistency with it, we conclude that GRBs should indeed be considered a complementary tool to several other astronomical observations for studies of high accuracy in cosmology.
Motivated by the recognition that variation in the optical transmission of the atmosphere is probably the main limitation to the precision of ground-based CCD measurements of celestial fluxes, we review the physical processes that attenuate the passage of light through the Earth's atmosphere. The next generation of astronomical surveys, such as PanSTARRS and LSST, will greatly benefit from dedicated apparatus to obtain atmospheric transmission data that can be associated with each survey image. We review and compare various approaches to this measurement problem, including photometry, spectroscopy, and LIDAR. In conjunction with careful measurements of instrumental throughput, atmospheric transmission measurements should allow next-generation imaging surveys to produce photometry of unprecedented precision. Our primary concerns are the real-time determination of aerosol scattering and absorption by water along the line of sight, both of which can vary over the course of a night's observations.
We have mapped the protostellar jet HH 211 in 342 GHz continuum, SiO ($J=8-7$), and CO ($J=3-2$) emission at $\sim$ \arcs{1} resolution with the Submillimeter Array (SMA). Thermal dust emission is seen in continuum at the center of the jet, tracing an envelope and a possible optically thick compact disk (with a size $<$ 130 AU) around the protostar. A knotty jet is seen in CO and SiO as in \H2{}, but extending closer to the protostar. It consists of a chain of knots on each side of the protostar, with an interknot spacing of $\sim$ \arcs{2}$-$\arcs{3} or 600$-$900 AU and the innermost pair of knots at only $\sim$ \arcsa{1}{7} or 535 AU from the protostar. These knots likely trace unresolved internal (bow) shocks (i.e., working surfaces) in the jet, with a velocity range up to $\sim$ 25 \vkm{}. The two-sided mass-loss rate of the jet is estimated to be $\sim (0.7-2.8)\times 10^{-6}$ \solarmass{} yr$^{-1}$. The jet is episodic, precessing, and bending. A velocity gradient is seen consistently across two bright SiO knots (BK3 and RK2) perpendicular to the jet axis, with $\sim$ 1.5$\pm$0.8 \vkm{} at $\sim$ 30$\pm$15 AU, suggesting a presence of a jet rotation. The launching radius of the jet, derived from the potential jet rotation, is $\sim$ 0.15$-$0.06 AU in the inner disk.
We apply a non-linear statistical method in turbulence to the cosmological perturbation theory and derive a closed set of evolution equations for matter power spectra. The resultant closure equations consistently recover the one-loop results of standard perturbation theory and beyond that, it is still capable of treating the non-linear evolution of matter power spectra. We find the exact integral expressions for the solutions of closure equations. These analytic expressions coincide with the renormalized one-loop results presented by Crocce & Scoccimarro (2006,2007). By constructing the non-linear propagator, we analytically evaluate the non-linear matter power spectra based on the first-order Born approximation of the integral expressions and compare it with those of the renormalized perturbation theory.
We present recipes to diagnose the fireball of gamma-ray bursts (GRBs) by combining observations of electron-positron pair-signatures (the pair-annihilation line and the cutoff energy due to the pair-creation process). Our recipes are largely model-independent and extract information even from the non-detection of either pair-signature. We evaluate physical quantities such as the Lorentz factor, optical depth and pair-to-baryon ratio, only from the observable quantities. In particular, we can test whether prompt emission of GRBs comes from the pair/baryonic photosphere or not. The future-coming Gamma-Ray Large Area Space Telescope (GLAST) satellite will provide us with good chances to use our recipes by detecting pair-signatures.
We present a comparison of the statistical properties of dark matter halo merger trees extracted from the Millennium Simulation with Extended Press-Schechter (EPS) formalism and the related GALFORM Monte-Carlo method for generating ensembles of merger trees. The volume, mass resolution and output frequency make the Millennium Simulation a unique resource for the study of the hierarchical growth of structure. We construct the merger trees of present day friends-of-friends groups and calculate a variety of statistics that quantify the masses of their progenitors as a function of redshift; accretion rates; and the redshift distribution of their most recent major merger. We also look in the forward direction and quantify the present day mass distribution of halos into which high redshift progenitors of a specific mass become incorporated. We find that EPS formalism and its Monte-Carlo extension capture the qualitative behaviour of all these statistics but, as redshift increases they systematically underestimate the masses of the most massive progenitors. This shortcoming is worst for the Monte-Carlo algorithm. We present a fitting function to a scaled version of the progenitor mass distribution and show how it can be used to make more accurate predictions of both progenitor and final halo mass distributions.
While the radio-loud, obscured quasars (the radio galaxies) have been known and studied for decades, new and sensitive X-ray and mid-infrared surveys are now beginning to reveal large numbers of their radio-quiet counterparts beyond the local Universe. Consequently, we are approaching the compilation of a relatively complete census of AGN of all types coving a large fraction of cosmic time. This is revealing a remarkably intimate connection between the supermassive black hole and its host galaxy. The workshop reported here was designed to explore the results of these rapid observational developments and the nature of the relationships between the stellar and AGN components.
We present a new Monte-Carlo algorithm to generate merger trees describing the formation history of dark matter halos. The algorithm is a modification of the algorithm of Cole et al (2000) used in the GALFORM semi-analytic galaxy formation model. As such, it is based on the Extended Press-Schechter theory and so should be applicable to hierarchical models with a wide range of power spectra and cosmological models. It is tuned to be in accurate agreement with the conditional mass functions found in the analysis of merger trees extracted from the LCDM Millennium N-body simulation. We present a comparison of its predictions not only with these conditional mass functions, but also with additional statistics of the Millennium Simulation halo merger histories. In all cases we find it to be in good agreement with the Millennium Simulation and thus it should prove to be a very useful tool for semi-analytic models of galaxy formation and for modelling hierarchical structure formation in general. We have made our merger tree generation code and code to navigate the trees available at this http URL .
We present prompt gamma-ray, early NIR/optical, late optical and X-ray observations of the peculiar GRB 070311 discovered by INTEGRAL, in order to gain clues on the mechanisms responsible for the prompt gamma-ray pulse as well as for the early and late multi-band afterglow of GRB 070311. We fitted with empirical functions the gamma-ray and optical light curves and scaled the result to the late time X-rays. The H-band light curve taken by REM shows two pulses peaking 80 and 140 s after the peak of the gamma-ray burst and possibly accompanied by a faint gamma-ray tail. Remarkably, the late optical and X-ray afterglow underwent a major rebrightening between 3x10^4 and 2x10^5 s after the burst with an X-ray fluence comparable with that of the prompt emission extrapolated in the same band. Notably, the time profile of the late rebrightening can be described as the combination of a time-rescaled version of the prompt gamma-ray pulse and an underlying power law. This result supports a common origin for both prompt and late X-ray/optical afterglow rebrightening of GRB 070311 within the external shock scenario. The main fireball would be responsible for the prompt emission, while a second shell would produce the rebrightening when impacting the leading blastwave in a refreshed shock (abridged).
Clusters of galaxies, the largest gravitationally bound objects in the universe, are expected to contain a significant population of hadronic and leptonic cosmic rays. Potential sources for these particles are merger and accretion shocks, starburst driven galactic winds and radio galaxies. Furthermore, since galaxy clusters confine cosmic ray protons up to energies of at least 1 PeV for a time longer than the Hubble time they act as storehouses and accumulate all the hadronic particles which are accelerated within them. Consequently clusters of galaxies are potential sources of VHE (> 100 GeV) gamma rays. Motivated by these considerations, promising galaxy clusters are observed with the H.E.S.S. experiment as part of an ongoing campaign. Here, upper limits for the VHE gamma ray emission for the Abell 496 and Coma cluster systems are reported.
We explore a Boltzmann scheme for studying the evolution of compact binary populations of globular clusters. We include processes of compact-binary formation by tidal capture and exchange encounters, binary destruction by dissociation and other mechanisms, and binary hardening by encounters, gravitational radiation and magnetic braking, as also the orbital evolution during mass transfer, following Roche lobe contact. For the encounter processes which are stochastic in nature, we study the probabilistic, continuous limit in this introductory work, deferring the specific handling of the stochastic terms to the next step. We focus on the evolution of (a) the number of X-ray sources N_{XB} in globular clusters, and (b) the orbital-period distribution of the X-ray binaries, as a result of the above processes. We investigate the dependence of N_{XB} on two essential cluster properties, namely, the star-star and star-binary encounter-rate parameters 'Gamma' and 'gamma', which we call Verbunt parameters. We compare our model results with observation, showing that the model values of N_{XB} and their expected scaling with the Verbunt parameters are in good agreement with results from recent X-ray observations of Galactic globular clusters, encouraging us to build more detailed models.
We compute the effects of a compact flat universe on the angular correlation function, the power spectrum, and the covariance matrix of the spherical harmonics coefficients of the cosmic microwave background radiation using the full Boltzmann physics. Our analysis shows that the Wilkinson Microwave Anisotropy Probe three-year data are well compatible with the possibility that we live in a flat 3-torus with volume ~5x10^3 Gpc^3.
The Arecibo Legacy Fast ALFA survey is in the process of yielding a complete HI dataset of the Virgo Cluster and its environs (Giovanelli et al. 2007, Kent et al., in preparation). Assuming a distance to Virgo of 16.7 Mpc, the minimum detectable HI mass by ALFALFA is of order 2 x 10^7 Msun. A number of the HI detections appear to have interesting properties. Some appear associated with, but offset from, low surface brightness optical counterparts; others, at larger spatial offsets, may be tidally related to optical counterparts. Yet another class includes detections which are not identifiable with any optical counterparts. We present the ALFALFA results on these objects in the Virgo region, as well as followup aperture synthesis observations obtained with the VLA.
We observed the brightest central galaxy (BCG) in the nearby (z=0.0821) cool core galaxy cluster Abell 2597 with the IRAC and MIPS instruments on board the Spitzer Space Telescope. The BCG was clearly detected in all Spitzer bandpasses, including the 70 and 160 micron wavebands. We report aperture photometry of the BCG. The spectral energy distribution exhibits a clear excess in the FIR over a Rayleigh-Jeans stellar tail, indicating a star formation rate of ~4-5 solar masses per year, consistent with the estimates from the UV and its H-alpha luminosity. This large FIR luminosity is consistent with that of a starburst or a Luminous Infrared Galaxy (LIRG), but together with a very massive and old population of stars that dominate the energy output of the galaxy. If the dust is at one temperature, the ratio of 70 to 160 micron fluxes indicate that the dust emitting mid-IR in this source is somewhat hotter than the dust emitting mid-IR in two BCGs at higher-redshift (z~0.2-0.3) and higher FIR luminosities observed earlier by Spitzer, in clusters Abell 1835 and Zwicky 3146.
In this review, we give an overview of some of the major aspects of data reduction and analysis for the cosmic microwave background (CMB). Since its prediction and discovery in the last century, the CMB radiation has proven itself to be one of our most valuable tools for precision cosmology. Recently, and especially when combined with complementary cosmological data, measurements of the CMB anisotropies have provided us with a wealth of quantitive information about the birth, evolution and structure of our Universe. We begin with a simple, general introduction to the physics of the CMB, including a basic overview of the experiments which record CMB data. The focus, however, will be the data analysis treatment of CMB data sets.
The understanding of the particle spectra resulting from acceleration in relativistic shocks as they occur in extragalactic sources, is essential for the interpretation of the cosmic ray spectrum above the ankle ($E_p>3\cdot 10^{18}$ eV). It is believed that extragalactic sources like Active Galactic Nuclei and Gamma Ray Bursts can produce particle spectra up to $E_p\sim 10^{21}$ eV. In this contribution, subluminal shocks are investigated with respect to different shock boost factors $\Gamma$ and the inclination angle between the shock normal and the magnetic field $\psi$. A correlation between the boost factor and the spectral behavior of the emitted particles is found. The results are compared to Active Galactic Nuclei and Gamma Ray Burst diffuse cosmic ray contribution and the observed cosmic ray spectrum at the highest energies.
We derive the disk masses of 18 spiral galaxies of different luminosity and Hubble Type, both by mass modelling their RC's and by fitting their SED with spectro-photometric models. The estimates from these two different methods agree very well confirming their reliability and allowing us to derive very accurate stellar mass-to-light ratio vs color and stellar mass relations.
The lecture notes describe the Delaunay Tessellation Field Estimator for Cosmic Web analysis. The high sensitivity of Voronoi/Delaunay tessellations to the local point distribution is used to obtain estimates of density and related quantities. The adaptive and minimum triangulation properties of Delaunay tessellations are utilized for interpolation to continuous volume-covering density and velocity fields. The adaptivity to the local density and geometry preserves three key characteristics of the cosmic matter distribution: 1) its hierarchical nature,2) its anisotropic weblike morphology, 3) the presence and structure of voids. The lecture notes discuss the mathematical context and background of the DTFE method, in essence a first order version of Natural Neighbour methods, smooth and higher order spatial interpolation techniques. This is followed by an outline of the DTFE procedure. A series of tests on spatially complex point distributions provides quantitative information on its performance and noise characteristics. We conclude with a few cosmological applications. The reconstruction of the spatial weblike patterns in N-body simulations and in the 2dFGRS provide a visual impression of DTFE's performance. The analysis of the velocity divergence pdf and maps obtained of the velocity flow in the Local Universe (implied by PSCz) illustrate its promise for probing the dynamics of cosmic structure. The Watershed Void Finder (Platen et al. 2007), for the study of voids, and Multiscale Morphology Filter (Aragon-Calvo et al. 2007), for identifying and analyzing weblike networks of filaments, sheets and clusters, are based upon DTFE density fields. We also mention SimpleX, a related random lattice radiative transfer formalism (Ritzerveld & Icke 2006).
The non-linear back reaction of accelerated cosmic rays at the shock fronts, leads to the formation of a smooth precursor with a length scale corresponding to the diffusive scale of the energetic particles. Past works claimed that shocklets could be created in the precursor region of a specific shock width, which might energize few thermal particles to sufficient acceleration and furthermore this precursor region may act as confining large angle scatterer for very high energy cosmic rays. On the other hand, it has been shown that the smoothing of the shock front could lower the acceleration efficiency. These controversies motivated us to investigate numerically by Monte Carlo simulations the particle acceleration efficiency in oblique modified shocks. The results show flatter spectra compared to the spectra of the pressumed sharp discontinuity shock fronts. The findings are in accordance with theoretical predictions, since the scattering inside the precursor confines high energy particles to further scattering, resulting in higher energies making the whole acceleration process more efficient.
It is well accepted today that diffusive acceleration in shocks results to the cosmic ray spectrum formation. This is in principle true for non-relativistic shocks, since there is a detailed theory covering a large range of their properties and the resulting power-law spectrum, which is nevertheless not as efficient to reach the very high energies observed in the cosmic ray spectrum. On the other hand, the cosmic ray maximum energy and the resulting spectra from relativistic shocks, are still under investigation and debate concerning their contribution to the features of the cosmic ray spectrum and the measured, or implied, cosmic ray radiation from candidate astrophysical sources. Here, we discuss the efficiency of the first order Fermi (diffusive) acceleration mechanism up to relativistic shock speeds, presenting Monte Carlo simulations.
This is the third in a series of papers that deal with angular momentum transport by internal gravity waves. We concentrate on the waves excited by core convection in a 3Msun, Pop I main sequence star. Here, we want to examine the role of the Coriolis acceleration in the equations of motion that describe the behavior of waves and to evaluate its impact on angular momentum transport. We use the so-called traditional approximation of geophysics, which allows variable separation in radial and horizontal components. In the presence of rotation, the horizontal structure is described by Hough functions instead of spherical harmonics. The Coriolis acceleration has two main effects on waves. It transforms pure gravity waves into gravito-inertial waves that have a larger amplitude closer to the equator, and it introduces new waves whose restoring force is mainly the conservation of vorticity. Taking the Coriolis acceleration into account changes the subtle balance between prograde and retrograde waves in non-rotating stars. It also introduces new types of waves that are either purely prograde or retrograde. We show in this paper where the local deposition of angular momentum by such waves is important.
The evolution of angular momentum is a key to our understanding of star formation and stellar evolution. The rotational evolution of solar-mass stars is mostly controlled by magnetic interaction with the circumstellar disc and angular momentum loss through stellar winds. Major differences in the internal structure of very low-mass stars and brown dwarfs -- they are believed to be fully convective throughout their lives, and thus should not operate a solar-type dynamo -- may lead to major differences in the rotation and activity of these objects. Here, we report on observational studies to understand the rotational evolution of the very low-mass stars and brown dwarfs.
In this work we use metric approach in the modified gravity to study the dynamics of a test particle from the solar system to the cosmological scales. Through the inverse approach we derive an appropriate action to describe the Pioneer anomaly and the flat rotation curve of the spiral galaxies. We propose the action of $f(R) = R + R(R/R_0 + 2/\alpha)^{-1}\ln(R/R_c)$ where in galactic and solar system scales it reduces to our desire form. The vacuum solution of this action also results in a positive late time acceleration for the universe. We fix the parameters of this model, comparing with the observations.
The nature of dark matter is one of the outstanding questions of astrophysics. The internal motions of member stars reveal that the lowest luminosity galaxies in the Local Group are the most dark-matter dominated. New large datasets allow one to go further, and determine systematic properties of their dark matter haloes. We summarise recent results, emphasising the critical role of the dwarf spheroidal galaxies in understanding both dark matter and baryonic processes that shape galaxy evolution.
In this paper, I explore various transport processes that have a large impact of the distribution of elements inside stars and thus, on stellar evolution. A heuristic description of the physics behind equations is provided, and key references are given. Finally, for each process, I will briefly review (some) important results as well as discuss directions for future work.
Scattering of the forward-shock synchrotron emission by a relativistic outflow ejected up to 10 ks after the leading blast-wave, may produce a brighter emission than that coming directly from the forward-shock and may explain three novel features discovered by Swift in the X-ray emission of GRB afterglows: flares, plateaus (slow decays), and chromatic light-curve breaks. For a cold scattering outflow, the reflected flux overshines the primary one if the scattering outflow is nearly baryon-free and highly relativistic. These two requirements can be relaxed if the scattering outflow is energized by weak internal shocks, so that the incident forward-shock photons are also inverse-Compton scattered. This sweeping-up of the photons left behind by the forward shock naturally yields X-ray flares that are (much) shorter than the time when they occur. Because of the boost in photon energy produced by bulk-scattering (and inverse-Compton, if present), the reflected emission is more likely to overshine the forward shock's at higher photon energies, yielding light-curve plateaus and breaks that appear only in the X-ray (energy injection in the forward-shock can hardly account for the latter feature). The brightness, shape, and decay of the X-ray light-curve plateau depend on the spectrum of the primary emission, as well as on the radial distribution of the scatterer's Lorentz factor and mass-flux. Thus, the various durations and decay rates displayed by X-ray afterglow plateaus reflect the diversity in the radial structure of the late outflows produced by long-lived GRB engines.
A new dark energy model, named as ``agegraphic dark energy'', has been proposed by one of us (R. G. Cai) in arXiv:0707.4049, based on the K\'{a}rolyh\'{a}zy uncertainty relation, which arises from the quantum mechanics together with general relativity. Then, in arXiv:0707.4052, it has been extended by including the interaction between the agegraphic dark energy and the pressureless (dark) matter. In this note, we investigate the agegraphic dark energy models without and with interaction by means of statefinder diagnostic and w-w' analysis.
It has been suggested that our universe could be a 3-dimensional brane where the SM fields live embedded in a D-dimensional space-time. In flexible raneworlds, in addition to the SM fields, new degrees of freedom appear on the brane associated to brane fluctuations. These new fields, known as branons, are standard WIMPs (Weakly Interacting Massive Particles) and therefore natural dark matter candidates, whose spontaneous annihilations can provide first evidences for this scenario.
The instability of dark matter may produce visible signals in the spectrum of cosmic gamma-rays. We consider this possibility in frameworks with additional spatial dimensions and supersymmetry. Examples of particles include superweakly-interacting massive particles such as gravitinos in supersymmetry models, the lightest Kaluza-Klein (KK) state in models with universal extra dimensions, and weakly-interacting massive particles such as branons in flexible brane-worlds.
It has recently been demonstrated that certain types of non-tensional stress-energy can live on tensional codimension-2 branes, including gravitational shockwaves and small Schwarzschild black holes. In this note we generalize the earlier Schwarzschild results, and construct the exact gravitational fields of small rotating black holes on a codimension-2 brane. We focus on the phenomenologically interesting case of a three-brane embedded in a spacetime with two compactified extra dimensions. For a nonzero tension on the brane, we verify that these solutions also show the ``lightning rod'' effect found in the Schwarzschild solutions, the net effect of which is to rescale the fundamental Planck mass. This allows for larger black hole parameters, such as the event horizon, angular momentum, and lifetime than would be naively expected for a tensionless brane. It is also found that a black hole with angular momentum pointing purely along the brane directions has a smaller horizon angular velocity than the corresponding tensionless case, while a hole with bulk components of angular momentum has a larger angular velocity.
We consider the neutrino (and antineutrino) flavors arriving at Earth for neutrinos produced in the annihilation of weakly interacting massive particles (WIMPs) in the Sun's core. Solar-matter effects on the flavor propagation of the resulting $\agt$ GeV neutrinos are studied analytically within a density-matrix formalism. Matter effects, including mass-state level-crossings, influence the flavor fluxes considerably. The exposition herein is somewhat pedagogical, in that it starts with adiabatic evolution of single flavors from the Sun's center, with $\theta_{13}$ set to zero, and progresses to fully realistic processing of the flavor ratios expected in WIMP decay, from the Sun's core to the Earth. In the fully realistic calculation, non-adiabatic level-crossing is included, as are possible nonzero values for $\theta_{13}$ and the CP-violating phase $\delta$. Due to resonance enhancement in matter, nonzero values of $\theta_{13}$ even smaller than a degree can noticeably affect flavor propagation. Both normal and inverted neutrino-mass hierarchies are considered. Our main conclusion is that measuring flavor ratios (in addition to energy spectra) of $\agt$ GeV solar neutrinos can provide discrinination between WIMP models. In particular, we demonstrate the flavor differences at Earth for neutrinos from the two main classes of WIMP final states, namely $W^+ W^-$ and 95% $b \bar{b}$ + 5% $\tau^+\tau^-$. Conversely, if WIMP properties were to be learned from production in future accelerators, then the flavor ratios of $\agt$ GeV solar neutrinos might be useful for inferring $\theta_{13}$ and the mass hierarchy.
The quantum theory of a harmonic oscillator with a time dependent frequency arises in several important physical problems, especially in the study of quantum field theory in an external background. While the mathematics of this system is straightforward, several conceptual issues arise in such a study. We present a general formalism to address some of the conceptual issues like the emergence of classicality, definition of particle content, back reaction etc. In particular, we parametrize the wave function in terms of a complex number (which we call excitation parameter) and express all physically relevant quantities in terms it. Many of the notions -- like those of particle number density, effective Lagrangian etc., which are usually defined using asymptotic in-out states -- are generalized as time-dependent concepts and we show that these generalized definitions lead to useful and reasonable results. Having developed the general formalism we apply it to several examples. Exact analytic expressions are found for a particular toy model and approximate analytic solutions are obtained in the extreme cases of adiabatic and highly non-adiabatic evolution. We then work out the exact results numerically for a variety of models and compare them with the analytic results and approximations. The formalism is useful in addressing the question of emergence of classicality of the quantum state, its relation to particle production and to clarify several conceptual issues related to this. In Paper II (arXiv:0708.1237), which is a sequel to this, the formalism will be applied to analyze the corresponding issues in the context of quantum field theory in background cosmological models and electric fields.
We adopt the general formalism, which was developed in Paper I (arXiv:0708.1233) to analyze the evolution of a quantized time-dependent oscillator, to address several questions in the context of quantum field theory in time dependent external backgrounds. In particular, we study the question of emergence of classicality in terms of the phase space evolution and its relation to particle production, and clarify some conceptual issues. We consider a quantized scalar field evolving in a constant electric field and in FRW spacetimes which illustrate the two extreme cases of late time adiabatic and highly non-adiabatic evolution. Using the time-dependent generalizations of various quantities like particle number density, effective Lagrangian etc. introduced in Paper I, we contrast the evolution in these two limits bringing out key differences between the Schwinger effect and evolution in the de Sitter background. Further, our examples suggest that the notion of classicality is multifaceted and any one single criterion may not have universal applicability. For example, the peaking of the phase space Wigner distribution on the classical trajectory \emph{alone} does not imply transition to classical behavior. An analysis of the behavior of the \emph{classicality parameter}, which was introduced in Paper I, leads to the conclusion that strong particle production is necessary for the quantum state to become highly correlated in phase space at late times.
We propose new physical processes based on the axial vector anomaly and described by the Wess-Zumino-Witten term that couples the photon, Z-boson, and the omega-meson. The interaction takes the form of a pseudo-Chern-Simons term, $\sim \epsilon_{\mu\nu\rho\sigma}\omega^\mu Z^\nu F^{\rho\sigma}$. This term induces neutrino-photon interactions at finite baryon density via the coupling of the Z-boson to neutrinos. These interactions may be detectable in various laboratory and astrophysical arenas. The new interactions may account for the MiniBooNE excess. They also produce a competitive contribution to neutron star cooling at temperatures >10^9 K. These processes and related axion--photon interactions at finite baryon density appear to be relevant in many astrophysical regimes.
Links to: arXiv, form interface, /find, astro-ph, /recent, /0708, /abs, contact, help (Access key information)
Studies of GRB host galaxies are crucial to understanding GRBs. However, since they are identified by the superposition in the plane of the sky of a GRB afterglow and a galaxy there is always a possibility that an association represents a chance alignment, rather than a physical connection. We examine a uniform sample of 72 GRB fields to explore the probability of chance superpositions. There is typically a ~1% chance that an optical afterglow will coincide with a galaxy by chance. While spurious host galaxy detections will, therefore, be rare, the possibility must be considered when examining individual GRB/host galaxy examples. It is also tempting to use the large and uniform collection of X-ray afterglow positions to search for GRB-associated galaxies. However, we find that approximately half of the 14 superpositions in our sample are likely to occur by chance, so in the case of GRBs localized only by an X-ray afterglow, even statistical studies are suspect.
[Abridged] We present the first simultaneous radio, X-ray, ultraviolet, and optical spectroscopic observations of the M8.5 dwarf TVLM513-46546, with a duration of 9 hours. These observations are part of a program to study the origin of magnetic activity in ultracool dwarfs, and its impact on chromospheric and coronal emission. Here we detect steady quiescent radio emission superposed with multiple short-duration, highly polarized flares; there is no evidence for periodic bursts previously reported for this object, indicating their transient nature. We also detect soft X-ray emission, with L_X/L_bol~10^-4.9, the faintest to date for any object later than M5, and a possible weak X-ray flare. TVLM513-46546 continues the trend of severe violation of the radio/X-ray correlation in ultracool dwarfs, by nearly 4 orders of magnitude. From the optical spectroscopy we find that the Balmer line luminosity exceeds the X-ray luminosity by a factor of a few, suggesting that, unlike in early M dwarfs, chromospheric heating may not be due to coronal X-ray emission. More importantly, we detect a sinusoidal H-alpha light curve with a period of 2 hr, matching the rotation period of TVLM513-46546. This is the first known example of such Balmer line behavior, which points to a co-rotating chromospheric hot spot or an extended magnetic structure, with a covering fraction of about 50%. This feature may be transitory based on the apparent decline in light curve peak during the four observed maxima. From the radio data we infer a large scale steady magnetic field of ~100 G, in good agreement with the value required for confinement of the X-ray emitting plasma. The radio flares, on the other hand, are produced in a component of the field with a strength of ~3 kG and a likely multi-polar configuration.
We built an optimal basis of low resolution templates for galaxies over the wavelength range from 0.2 to 10 $\mu$m using a variant of the algorithm presented by Budavari et al. (2000). We derived them using eleven bands of photometry from the NDWFS, FLAMEX, zBo\"otes and IRAC Shallow surveys for 16033 galaxies in the NDWFS Bo\"otes field with spectroscopic redshifts measured by the AGN and Galaxy Evolution Survey. We also developed algorithms to accurately determine photometric redshifts, K corrections and bolometric luminosities using these templates. Our photometric redshifts have an accuracy of $\sigma_z/(1+z) = 0.04$ when clipped to the best 95%. We used these templates to study the spectral type distribution in the field and to estimate luminosity functions of galaxies as a function of redshift and spectral type. In particular, we note that the 5-8$\mu$m color distribution of galaxies is bimodal, much like the optical g--r colors.
NGC 3311, the giant cD galaxy in the Hydra cluster (A1060), has one of the largest globular cluster systems known. We describe new Gemini GMOS (g',i') photometry of the NGC 3311 field which reveals that the red, metal-rich side of its globular cluster population extends smoothly upward into the mass range associated with the new class of Ultra-Compact Dwarfs (UCDs). We identify 29 UCD candidates with estimated masses > 6x10^6 solar masses and discuss their characteristics. This UCD-like sequence is the most well defined one yet seen, and reinforces current ideas that the high-mass end of the globular cluster sequence merges continuously into the UCD sequence, which connects in turn to the E galaxy structural sequence.
We present a multiwavelength analysis of the supernova remnant N49 in the Large Magellanic Cloud. Using high-resolution Hubble Space Telescope WFPC2 images of H-alpha, [S II] and [O III] emission, we study the morphology of the remnant and calculate the rms electron densities in different regions. We detect an offset of [O III] and H-alpha emission of about 0.5 arcsec, and discuss possible scenarios that could give rise to such high values. The kinematics of the remnant is analyzed by matching individual filaments to the echelle spectra obtained at CTIO. We detect narrow H-alpha emission component which we identify as the diffuse post-shock recombination radiation, and discrete broad emission features that correspond to the shocked gas in filaments. The overall expansion of the remnant is about 250 km/s. The dense clouds are shocked up to line-of-sight velocities of 250 km/s and the less dense gas up to 300 km/s. A few cloudlets have even higher radial velocities, reaching up to 350 km/s. We confirm the presence of the cavity in the remnant, and identify the center of explosion. Using archival Chandra and XMM-Newton data, we observe the same trends in surface brightness distribution for the optical and X-ray images. We carry out the spectral analysis of three regions that represent the most significant optical features.
(abridged) Models of many astrophysical gamma-ray sources assume they contain a homogeneous distribution of electrons that are injected as a power-law in energy and evolve by interacting with radiation fields, magnetic fields and particles in the source and by escaping. This problem is particularly complicated if the radiation fields have higher energy density than the magnetic field and are sufficiently energetic that inverse Compton scattering is not limited to the Thomson regime. We present a simple, time-dependent, semi-analytical solution of the electron kinetic equation that treats both continuous and impulsive injection, cooling via synchrotron and inverse Compton radiation, (taking into account Klein-Nishina effects) and energy dependent particle escape. The kinetic equation for an arbitrary, time-dependent source function is solved by the method of Laplace transformations. Using an approximate expression for the energy loss rate that takes into account synchrotron and inverse Compton losses including Klein-Nishina effects for scattering off an isotropic photon field with either a power-law or black-body distribution, we find explicit expressions for the cooling time and escape probability of individual electrons. This enables the full, time-dependent solution to be reduced to a single quadrature. From the electron distribution, we then construct the time-dependent, multi-wavelength emission spectrum. We compare our solutions with several limiting cases and discuss the general appearance and temporal behaviour of spectral features (i.e., cooling breaks, bumps etc.). As a specific example, we model the broad-band energy spectrum of the open stellar association Westerlund-2 at different times of its evolution, and compare it with observations.
Published galaxy power spectra from the 2dFGRS and SDSS are not in good agreement. We revisit this issue by analyzing both the 2dFGRS and SDSS DR5 catalogues using essentially identical techniques. We confirm that the 2dFGRS exhibits relatively more large scale power than the SDSS, or, equivalently, SDSS has more small scale power. We demonstrate that this difference is due to the r-band selected SDSS catalogue being dominated by more strongly clustered red galaxies, which have a stronger scale dependent bias. The power spectra of galaxies of the same rest frame colours from the two surveys match well. If not accounted for, the difference between the SDSS and 2dFGRS power spectra causes a bias in the obtained constraints on cosmological parameters which is larger than the uncertainty with which they are determined. We also found that the correction developed by Cole et al.(2005) to model the distortion in the shape of the power spectrum due to non-linear evolution and scale dependent bias is not able to reconcile the constraints obtained from the 2dFGRS and SDSS power spectra. Intriguingly, the model is able to describe the differences between the 2dFGRS and the much more strongly clustered LRG sample, which exhibits greater nonlinearities. This shows that more work is needed to understand the relation between the galaxy power spectrum and the linear perturbation theory prediction for the power spectrum of matter fluctuations. It is therefore important to accurately model these effects to get precise estimates of cosmological parameters from these power spectra and from future galaxy surveys like Pan-STARRS, or the Dark Energy Survey, which will use selection criteria similar to the one of SDSS.
We use Enzo, a hybrid Eulerian AMR/N-body code including non-gravitational heating and cooling, to explore the morphology of the X-ray gas in clusters of galaxies and its evolution in current generation cosmological simulations. We employ and compare two observationally motivated structure measures: power ratios and centroid shift. Overall, the structure of our simulated clusters compares remarkably well to low-redshift observations, although some differences remain that may point to incomplete gas physics. We find no dependence on cluster structure in the mass-observable scaling relations, T_X-M and Y_X-M, when using the true cluster masses. However, estimates of the total mass based on the assumption of hydrostatic equilibrium, as assumed in observational studies, are systematically low. We show that the hydrostatic mass bias strongly correlates with cluster structure and, more weakly, with cluster mass. When the hydrostatic masses are used, the mass-observable scaling relations and gas mass fractions depend significantly on cluster morphology, and the true relations are not recovered even if the most relaxed clusters are used. We show that cluster structure, via the power ratios, can be used to effectively correct the hydrostatic mass estimates and mass-scaling relations, suggesting that we can calibrate for this systematic effect in cosmological studies. Similar to observational studies, we find that cluster structure, particularly centroid shift, evolves with redshift. This evolution is mild but will lead to additional errors at high redshift. Projection along the line of sight leads to significant uncertainty in the structure of individual clusters: less than 50% of clusters which appear relaxed in projection based on our structure measures are truly relaxed.
We used the ESO VLT-FORS2 facility to collect low-resolution spectra of 51 targets distributed along the Horizontal Branch. We determined atmospheric parameters by comparison with theoretical models through standard fitting routines, and masses by basic equations. Results are in general in good agreement with previous works, although not always with theoretical expectations for cooler stars (Teff<15000 K). The calculated color excess is systematically lower than literature values, pointing towards a possible underestimation of effective temperatures. Moreover, we find two groups of stars at Teff=14000 K and at Teff=27000$ K that present anomalies with respect to the general trend and expectations. We suppose that the three peculiar bright stars at Teff=14000 K are probably affected by an enhanced stellar wind. For the eight Extreme Horizontal Branch stars at Teff=27000 K which show unusually high masses we find no plausible explanation. While most of our results agree well with the predictions of standard horizontal branch evolution, we still have problems with the low masses we derive in certain temperature ranges. We believe that Kurucz ATLAS9 LTE model atmospheres with solar-scaled abundances are probably inadequate for these temperature ranges. Concerning the group of anomalous stars at Teff=27000 K, a Kolmogorov-Smirnov test indicates that there is only an 8.4% probability that these stars are randomly drawn from the general distribution in the color-magnitude diagram. This is not conclusive but points out that these stars could be both (and independently) spectroscopically and photometrically peculiar with respect to the general Extreme Horizontal Branch population.
ALMA will be able to detect a broad spectrum of molecular lines in galaxies. Current aperture synthesis observations indicate that the molecular line emission from galaxies is remarkably variable, even on kpc scales. Imaging spectroscopy at resolutions of an arcsecond or better will reduce the chemical complexity by allowing regions of physical conditions to be defined and classified.
We report the discovery of two dust pillars using GLIMPSE archival images obtained with the Infrared Array Camera on board the Spitzer Space Telescope. They are located close to the Galactic molecular cloud GRSMC45.453+0.060 and they appear to be aligned with the ionizing region associated with GRSMC45.478+0.131. Our three colour mosaics show that these stellar incubators present different morphologies as seen from planet Earth. One of them shows the unquestionable existence of young stellar objects in its head, whose influence on the original cocoon is evident, while the other presents a well defined bright-rimmed ionizing front. We argue that second-generation star formation has been triggered in these protuberances by the action of massive stars present in the nearby H II regions.
Gamma-rays can be produced by the interaction of a relativistic jet and the matter of the stellar wind in the subclass of massive X-ray binaries known as "microquasars". The relativistic jet is ejected from the surroundings of the compact object and interacts with cold protons from the stellar wind, producing pions that then quickly decay into gamma-rays. Since the resulting gamma-ray emissivity depends on the target density, the detection of rapid variability in microquasars with GLAST and the new generation of Cherenkov imaging arrays could be used to probe the clumped structure of the stellar wind. In particular, we show here that the relative fluctuation in gamma rays may scale with the square root of the ratio of porosity length to binary separation, \sqrt{h/a}, implying for example a ca. 10 % variation in gamma ray emission for a quite moderate porosity, h/a ~ 0.01.
Radio observations can show how cluster galaxies are affected by various environmental factors. We made three frequency radio-polarimetric VLA observations and performed sensitive XMM-Newton observations in X-rays and UV light of NGC4254. The distribution of total radio intensity at 8.46 4.86 GHz reveals a global asymmetry with a more diffuse and almost two times larger extension to the north than to the south. The radio polarized intensity is even more asymmetric, showing a strange bright ridge in the southern disk edge, displaced to the downstream side of the local density wave. Magnetic arms can be also seen in other disk portions, mostly avoiding nearby optical spiral arms. Spatially resolved emission of hot X-ray gas from the whole galactic disk, with its soft component closely tracing star-forming regions, is detected. The slope of the local radio nonthermal-infrared relation is <1, thus smaller than for the radio thermal-infrared one (>1). Using the radio thermal emission-based star formation rate (SFR) we find higher extinction in more Halpha luminous star-forming regions with a power-law slope of 0.83. The galaxy's estimated mean SFR of 0.026 M_sun/yr/kpc^2 is three times larger than in other spirals of similar Hubble type. NGC4254 seems to belong to the class of `young' Virgo cluster members, which recently experienced a gravitational encounter at the cluster's periphery, which perturbed its spiral arms by tidal forces and triggered a burst of star-formation which still maintains strong radio and infrared emissions. Tidal forces could also sheared the magnetic field in the southern disk portion and led to the observed polarized ridge, though, magnetic field compression by weak ram pressure forces of the cluster gas cannot be excluded.
We examine the faint-end slope of the rest-frame V-band luminosity function (LF), with respect to galaxy spectral type, of field galaxies with redshift z<0.5, using a sample of 80,820 galaxies with photometric redshifts in the Cosmic Evolution Survey (COSMOS) field. For all galaxy spectral types combined, the LF slope, alpha, ranges from -1.24 to -1.12, from the lowest redshift bin to the highest. In the lowest redshift bin (0.02<z<0.1), where the magnitude limit is M(V) ~ -13, the slope ranges from ~ -1.1 for galaxies with early-type spectral energy distributions (SEDs), to ~ -1.9 for galaxies with low-extinction starburst SEDs. In each galaxy SED category (Ell, Sbc, Scd/Irr, and starburst), the faint-end slopes grow shallower with increasing redshift; in the highest redshift bin (0.4<z<0.5), the slope is ~ -0.5 and ~ -1.3 for early-types and starbursts respectively. The steepness of alpha at lower redshift could be qualitatively explained by large numbers of faint dwarf galaxies, perhaps of low surface brightness, which are not detected at higher redshifts.
We present new photometric observations of 15 symbiotic stars (EG And, Z And, AE Ara, BF Cyg, CH Cyg, CI Cyg, V1329 Cyg, TX CVn, AG Dra, Draco C-1, RW Hya, SY Mus, AR Pav, AG Peg, AX Per) covering their last orbital cycle(s) from 2003.9 to 2007.2. We obtained our data by both classical photoelectric and CCD photometry. Main results are: EG And brightened by about 0.3 mag in U from 2003. A 0.5 mag deep primary minimum developed in the U light curve (LC) at the end of 2006. Z And continues its recent activity that began during the 2000 autumn. A new small outburst started in summer of 2004 with the peak U-magnitude of about 9.2. During the spring of 2006 the star entered a massive outburst. It reached its historical maximum at U = 8.0 in 2006 July. AE Ara erupted in 2006 February with Dm(vis) approx. 1.2 mag. BF Cyg entered a new active stage in 2006 August. A brightness maximum (U approx. 9.4) was measured during 2006 September. CH Cyg persists in a quiescent phase. During 2006 June - December about 2 mag decline in all colours was measured. CI Cyg started a new active phase during 2006 May - June. After 31 years it erupted by about 2 mag in U. TX CVn maintains a bright stage with U approx. 10.5 from 2003. AG Dra entered a new major outburst in 2006 June. It reached its maximum at U = 8.0 in 2006 September. AR Pav persists at a low level of the activity. AG Peg's LC profile varies markedly during different orbital cycles. AX Per continues its quiescent phase.
Because conical segments of quasispherical ultrarelativistic blastwaves are causally disconnected on angular scales larger than the blastwave inverse Lorentz factor, astrophysical blastwaves can sustain initial anisotropy, imprinted by the process that drives the explosion, while they remain relativistic. We show that initial angular energy fluctuations in ultrarelativistic blastwaves imply a production of vorticity in the blastwave, and calculate the vortical energy production rate. In gamma-ray burst (GRB) afterglows, the number of vortical eddy turnovers as the shocked fluid crosses the blastwave shell is about unity for marginally nonlinear anisotropy. Thus the anisotropy must be nonlinear to explain the magnetic energy density inferred in measured GRB spectra.
We present a simple and efficient empirical algorithm for constructing dark-matter halo merger trees that reproduce the distribution of trees in the Millennium cosmological $N$-body simulation. The generated trees are significantly better than EPS trees. The algorithm is Markovian, and it therefore fails to reproduce the non-Markov features of trees across short time steps, except for an accurate fit to the evolution of the average main progenitor. However, it properly recovers the full main progenitor distribution and the joint distributions of all the progenitors over long-enough time steps, $\Delta \omega \simeq \Delta z>0.5$, where $\omega \simeq 1.69/D(t)$ is the self-similar time variable and $D(t)$ refers to the linear growth of density fluctuations. We find that the main progenitor distribution is log-normal in the variable $\sigma^2(M)$, the variance of linear density fluctuations in a sphere encompassing mass $M$. The secondary progenitors are successfully drawn one by one from the remaining mass using a similar distribution function. These empirical findings may be clues to the underlying physics of merger-tree statistics. As a byproduct, we provide useful, accurate analytic time-invariant approximations for the main progenitor accretion history and for halo merger rates.
We present numerical simulations of the photoevaporation of cosmological halos clustered around a 120 M$_\odot$ primordial star, confining our study to structures capable of hosting Population III star formation. The calculations include self-consistent multifrequency conservative transfer of UV photons together with nine-species primordial chemistry and all relevant radiative processes. The ultimate fates of these halos varies with central density and proximity to the central source but generally fall into one of four categories. Diffuse halos with central densities below 2 - 3 cm$^{-3}$ are completely ionized and evaporated by the central star anywhere in the cluster. More evolved halo cores at densities above 2000 cm$^{-3}$ are impervious to both ionizing and Lyman-Werner flux at most distances from the star and collapse of their cores proceeds without delay. Radiative feedback in halos of intermediate density can be either positive or negative, depending on how the I-front remnant shock both compresses and deforms the core and enriches it with H$_2$. We find that the 120 M$_\odot$ star photodissociates H$_2$ in most halos within the cluster but that catalysis by H- rapidly restores molecular hydrogen within a few hundred Kyr after the death of the star, with little delay in star formation. Our models exhibit significant departures from previous one-dimensional spherically-symmetric simulations, which are prone to serious errors due to unphysical geometric focusing effects.
With current near-infrared (NIR) instruments the near-infrared light scattered from interstellar clouds can be mapped over large areas. The surface brightness carries information on the line-of-sight dust column density. Therefore, scattered light could provide an important tool to study mass distribution in quiescent interstellar clouds at a high, even sub-arcsecond resolution. We wish to confirm the assumption that light scattering dominates the surface brightness in all NIR bands. Furthermore, we want to show that scattered light can be used for an accurate estimation of dust column densities in clouds with Av in the range 1-15mag. We have obtained NIR images of a quiescent filament in the Corona Australis molecular cloud. The observations provide maps of diffuse surface brightness in J, H, and Ks bands. Using the assumption that signal is caused by scattered light we convert surface brightness data into a map of dust column density. The same observations provide colour excesses for a large number of background stars. These data are used to derive an extinction map of the cloud. The two, largely independent tracers of the cloud structure are compared. Results. In regions below Av=15m both diffuse surface brightness and background stars lead to similar column density estimates. The existing differences can be explained as a result of normal observational errors and bias in the sampling of extinctions provided by the background stars. There is no indication that thermal dust emission would have a significant contribution even in the Ks band. The results show that, below Av=15mag, scattered light does provide a reliable way to map cloud structure. Compared with the use of background stars it can also in practice provide a significantly higher spatial resolution.
aims: We determine the solar abundance of phosphorus using co5bold 3D hydrodynamic model atmospheres. method: High resolution, high signal-to-noise solar spectra of the PI lines of Multiplet 1 at 1051-1068 nm are compared to line formation computations performed on a co5bold solar model atmosphere. results: We find A(P)=5.46+- 0.04, in good agreement with previous analysis based on 1D model atmospheres, due to the fact that the PI lines of Mult. 1 are little affected by 3D effects. We cannot confirm an earlier claim by other authors of a downward revision of the solar P abundance by 0.1 dex employing a 3D model atmosphere. Concerning other stars, we found modest (<0.1 dex) 3D abundance corrections for P among four F dwarf model atmospheres of different metallicity, being largest at lowest metallicity. conclusions: We conclude that 3D abundance corrections are generally rather small for the PI lines studied in this work. They are marginally relevant for metal-poor stars, but may be neglected in the Sun.
The energy spectrum of cosmic rays (CR) exhibits very characteristic power-like behavior with the "knee" structure. We consider a generalized statistical model for the production process of cosmic rays which accounts for such behavior in a natural way either by assuming the existence of temperature fluctuations in the source of CR, or by assuming specific temperature distribution of the CR sources. Both possibilities yield the so called Tsallis statistics and lead to the power-like distribution.
The angular clustering of 5 Ultrahigh Energy Cosmic Rays (UHECRs) in the combined published AGASA-HiRes data has a probability of ~ 2 10^-3 of occurring by chance. A first analysis of the implications of the event energies and angular spreading is presented, which is applicable if the source is close enough that GZK losses can be ignored. Under this assumption, the observed energies of the events in this cluster favor a bursting rather than continuously emitting source, with the events emitted on a time scale short compared with 300 D_Mpc years. Assuming the UHECRs experience many incoherent small magnetic deflections enroute from source to Earth, the arrival direction distribution allows estimation that < B^2 lambda > D ~ 7.7 nG^2 Mpc^2, where lambda is the coherence length of the field and D is the source distance. If the spectrum at the source ~ E^{-2}, the total isotropic equivalent energy emitted in UHECRs is > 10^43 D_Mpc^3 ergs.
The natural candidates for the realization of color superconductivity are the extremely dense cores of compact stars, many of which have very large magnetic fields, especially the so-called magnetars. In this paper we discuss how a color superconducting core can serve to generate and enhance the stellar magnetic field without appealing to a magnetohydrodynamic dynamo mechanism.
The HIgh-Time resolution (HIT) mode of FORS2 has 3 sub-modes that allow for imaging and spectroscopy over a range of timescales from milliseconds up to seconds. It is the only high time resolution spectroscopy mode available on an 8m class telescope. In imaging mode, it can be used to measure the pulse of pulsars and spinning white dwarfs in a variety of high throughput broad- and narrow-band filters. In spectroscopy mode it can take up to 10 spectra per second using a novel ''shift-and-wait'' clocking pattern for the CCD. It takes advantage of the user-designed masks which can be inserted into FORS2 to allow any two targets within the 6.8' x 6.8' field of view of FORS2 to be selected. A number of integration, or more precisely 'wait', times are available, which together with the high throughput GRISMs can observe the entire optical spectrum on a range of timescales.
We report the detection of \HI 21-cm absorption in the $z=0.96$ early-type lensing galaxy towards MG J0414+0534 with the Green Bank Telescope. The absorption, with total $N_{\rm HI}=1.6 (T_{\rm s}/f) \times 10^{18} {\rm cm}^{-2}$, is resolved into two strong components, probably due to the two strongest lens components, which are separated by 0.4\arcsec. Unlike the other three lenses which have been detected in \HI, J0414+0534 does not exhibit strong OH absorption, giving a OH/\HI column density ratio of $N_{\rm OH}/N_{\rm HI}\lapp10^{-6}$ (for $T_{\rm s}=100$ K, $T_{\rm x}=10$ K and $f_{\rm HI}=f_{\rm OH}=1$). This underabundance of molecular gas may indicate that the extreme optical--near-IR colour ($V-K=10.26$) along the line-of-sight is not due to the lens. We therefore suggest that despite the strong upper limits on molecular absorption at the quasar redshift, as traced by millimetre lines, the extinction occurs primarily in the quasar host galaxy.
We aim to derive the electron temperature Te in the gas of metal-rich star-forming galaxies, which can be obtained from their ratios of auroral lines [O II]7320,7330 to nebular lines [O II]3727, in order to establish a more robust mass-metallicity relationship, and compare the Te-based (O/H) abundances with those from empirical strong-line calibrations, such as R23. We obtained 27 spectra by stacking the spectra of several hundred (even several thousand) star-forming galaxies selected from the SDSS-DR4 in each of the 27 stellar mass bins from log(M*) ~8.0 to 10.6 (logMsun). This "stack" method sufficiently improves the signal-to-noise ratio of the auroral lines [O II]7320,7330, which allow us to reliably obtain the electron temperature t2 in the low ionization region from the ratio of [O II]7320,7330 to [O II]3727, then t3 in the high ionization region from t2 by using a relation, and then the direct (O/H) abundances from Te. The results show that the empirical R23 method will overestimate the log(O/H) by 0.2 to 0.6 dex for these moderate metal-rich galaxies. The new metal-mass relationship of the galaxies with moderate metallicities is fitted by a linear fit (12+log(O/H) =6.223+0.231*logM*) confirming that empirical methods significantly overestimate (O/H). We also derived their (N/O) abundance ratios on the basis of the Te method, which are consistent with the combination of the primary and secondary components of nitrogen. For actual use, we re-derive the relations of 12+log(O/H)(Bay) vs. logM* and 12+log(O/H)(Bay) vs. logR23 from the SDSS-DR4 data, which are a bit different from those derived from DR2.
We investigate a scenario of photons scattering by electrons within a relativistic outflow. The outflow is composed of discrete shells with different speeds. One shell emits radiation for a short duration. Some of this radiation is scattered by the shell(s) behind. We calculate in a simple two-shell model the observed scattered flux density as a function of: the observed primary flux density, the normalized arrival time delay between the two emission components, the Lorentz factor ratio of the two shells and the scattering shell's optical depth. Thomson scattering in a cold shell and Inverse Compton scattering in a hot shell are both considered. The results of our calculations are applied to the Gamma-Ray Bursts and the afterglows. We find that the scattered flux from a cold slower shell is small and likely to be detected only for those bursts with very weak afterglows. A hot scattering shell could give rise to a scattered emission as bright as the X-ray shallow decay component detected in many bursts, on a condition that the isotropically equivalent total energy carried by the hot electrons is large, $\sim 10^{52-56}$ erg. The scattered emission from a faster shell could appear as a late short $\gamma$/X-ray flash or become part of the prompt emission depending on the delay of the ejection of the shell.
We verify whether the O/H abundances of galaxies may be derived from the equivalent width (EW) R23 instead of the extinction-corrected flux R23, and eventually propose a method to improve the reliability of this empirical method which is often used for the non-flux calibrated spectra of galaxies. We select 37,173 star-forming galaxies from the SDSS-DR2 which offer a wide range of properties to test the EW method. The EW-R23 method is bringing a significant bias: for the bulk of SDSS galaxies, it may affect the determination of log(O/H) by factors ranging from -0.2 to 0.1 dex, and for some galaxies by factors ranging from -0.5 to 0.2 dex. We characterize this discrepancy (or bias) by alpha = (I_[OII]/I_Hbeta)/(EW_[OII]/EW_Hbeta) which is virtually independent of dust extinction, while tightly correlating with Dn(4000), although at a lower significance, with g-r colors. The EW-R23 method cannot be used as a proxy for the extinction-corrected flux R23 method. From analytical third-order polynomial fits of alpha versus g-r colors, we have been able to correct the EW-R23 method. With this additional and easy correction, the EW-R23 method provides O/H abundance values similar to those derived from the extinction-corrected flux R23 method within an accuracy of ~0.1 dex for >92% of the SDSS galaxies.
Transition region lines in active regions can become strongly enhanced in coronal footpoints and active region blinkers. The weak transition region lines found in the Solar-B/EIS wavebands will thus become useful for diagnostic studies of these events. EIS count rates predicted from SOHO/CDS spectra are presented, and a Mg VII density diagnostic is highlighted.
On June 12, 2007 the Cassini probe sent the images of a small moon of Saturn called Atlas which is located between the ring A and the small ring R/2004 S 1. These images have shown that the Atlas morphology is very different from other moons of similar dimensions. In the present article we propose a reasonable theory, to that we denominated "flying dune", that explains its morphologic characteristics from its magnitudes like mass, diameters and orbital radius, as well as its orbital position and the interpretation of the images caught by the Cassini probe.
Ultra high energy (UHE) particles of cosmic origin impact the lunar regolith and produce radio signals through Askaryan effect, signals that can be detected by Earth based radio telescopes. We calculate the expected sensitivity for observation of such events at the Giant Metrewave Radio Telescope (GMRT), both for UHE cosmic rays (CR) and UHE neutrino interactions. We find that for 30 days of observation time a significant number of detectable events is expected above $10^{20}$ eV for UHECR or neutrino fluxes close to the current limits. Null detection over a period of 30 days will lower the experimental bounds on UHE particle fluxes by magnitudes competitive to both present and future experiments at the very highest energies.
The stationary background flow in the spherically symmetric infall of a compressible fluid, coupled to the space-time defined by the static Schwarzschild metric, has been subjected to linearized perturbations. The perturbative procedure is based on the continuity condition and it shows that the coupling of the flow with the geometry of space-time brings about greater stability for the flow, to the extent that the amplitude of the perturbation, treated as a standing wave, decays in time, as opposed to the amplitude remaining constant in the Newtonian limit. In qualitative terms this situation simulates the effect of a dissipative mechanism in the classical Bondi accretion flow, defined in the Newtonian construct of space and time. As a result of this approach it becomes impossible to define an acoustic metric for a conserved spherically symmetric flow, described within the framework of Schwarzschild geometry. In keeping with this view, the perturbation, considered separately as a high-frequency travelling wave, also has its amplitude reduced.
Two cases of weakly and strongly stressed X-point collapse were considered. Here descriptors weakly and strongly refer to 20 % and 124 % unidirectional spatial compression of the X-point, respectively. The reconnection rate, defined as the out-of-plane electric field in the X-point (the magnetic null) normalised by the product of external magnetic field and Alfv\'en speeds, peaks at 0.11, with its average over 1.25 Alfv\'en times being 0.04. Electron energy distribution in the current sheet, at the high energy end of the spectrum, shows a power law distribution with the index varying in time, attaining a maximal value of -4.1 at the final simulation time step (1.25 Alfv\'en times). In the strongly stressed case, magnetic reconnection peak occurs 3.4 times faster and is more efficient. The peak reconnection rate now attains value 2.5, with the average reconnection rate over 1.25 Alfv\'en times being 0.5. The power law energy spectrum for the electrons in the current sheet attains now a steeper index of -5.5, a value close to the ones observed in the vicinity of X-type region in the Earth's magneto-tail. Within about one Alfv\'en time, 2% and 20% of the initial magnteic energy is converted into heat and accelerated particle energy in the case of weak and strong stress, respectively. In the both cases, during the peak of the reconnection, the quadruple out-of-plane magnetic field is generated, hinting possibly to the Hall regime of the reconnection. These results strongly suggest the importance of the collionless, stressed X-point collapse as a possible contributing factor to the solution of the solar coronal heating problem or more generally, as an efficient mechanism of converting magnetic energy into heat and super-thermal particle energy.
This article presents results of VLBI observations of regions of H2O maser activity in the Local Group galaxies M33 and IC10. Since all position measurements were made relative to extragalactic background sources, the proper motions of the two galaxies could be measured. For M33, this provides this galaxy's three dimensional velocity, showing that this galaxy is moving with a velocity of 190 +/- 59 km\s relative to the Milky Way. For IC10, we obtain a motion of 215 +/- 42 km/s relative to the Milky Way. These measurements promise a new handle on dynamical models for the Local Group and the mass and dark matter halo of Andromeda and the Milky Way.
The southern Auger Observatory provides an excellent test bed to study the radio detection of extensive air showers as an alternative, cost-effective, and accurate tool for cosmic-ray physics. The data from the radio setup can be correlated with those from the well-calibrated baseline detectors of the Pierre Auger Observatory. Furthermore, human-induced radio noise levels at the southern Auger site are relatively low. We have started an R&D program to test various radio-detection concepts. Our studies will reveal Radio Frequency Interferences (RFI) caused by natural effects such as day-night variations, thunderstorms, and by human-made disturbances. These RFI studies are conducted to optimise detection parameters such as antenna design, frequency interval, antenna spacing and signal processing. The data from our initial setups, which presently consist of typically 3 - 4 antennas, will be used to characterise the shower from radio signals and to optimise the initial concepts. Furthermore, the operation of a large detection array requires autonomous detector stations. The current design is aiming at stations with antennas for two polarisations, solar power, wireless communication, and local trigger logic. The results of this initial phase will provide an important stepping stone for the design of a few tens kilometers square engineering array
Using the IRAM 30-m telescope and the 15-m JCMT, we explore the value of para-formaldehyde (p-H_2CO) as a tracer of density and temperature of the molecular gas in external galaxies. The target of our observations are the lobes of the molecular ring around the center of the nearby prototypical starburst galaxy M 82. It is shown that p-H_2CO provides one of the rare direct molecular thermometers. Reproducing the measured line intensities with a large velocity gradient (LVG) model, we find densities of n_H2 ~ 7 10^3 cm^-3 and kinetic temperatures of T_kin ~ 200 K. The derived kinetic temperature is significantly higher than the dust temperature or the temperature deduced from ammonia (NH_3) lines, but our results agree well with the properties of the high-excitation component seen in CO. We also present the serendipitous discovery of the 4_2 - 3_1 line of methanol (CH_3OH) in the northeastern lobe, which shows -- unlike CO and H_2CO -- significantly different line intensities in the two lobes.
We built modelled spectra of stellar population at high resolution and with variable alpha-elements enhancements. Analysing spectra of Galactic globular clusters we show that it is possible to derive reliably and efficiently [Mg/Fe] using spectra integrated along the line-of-sight. These detailed measurements open perspectives for investigating the enrichment process on galaxies and star clusters.
The Arecibo L-band Feed Array Zone of Avoidance Survey (ALFA ZOA) will map 1350-1800 square degrees at low Galactic latitude, providing HI spectra for galaxies in regions of the sky where our knowledge of local large scale structure remains incomplete, owing to obscuration from dust and high stellar confusion near the Galactic plane. Because of these effects, a substantial fraction of the galaxies detected in the survey will have no optical or infrared counterparts. However, near infrared follow up observations of ALFA ZOA sources found in regions of lowest obscuration could reveal whether some of these sources could be objects in which little or no star formation has taken place ("dark galaxies"). We present here the results of ALFA ZOA precursor observations on two patches of sky totaling 140 square degrees (near l=40 degrees, and l=192 degrees). We have measured HI parameters for detections from these observations, and cross-correlated with the NASA/IPAC Extragalactic Database (NED). A significant fraction of the objects have never been detected at any wavelength. For those galaxies that have been previously detected, a significant fraction have no previously known redshift, and no previous HI detection.
In this paper we present multiband optical and UV Hubble Space Telescope photometry of the two Galactic globular clusters NGC 6388 and NGC 6441. We have obtained the first UV color-magnitude diagrams for NGC 6388 and NGC 6441. These diagrams confirm previous results, obtained in optical bands, about the presence of a sizeable stellar population of extremely hot horizontal branch stars. At least in NGC 6388, we find a clear indication that at the hot end of the horizontal branch the distribution of stars forms a hook-like feature, closely resembling those observed in NGC 2808 and Omega Centauri. We briefly review the theoretical scenarios that have been suggested for interpreting this observational feature. We also investigate the tilted horizontal branch morphology and provide further evidence that supports early suggestions that this feature cannot be interpreted as an effect of differential reddening. We show that a possible solution of the puzzle is to assume that a small fraction - ranging between 10-20% - of the stellar population in the two clusters is strongly helium enriched (Y=0.40 in NGC 6388 and Y=0.35 in NGC 6441). The occurrence of a spread in the He abundance between the canonical value (Y=0.26) and the quoted upper limits can significantly help in explaining the whole morphology of the horizontal branch and the pulsational properties of the variable stars in the target clusters.
Lorentz symmetry breaking at very high energies may lead to photon dispersion relations of the form omega^2=k^2+m^2+xi_n k^2(k/M_Pl)^n with new terms suppressed by a power n of the Planck mass M_Pl. We show that first and second order terms of size xi_1 >~ 10^(-14) and xi_2 >~ 10^(-6), respectively, would lead to a photon component in cosmic rays above 10^(19) eV that should already have been detected. Only effects suppressed by at least third order in the Planck scale appear consistent with observations.
We demonstrate that rapid expansion of the shocked surface layers of an O-Ne-Mg core following its collapse can result in r-process nucleosynthesis. As the supernova shock accelerates through these layers, it makes them expand so rapidly that free nucleons remain in disequilibrium with alpha-particles throughout most of the expansion. This allows heavy r-process isotopes including the actinides to form in spite of the very low initial neutron excess of the matter. We estimate that yields of heavy r-process nuclei from this site may be sufficient to explain the Galactic inventory of these isotopes.
Context.A new reduction of the astrometric data as produced by the Hipparcos mission has been published, claiming accuracies for nearly all stars brighter than magnitude Hp = 8 to be better, by up to a factor 4, than in the original catalogue. Aims.The new Hipparcos astrometric catalogue is checked for the quality of the data and the consistency of the formal errors as well as the possible presence of error correlations. The differences with the earlier publication are explained. Methods. The internal errors are followed through the reduction process, and the external errors are investigated on the basis of a comparison with radio observations of a small selection of stars, and the distribution of negative parallaxes. Error correlation levels are investigated and the reduction by more than a factor 10 as obtained in the new catalogue is explained. Results.The formal errors on the parallaxes for the new catalogue are confirmed. The presence of a small amount of additional noise, though unlikely, cannot be ruled out. Conclusions. The new reduction of the Hipparcos astrometric data provides an improvement by a factor 2.2 in the total weight compared to the catalogue published in 1997, and provides much improved data for a wide range of studies on stellar luminosities and local galactic kinematics.
We review our attempts to discover lost baryons at low redshift with ``X-ray forest'' of absorption lines from the warm-hot intergalactic medium. We discuss the best evidence to date along the Mrk 421 sightline. We then discuss the missing baryons in the Local Group and the significance of the z=0 absorption systems in X-ray spectra. We argue that the debate over the Galactic vs. extragalactic origin of the z=0 systems is premature as these systems likely contain both components. Observations with next generation X-ray missions such as Constellation-X and XEUS will be crucial to map out the warm-hot intergalactic medium.
A survey is given on the present knowledge of the polarized parton distribution functions. We give an outlook for further developments desired both on the theoretical as well on the experimental side to complete the understanding of the spin--structure of nucleons in the future.
Links to: arXiv, form interface, /find, astro-ph, /recent, /0708, /abs, contact, help (Access key information)
The origin of brown dwarfs (BDs) is still an unsolved mystery. While the standard model describes the formation of BDs and stars in a similar way recent data on the multiplicity properties of stars and BDs show them to have different binary distribution functions. Here we show that proper treatment of these uncovers a discontinuity of the multiplicity-corrected mass distribution in the very-low-mass star (VLMS) and BD mass regime. A continuous IMF can be discarded with extremely high confidence. This suggests that VLMSs and BDs on the one hand, and stars on the other, are two correlated but disjoint populations with different dynamical histories. The analysis presented here suggests that about one BD forms per five stars and that the BD-star binary fraction is about 2%-3% among stellar systems.
Luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) dominate the star formation rate budget of the universe at z > 1, yet no local measurements of their heavy element abundances exist. We measure nuclear or near-nuclear oxygen abundances in a sample of 100 star-forming LIRGs and ULIRGs using new, previously published, and archival spectroscopy of strong emission lines (including [O II] 3727, 3729 A) in galaxies with redshifts <z> ~ 0.1. When compared to local emission-line galaxies of similar luminosity and mass (using the near-infrared luminosity-metallicity and mass-metallicity relations), we find that LIRGs and ULIRGs are under-abundant by a factor of two on average. As a corollary, LIRGs and ULIRGs also have smaller effective yields. We conclude that the observed under-abundance results from the combination of a decrease of abundance with increasing radius in the progenitor galaxies and strong, interaction- or merger-induced gas inflow into the galaxy nucleus. This conclusion demonstrates that local abundance scaling relations are not universal, a fact that must be accounted for when interpreting abundances earlier in the universe's history when merger-induced star formation was the dominant mode. We use our local sample to compare to high-redshift samples and assess abundance evolution in LIRGs and ULIRGs. We find that abundances in these systems increased by ~0.2 dex from z ~ 0.6 to z ~ 0.1. Evolution from z ~ 2 submillimeter galaxies to z ~ 0.1 ULIRGs also appears to be present, though uncertainty due to spectroscopic limitations is large.
We present a review of the possible sources for r-process nuclei. It is known that there is as yet no self-consistent mechanism to provide abundant neutrons for a robust r-process in the neutrino-driven winds from nascent neutron stars. We consider that the heavy r-nuclei with mass numbers A>130 (Ba and above) cannot be produced in the neutrino-driven winds. Nonetheless, the r-process and the neutrino-driven winds may be directly or indirectly related by some unknown additional mechanism, which, for example, could provide ejecta with very short dynamic timescales of <0.004 s. This undetermined mechanism must supply a neutron source within the same general stellar sites that undergo core collapse to produce the neutron star. Observational data on low-metallicity stars in the Galactic halo show that sites producing the heavy r-nuclei do not produce Fe or any other elements between N and Ge. Insofar as a forming neutron star is key to producing the heavy r-nuclei, then the only possible sources are supernovae resulting from collapse of O-Ne-Mg cores or accretion-induced collapse of white dwarfs, neither of which produce the elements of the Fe group or those of intermediate mass (above C and N). Using a template star with high enrichments of heavy r-nuclei and another with low enrichments we develop a two-component model based on the abundances of Eu (from sources for heavy r-nuclei) and Fe (from Fe core-collapse supernovae). This model gives very good quantitative predictions for the abundances of all the other elements in those metal-poor stars with [Fe/H]<-1.5 for which the Eu and Fe abundances are known. (Abridged)
Angular momentum in our solar system is largely distributed between the Sun's rotation and the planetary orbits, with most of it residing in the orbital angular momentum of Jupiter. By treating the solar system as a two body central potential between the Sun and Jupiter, one can show that the orbital specific angular momentum of the two-body system exceeds the solar rotational specific angular momentum by nearly two orders of magnitude. We extend this analysis to the known extrasolar planets available in the Extrasolar Planet Encyclopedia and estimate the partitioning of each system's angular momentum into orbital and rotational components, ignoring the spin angular momentum of the planets. We find the range of partitioning of specific angular momentum in these systems to be large, with some systems near the stellar rotational limit, and others with orbital specific angular momentum exceeding this limit by three orders of magnitude. Planets in systems with high specific angular momentum have masses greater than two Jupiter masses, while those in systems with low specific angular momentum are below two Jupiter masses. This leads to the conclusion that low mass planets lose angular momentum more efficiently, and are thus more prone to migration, than larger mass planets.
Observations of outflows associated with pre-main-sequence stars reveal details about morphology, binarity and evolutionary states of young stellar objects. We present molecular line data from the Berkeley-Illinois-Maryland Association array and Five Colleges Radio Astronomical Observatory toward the regions containing the Herbig Ae/Be stars LkHa 198 and LkHa 225S. Single dish observations of 12CO 1-0, 13CO 1-0, N2H+ 1-0 and CS 2-1 were made over a field of 4.3' x 4.3' for each species. 12CO data from FCRAO were combined with high resolution BIMA array data to achieve a naturally-weighted synthesized beam of 6.75'' x 5.5'' toward LkHa 198 and 5.7'' x 3.95'' toward LkHa 225S, representing resolution improvements of factors of approximately 10 and 5 over existing data. By using uniform weighting, we achieved another factor of two improvement. The outflow around LkHa 198 resolves into at least four outflows, none of which are centered on LkHa 198-IR, but even at our resolution, we cannot exclude the possibility of an outflow associated with this source. In the LkHa 225S region, we find evidence for two outflows associated with LkHa 225S itself and a third outflow is likely driven by this source. Identification of the driving sources is still resolution-limited and is also complicated by the presence of three clouds along the line of sight toward the Cygnus molecular cloud. 13CO is present in the environments of both stars along with cold, dense gas as traced by CS and (in LkHa 225S) N2H+. No 2.6 mm continuum is detected in either region in relatively shallow maps compared to existing continuum observations.
We present abundances for Ru and Hf, compare them to abundances of other heavy elements, and discuss the problems found in determining Ru and Hf abundances with laboratory gf-values in the spectra of barium stars. We determined Ru and Hf abundances in a sample of giant and dwarf barium stars, by the spectral synthesis of two RuI (4080.574A and 4757.856A) and two HfII (4080.437A and 4093.155A) transitions. The stellar spectra were observed with FEROS/ESO, and the stellar atmospheric parameters lie in the range 4300 < Teff/K < 6500, -1.2 < [Fe/H] <= 0 and 1.4 <= log g < 4.6. The HfII 4080A and the RuI 4758A observed transitions result in a unreasonably high solar abundance, given certain known uncertainties, when fitted with laboratory gf-values. For these two transitions we determined empirical gf-values by fitting the observed line profiles of the spectra of the Sun and Arcturus. For the sample stars, this procedure resulted in a good agreement of Ru and Hf abundances given by the two available lines. The resulting Ru and Hf abundances were compared to those of Y, Nd, Sm and Eu. In the solar system Ru, Sm and Eu are dominated by the r-process and Hf, Nd and Y by the s-process, and all of these elements are enhanced in barium stars since they lie inside the s-process path. Ru abundances show large scatter when compared to other heavy elements, whereas Hf abundances show less scatter and closely follow the abundances of Sm and Nd, in good agreement with theoretical expectations. We also suggest a possible, unexpected, correlation of Ru and Sm abundances. The observed behaviour in abundances is probably due to variations in the 13C pocket efficiency in AGB stars, and, though masked by high uncertainties, hint at a more complex scenario than proposed by theory.
The most luminous Supernova SN2006gy (more than a 100 times brighter than a typical supernova) has been a challenge to explain by standard models. For example, pair instability supernovae which are luminous enough seem to have too slow a rise, and core collapse supernovae do not seem to be luminous enough. We present an alternative scenario involving the quark-nova phenomenon (an explosive transition of the newly born neutron star to a quark star) in which a second explosion (delayed) occurs inside the ejecta of a normal supernova. The reheated supernova ejecta can radiate at higher levels for longer periods of time primarily due to reduced adiabatic expansion losses, unlike the standard supernova case. We find an encouraging match between the resulting lightcurve and that observed in the case of SN2006gy suggesting that we might have at hand the first ever signature of a quark-nova.
Absorption spectra of high redshift quasars exhibit an increasingly thick Ly-alpha forest towards z~6. However, the interpretation of these spectra is complicated by the fact that the Ly-alpha optical depth is already large for neutral hydrogen fractions in excess of 10^-4, and also because quasars are expected to reside in dense regions of the IGM. We present a model for the evolution of the ionization state of the IGM which is applicable to the dense, biased regions around high-redshift quasars as well as more typical regions in the IGM, and combine this with numerical radiative transfer simulations. Our model is able to simultaneously reproduce the observed Ly-alpha forest opacity at 4<z<6, the ionizing photon mean-free-path at z~4 and the rapid evolution of highly ionized near-zone sizes around high-redshift quasars at 5.8<z<6.4. We find that within 5 physical Mpc of a high redshift quasar, the evolution of the ionization state of the IGM precedes that in more typical regions by around 0.3 redshift units. More importantly, when combined with the rapid increase in the ionizing photon mean-free-path expected shortly after overlap, this offset results in an ionizing background near the quasar which exceeds the value in the rest of the IGM by a factor of ~2-3. We further find that in the post-overlap phase of reionization the size of the observed quasar near-zones is not directly sensitive to the neutral hydrogen fraction of the IGM. Instead, these sizes probe the level of the background ionization rate and the temperature of the surrounding IGM. The observed rapid evolution of the quasar near-zone sizes at 5.8<z<6.4 can thus be explained by the rapid evolution of the ionizing background, which in our model is caused by the completion of overlap at the end of reionization by 6<z<7.
We examine the published light curves (LCs) of 117 X-ray binary pulsars, focusing on the dependence of their light curves on the observed energy bands. It is found that the energy dependence of the LCs appears only when the X-ray luminosity is larger than ~ 5 x 10^36 erg/s. Assuming that the behavior of light curve is related to the radiative accretion column on the neutron star surface, this energy threshold can be considered as the observational proof of the accretion column formation proposed by Basko and Sunyaev. Once we can grasp the existence of radiative column, we can also obtain several useful informations on the neutron star properties. As an instance, we perform the statistical analysis of the orientation angle of the magnetic axis, and we find that the inclination angle of magnetic axis should be small in order to explain the observed statistics.
The relationship between the metric and nonrelativistic matter distribution depends on the theory of gravity and additional fields, hence providing a possible way of distinguishing competing theories. With the assumption that the geometry and kinematics of the homogeneous universe have been measured, we present a procedure for understanding and testing the relationship between the cosmological matter distribution and metric perturbations (along with their respective evolution) using the ratio of the physical size of the perturbation to the size of the horizon as our small expansion parameter. We expand around Newtonian gravity on linear, sub-horizon scales with coefficient functions in front of the expansion parameter. Our framework relies on an ansatz which ensures that (i) the Poisson equation is recovered on small scales (ii) the metric variables (and any additional fields) are generated and supported by the nonrelativistic matter overdensity. The scales for which our framework is intended are small enough so that cosmic variance does not significantly limit the accuracy of the measurements and large enough to avoid complications due to nonlinear effects and baryon cooling. From a theoretical perspective, the coefficient functions provide a general framework for contrasting the consequences of LCDM and its alternatives. We calculate the coefficient functions for general relativity (GR) with a cosmological constant and dark matter, GR with dark matter and quintessence, scalar-tensor theories (STT), f(R) gravity and braneworld (DGP) models. For observers, constraining the coefficient functions provides a streamlined approach for testing gravity in a scale dependent matter. We briefly discuss the observations best suited for an application of our framework.
AKARI, the first Japanese satellite dedicated to infrared astronomy, was launched on 2006 February 21, and started observations in May of the same year. AKARI has a 68.5 cm cooled telescope, together with two focal-plane instruments, which survey the sky in six wavelength bands from the mid- to far-infrared. The instruments also have the capability for imaging and spectroscopy in the wavelength range 2 - 180 micron in the pointed observation mode, occasionally inserted into the continuous survey operation. The in-orbit cryogen lifetime is expected to be one and a half years. The All-Sky Survey will cover more than 90 percent of the whole sky with higher spatial resolution and wider wavelength coverage than that of the previous IRAS all-sky survey. Point source catalogues of the All-Sky Survey will be released to the astronomical community. The pointed observations will be used for deep surveys of selected sky areas and systematic observations of important astronomical targets. These will become an additional future heritage of this mission.
We describe the flight performance of the cryogenic system of the infrared astronomical satellite AKARI, which was successfully launched on 2006 February 21 (UT). AKARI carries a 68.5 cm telescope together with two focal plane instruments, Infrared Cameras (IRC) and Far Infrared Surveyor (FIS), all of which are cooled down to cryogenic temperature to achieve superior sensitivity. The AKARI cryogenic system is a unique hybrid system, which consists of cryogen (liquid helium) and mechanical coolers (2-stage Stirling coolers). With the help of the mechanical coolers, 179 L (26.0 kg) of super-fluid liquid helium can keep the instruments cryogenically cooled for more than 500 days. The on-orbit performance of the AKARI cryogenics is consistent with the design and pre-flight test, and the boil-off gas flow rate is as small as 0.32 mg/s. We observed the increase of the major axis of the AKARI orbit, which can be explained by the thrust due to thermal pressure of vented helium gas.
We present new observations on PKS 2155-304 with the Chandra Low Energy Transmission Grating Spectrometer (LETG), using the Advanced CCD Imaging Spectrometer (ACIS). We confirm the detection of an absorption line plausibly identified as OVIII Ly-alpha from the warm-hot intergalactic medium associated with a small group of galaxies along the line of sight, as originally reported by Fang et al. 2002 (here after FANG02). Combining the previous observations in FANG02 and five new, long observations on the same target, we increase the total exposure time by a factor of three, and the total counts per resolution element by a factor of five. The measured line equivalent width is smaller than that observed in FANG02, but still consistent at 90% confidence. We also analyze the XMM-Newton observations on the same target, as well as observations using the Chandra LETG and the High Resolution Camera (HRC) combination. These observations have been used to challenge our reported detection. While no line is seen in either the XMM-Newton and the Chandra LETG+HRC data, we find that our result is consistent with the upper limits from both data sets. We attribute the non-detection to (1) higher quality of the Chandra LETG+ACIS spectrum, and (2) the rather extended wings of the line spread functions of both the XMM RGS and the Chandra LETG+HRC. We discuss the implication of our observation on the temperature and density of the absorber. We also confirm the detection of z ~ 0 OVII absorption and, comparing with previous Chandra analysis, we obtain much tighter constraints on the line properties.
This paper reports the discovery of a bright X-ray transient source, Suzaku J1305-4913, in the south-west arm of the nearby Seyfert II galaxy NGC 4945. It was detected at a 0.5 -- 10 keV flux of $2.2 \times 10^{-12}$ erg cm$^{-2}$ s$^{-1}$ during the Suzaku observation conducted on 2006 January 15 -- 17, but was undetectable in a shorter observation on 2005 August 22 --23, with an upper limit of $1.7 \times 10^{-14}$ erg cm$^{-2}$ s$^{-1}$ (90% confidence level). At a distance of 3.7 Mpc, the bolometric luminosity of the source becomes $L_{\rm bol} = 4.4 \times 10^{39} \alpha$ erg s$^{-1}$, where $\alpha = (\cos 60^\circ / \cos i)$ and $i$ is the disk inclination. Therefore, the source is classified into so-called ultraluminous X-ray sources (ULXs). The time-averaged X-ray spectrum of the source is described by a multi-color disk model, with the innermost accretion disk temperature of $T_{\rm in} = 1.69_{-0.05}^{+0.06}$ keV. During the 2006 January observation, it varied by a factor of 2 in intensity, following a clear correlation of $L_{\rm bol} \propto T_{\rm in}^4$. It is inferred that the innermost disk radius $R_{\rm in}$ stayed constant at $R_{\rm in} = 79_{-3.9}^{+4.0} \alpha^{1/2}$ km, suggesting the presence of a standard accretion disk. Relating $R_{\rm in}$ with the last stable orbit around a non-rotating black hole yields a rather low black hole mass, $\sim 9 \alpha^{1/2}$ solar masses, which would imply that the source is shining at a luminosity of $\sim3 \alpha^{1/2} $ times the Eddington limit. These results can be better interpreted by invoking sub-Eddington emission from a rapidly spinning black hole with a mass of 20 -- 130 solar masses.
PAMELA is a satellite borne experiment designed to study with great accuracy cosmic rays of galactic, solar, and trapped nature in a wide energy range protons: 80 MeV-700 GeV, electrons 50 MeV-400 GeV). Main objective is the study of the antimatter component: antiprotons (80 MeV-190 GeV), positrons (50 MeV-270 GeV) and search for antimatter with a precision of the order of 10^-8). The experiment, housed on board the Russian Resurs-DK1 satellite, was launched on June, 15, 2006 in a 350*600 km orbit with an inclination of 70 degrees. The detector is composed of a series of scintillator counters arranged at the extremities of a permanent magnet spectrometer to provide charge, Time-of-Flight and rigidity information. Lepton/hadron identification is performed by a Silicon-Tungsten calorimeter and a Neutron detector placed at the bottom of the device. An Anticounter system is used offline to reject false triggers coming from the satellite. In self-trigger mode the Calorimeter, the neutron detector and a shower tail catcher are capable of an independent measure of the lepton component up to 2 TeV. In this work we describe the experiment, its scientific objectives and the performance in the first months after launch.
We use galaxy and dark halo data from the public database for the Millennium Simulation to study the growth of galaxies in the De Lucia et al. (2006) model for galaxy formation. Previous work has shown this model to reproduce many aspects of the systematic properties and the clustering of real galaxies, both in the nearby universe and at high redshift. It assumes the stellar masses of galaxies to increase through three processes, major mergers, the accretion of smaller satellite systems, and star formation. We show the relative importance of these three modes to be a strong function of stellar mass and of redshift. Galaxy growth through major mergers depends strongly on stellar mass, but only weakly on redshift. Except for massive systems, minor mergers contribute more to galaxy growth than major mergers at all redshifts and at all stellar masses. For galaxies significantly less massive than the Milky Way, star formation dominates the growth at all epochs. For galaxies significantly more massive than the Milky Way, growth through mergers is the dominant process at all epochs. At a stellar mass of $6\times 10^{10}M_\odot$, star formation dominates at $z>1$ and mergers at later times. At every stellar mass, the growth rates through star formation increase rapidly with increasing redshift. Specific star formation rates are a decreasing function of stellar mass not only at $z=0$ but also at all higher redshifts. For comparison, we carry out a similar analysis of the growth of dark matter halos. In contrast to the galaxies, growth rates depend strongly on redshift, but only weakly on mass. They agree qualitatively with analytic predictions for halo growth.
We use the Monte-Carlo Markov Chain method to explore the dark energy property and the cosmic curvature by fitting two popular dark energy parameterizations to the observational data. The new 182 gold supernova Ia data and the ESSENCE data both give good constraint on the DE parameters and the cosmic curvature for the dark energy model $w_0+w_a z/(1+z)$. The cosmic curvature is found to be $|\Omega_k|\alt 0.03$. For the dark energy model $w_0+w_a z/(1+z)^2$, the ESSENCE data gives better constraint on the cosmic curvature and we get $|\Omega_k|\leq 0.02$.
The nearby face-on spiral galaxy M101 has been observed with the Far-Infrared Surveyor (FIS) onboard AKARI. The far-infrared four-band images reveal fine spatial structures of M101, which include global spiral patterns, giant HII regions embedded in outer spiral arms, and a bar-like feature crossing the center. The spectral energy distribution of the whole galaxy shows the presence of the cold dust component (18 K) in addition to the warm dust component (55 K). The distribution of the cold dust is mostly concentrated near the center, and exhibits smoothly distributed over the entire extent of the galaxy, whereas the distribution of the warm dust indicates some correlation with the spiral arms, and has spotty structures such as four distinctive bright spots in the outer disk in addition to a bar-like feature near the center tracing the CO intensity map. The star-formation activity of the giant HII regions that spatially correspond to the former bright spots is found to be significantly higher than that of the rest of the galaxy. The latter warm dust distribution implies that there are significant star-formation activities in the entire bar filled with molecular clouds. Unlike our Galaxy, M101 is a peculiar normal galaxy with extraordinary active star-forming regions.
p-mode oscillations in solar-like stars are excited by the outer convection zone in these stars and reflected close to the surface. The p-modes are trapped inside an acoustic cavity, but the modes only stay trapped up to a given frequency (known as the acoustic cut-off frequency) as modes with larger frequencies are generally not reflected at the surface. This means that modes with frequency larger than the acoustic cut-off frequency must be traveling waves. The high-frequency modes may provide information about the physics in the outer layers of the stars and the excitation source and are therefore highly interesting as it is the estimation of these two phenomena that causes some of the largest uncertainties when calculating stellar oscillations. High-frequency modes have been detected in the Sun, beta Hydri and in alpha Cen A & B by smoothing the so-called echelle diagram and the large frequency separation as a function of frequency have been estimated. The large frequency separation has been compared with a simple model of the acoustic cavity which suggests that the reflectivity of the photosphere is larger at high frequency than predicted by standard models of the solar atmosphere and that the depth of the excitation source is larger than what has been estimated by other models and might depend on the order n and degree l of the modes.
Using SDSS I data, we have analysed the stellar distribution of the Leo II dwarf spheroidal galaxy (distance of 233 kpc) to search for evidence of tidal deformation. The existing SDSS photometric catalogue contains gaps in regions of high stellar crowding, hence we filled the area at the centre of Leo II using the DAOPHOT algorithm applied to the SDSS images. The combined DAOPHOT-SDSS dataset contains three-filter photometry over a 4x4 square degree region centred on Leo II. By defining a mask in three-filter colour-magnitude space, we removed the majority of foreground field stars. We have measured the following Leo II structural parameters: a core radius of r_c = 2.64 +/- 0.19 arcmin (178 +/- 13 pc), a tidal radius of r_t = 9.33 +/- 0.47 arcmin (632 +/- 32 pc) and a total V-band luminosity of L_V = (7.4 +/- 2.0) times 10^5 L_sun (M_V = -9.9 +/- 0.3). Our comprehensive analysis of the Leo II structure did not reveal any significant signs of tidal distortion. The internal structure of this object contains only mild isophotal twisting. A small overdensity was discovered appoximately 4.5 tidal radii from the Leo II centre, however we conclude it is unlikely to be material tidally stripped from Leo II based on its stellar population, and is most likely a foreground overdensity of stars. Our results indicate that the influence of the Galactic graviational field on the structure of Leo II has been relatively mild. We rederived the mass-to-light ratio of this system using existing kinematic data combined with our improved structural measurements, and favour the scenario in which Leo II is strongly dominated by dark matter with (M/L)_V ~ 100 in solar units.
We present the observations of the reflection nebulae IC4954 and IC4955 region with the Infrared Camera (IRC) and the Far-Infrared Surveyor (FIS) on board the infrared astronomical satellite AKARI during its performance verification phase. We obtained 7 band images from 7 to 160um with higher spatial resolution and higher sensitivities than previous observations. The mid-infrared color of the S9W (9um) and L18W (18um) bands shows a systematic variation around the exciting sources. The spatial variation in the mid-infrared color suggests that the star-formation in IC4954/4955 is progressing from south-west to north-east. The FIS data also clearly resolve two nebulae for the first time in the far-infrared. The FIS 4-band data from 65um to 160um allow us to correctly estimate the total infrared luminosity from the region, which is about one sixth of the energy emitted from the existing stellar sources. Five candidates for young stellar objects have been detected as point sources for the first time in the 11um image. They are located in the red S9W to L18W color regions, suggesting that current star-formation has been triggered by previous star-formation activities. A wide area map of the size of about 1 x 1 (deg^2) around the IC4954/4955 region was created from the AKARI mid-infrared all-sky survey data. Together with the HI 21cm data, it suggests a large hollow structure of a degree scale, on whose edge the IC4954/4955 region has been created, indicating star formation over three generations in largely different spatial scales.
We combine CaII/NaI absorption and HI 21 cm emission line measurements to analyse the metal abundances, the distribution, the small-scale structure, and the physical conditions of intermediate- and high-velocity gas in the Galactic halo.
The new L-band 7-feed-array at the 100-m telescope in Effelsberg will be used
to perform an unbiased fully sampled HI survey of the entire northern
hemisphere observing the galactic and extragalactic sky using simultaneously
two different backends.
The survey will be extremely valuable for a broad range of research topics:
study of the low-mass end of the HI mass function (HIMF) in the local volume,
environmental and evolutionary effects (as seen in the HIMF), the search for
galaxies near low-redshift Lyman-alpha absorbers, and analysis of multiphase
and extraplanar gas, HI shells, and ultra-compact high-velocity-clouds.
RV UMa is one of the most extensively studied RR Lyrae stars showing Blazhko modulation. Its photometric observations cover more than 90 years. The published photoelectric observations of RV UMa obtained at the Konkoly Observatory (Kanyo, 1976) were re-considered and completed with previously unpublished data. During the time interval of the observations the periods of both the pulsation and the modulation varied within the ranges of 0.000007 and 0.9 days, respectively. We have found a definite but not strict inverse relation between the pulsation and modulation periods of RV UMa.
We have observed EY Draconis with the 24`` telescope of Konkoly Observatory in Budapest for 64 nights. In the first obse rving season the star produced a stable light curve for more than 60 rotation periods, however, the light curves observe d in the next season and the spot modelling show clear evidence of the evolution of the spotted stellar surface. The chan ges of the maximum brightness level suggests the existence of a longer period of about 300 days, which seems to be confir med by the ROTSE archival data.
Observations of the Cosmic Microwave Background (CMB) have revealed an unexpected quadrupole-octopole alignment along a preferred axis pointing toward the Virgo cluster. We here investigate whether this feature can be explained in the framework of the concordance model by secondary anisotropies produced by the non-linear evolution of the gravitational potential, the so-called Rees-Sciama (RS) effect. We focus on the effect caused by the local superclusters, which we calculate using a constrained high-resolution hydrodynamical simulation, based on the IRAS 1.2-Jy all-sky galaxy redshift survey, which reproduces the main structures of our Universe out to a distance of 110 Mpc from our Galaxy. The resulting RS effect peaks at low multipoles and has a minimum/maximum amplitude of -6.6\mu K 1.9\mu K. Even though its quadrupole is well aligned with the one measured for the CMB, its amplitude is not sufficient to explain the observed magnitude of the quadrupole/octopole alignment. In addition, we analyze the WMAP-3 data with a linear matched filter in an attempt to determine an upper limit for the RS signal amplitude on large scales. We found that it is possible to infer a weak upper limit of 30\mu K for its maximum amplitude.
The first underground data run of the ZEPLIN-II experiment has set a limit on the nuclear recoil rate in the two-phase xenon detector for direct dark matter searches. In this paper the results from this run are converted into the limits on spin-dependent WIMP-proton and WIMP-neutron cross-sections. The minimum of the curve for WIMP-neutron cross-section corresponds to 0.07 pb at a WIMP mass of around 65 GeV.
We model the electrons/positrons produced by dark matter annihilations in the colliding galaxy cluster system 1E0561 (Bullet). These, confined by the Magnetic filed, mark a clear track of the bullet, which passes through the main cluster with a speed of 3000-5000 km/s. Adding the effect of subhalos in each cluster we find the annihilation rate is enhanced greatly and the density of positrons in the trail is similar to that within the bullet cluster. These open the possibility of a unambiguous detection of the annihilation signal through, e.g., SZ effects, at far away from the thermal electrons.
In this work, we constrain the new agegraphic dark energy (NADE) proposed in arXiv:0708.0884 by using the cosmological observations of type Ia supernovae (SNIa), cosmic microwave background (CMB) and baryon acoustic oscillation (BAO) measurement from large scale structures (LSS). Thanks to its special analytic features in the radiation-dominated and matter-dominated epochs, NADE is actually a {\em single-parameter} model. If the single model parameter $n$ is given, all other physical quantities of NADE are determined correspondingly. The joint analysis gives the best-fit parameter (with $1\sigma$ uncertainty) $n=2.716^{+0.111}_{-0.109}$. The corresponding $\Omega_{m0}$, $\Omega_{q0}$ and $w_{q0}$ (with $1\sigma$ uncertainties) are $0.295^{+0.020}_{-0.020}$, $0.705^{+0.020}_{-0.020}$ and $-0.794^{+0.006}_{-0.005}$ respectively. In addition, we find that the coincidence problem can be solved naturally in the NADE model provided that $n$ is of order unity.
The impact of active galactic nuclei on low-ionization nuclear emission-line regions (LINERs) remains a vigorous field of study. We present preliminary results from a study of the mid-infrared atomic emission lines of LINERs with the Spitzer Space Telescope. We assess the ubiquity and properties of AGN in LINERs using this data. We discuss what powers the mid-infrared emission lines and conclude that the answer depends unsurprisingly on the emission line ionization state and, more interestingly, on the infrared luminosity.
Absolute calibration of the Pierre Auger Observatory fluorescence detectors uses a 375 nm light source at the telescope aperture. This end-to-end technique accounts for the combined effects of all detector components in a single measurement. The relative response has been measured at wavelengths of 320, 337, 355, 380 and 405 nm, defining a spectral response curve which has been normalized to the absolute calibration. Before and after each night of data taking a relative calibration of the phototubes is performed. This relative calibration is used to track both short and long term changes in the detector's response. A cross check of the calibration in some phototubes is performed using an independent laser technique. Overall uncertainties, current results and future plans are discussed.
Globular clusters in the Milky Way have characteristic velocity dispersions that are consistent with the predictions of Newtonian gravity, and may be at odds with Modified Newtonian Dynamics (MOND) and possibly the cold dark matter model. We discuss a modified gravity (MOG) theory that can successfully model the velocity dispersions of GCs in the Galactic neighborhood. MOG produces velocity dispersion predictions for GCs orbiting far from the Galactic center that are clearly distinct from the MOND and $\Lambda$CDM predictions. New observations of distant GCs may produce a strong criteria that can be used to distinguish between competing gravitational theories.
Data assimilation techniques, developed in the last two decades mainly for weather prediction, produce better forecasts by taking advantage of both theoretical/numerical models and real-time observations. In this paper, we explore the possibility of applying the data-assimilation techniques known as 4D-VAR to the prediction of solar flares. We do so in the context of a continuous version of the classical cellular-automaton-based self-organized critical avalanche models of solar flares introduced by Lu and Hamilton (Astrophys. J., 380, L89, 1991). Such models, although a priori far removed from the physics of magnetic reconnection and magneto-hydrodynamical evolution of coronal structures, nonetheless reproduce quite well the observed statistical distribution of flare characteristics. We report here on a large set of data assimilation runs on synthetic energy release time series. Our results indicate that, despite the unpredictable (and unobservable) stochastic nature of the driving/triggering mechanism within the avalanche model, 4D-VAR succeeds in producing optimal initial conditions that reproduce adequately the time series of energy released by avalanches/flares. This is an essential first step towards forecasting real flares.
Given that dynamically significant magnetic fields in at least some massive stars have now been measured, our contribution addresses the question, to what extent can fields be directly detected in circumstellar gas? The question speaks directly to the very interesting topic of line-driving physics coupled with magnetized plasmas, and how this coupling produces structure in the wind flow. We focus our attention on weak-field diagnostics. These come in two main types: the Hanle effect, which pertains to coherence effects for linear polarization from line scattering, and the weak longitudinal Zeeman effect, which pertains to circular polarization in lines.
A search for fossil groups in the Sloan Digital Sky Survey was performed using virtual observatory tools. A cross-match of the positions of all SDSS Luminous Red Galaxies (with r < 19 and measured spectroscopic redshifts) with sources in the ROSAT All-Sky Survey catalog resulted in a list of elliptical galaxies with extended X-ray emission (with a galaxy/ROSAT-source distance of less than 0.5 arcmin in all cases). A search for neighbors of the selected elliptical galaxies within a radius of $0.5 h_{70}^{-1}$ Mpc was conducted taking into account the r-band magnitudes and spectroscopic or photometric redshifts of all objects within this area, leading to a sample of 34 candidate fossil groups. Considering this sample, the estimated space density of fossil systems is $n =(1.0 \pm 0.6) \times 10^{-6}$ $h_{50}^3$ Mpc$^{-3}$.
We investigate whether explicit models of warped D-brane inflation are possible in string compactifications. To this end, we study the potential for D3-brane motion in a warped conifold that includes holomorphically-embedded D7-branes involved in moduli stabilization. The presence of the D7-branes significantly modifies the inflaton potential. We construct an example based on a very simple and symmetric embedding due to Kuperstein, z_1 = constant, in which it is possible to fine-tune the potential so that slow roll inflation can occur. The resulting model is rather delicate: inflation occurs in the vicinity of an inflection point, and the cosmological predictions are extremely sensitive to the precise shape of the potential.
We present a detailed analysis of an explicit model of warped D-brane inflation, incorporating the effects of moduli stabilization. We consider the potential for D3-brane motion in a warped conifold background that includes fluxes and holomorphically-embedded D7-branes involved in moduli stabilization. Although the D7-branes significantly modify the inflaton potential, they do not correct the quadratic term in the potential, and hence do not cause a uniform change in the slow-roll parameter eta. Nevertheless, we present a simple example based on the Kuperstein embedding of D7-branes, z_1=constant, in which the potential can be fine-tuned to be sufficiently flat for inflation. To derive this result, it is essential to incorporate the fact that the compactification volume changes slightly as the D3-brane moves. We stress that the compactification geometry dictates certain relationships among the parameters in the inflaton Lagrangian, and these microscopic constraints impose severe restrictions on the space of possible models. We note that the shape of the final inflaton potential differs from projections given in earlier studies: in configurations where inflation occurs, it does so near an inflection point. Finally, we comment on the difficulty of making precise cosmological predictions in this scenario. This is the companion paper to arXiv:0705.3837.
The k-essence theories admit in general the superluminal propagation of the perturbations on classical backgrounds. We show that in spite of the superluminal propagation the causal paradoxes do not arise in these theories and in this respect they are not less safe than General Relativity.
Neutralino annihilations in the Sun to weak boson and top quark pairs lead to high-energy neutrinos that can be detected by the IceCube and KM3 experiments in the search for neutralino dark matter. We calculate the neutrino signals from real and virtual WW, ZZ, Zh, and $t \bar t$ production and decays, accounting for the spin-dependences of the matrix elements, which can have important influences on the neutrino energy spectra. We take into account neutrino propagation including neutrino oscillations, matter-resonance, absorption, and nu_tau regeneration effects in the Sun and evaluate the neutrino flux at the Earth. We concentrate on the compelling Focus Point (FP) region of the supergravity model that reproduces the observed dark matter relic density. For the FP region, the lightest neutralino has a large bino-higgsino mixture that leads to a high neutrino flux and the spin-dependent neutralino capture rate in the Sun is enhanced by 10^3 over the spin-independent rate. For the standard estimate of neutralino captures, the muon signal rates in IceCube are identifiable over the atmospheric neutrino background for neutralino masses above M_Z up to 400 GeV.
Exact solutions of traversable wormholes are found under the assumption of spherical symmetry and the existence of a {\it non-static} conformal symmetry, which presents a more systematic approach in searching for exact wormhole solutions. In this work, a wide variety of solutions are deduced by considering choices for the form function, a specific linear equation of state relating the energy density and the pressure anisotropy, and various phantom wormhole geometries are explored. A large class of solutions impose that the spatial distribution of the exotic matter is restricted to the throat neighborhood, with a cut-off of the stress-energy tensor at a finite junction interface, although asymptotically flat exact solutions are also found. Using the ``volume integral quantifier,'' it is found that the conformally symmetric phantom wormhole geometries may, in principle, be constructed by infinitesimally small amounts of averaged null energy condition violating matter. Considering the tidal acceleration traversability conditions for the phantom wormhole geometry, specific wormhole dimensions and the traversal velocity are also deduced.
In this paper I discuss the magnetic phases of the three-flavor color superconductor. These phases can take place at different field strengths in a highly dense quark system. Given that the best natural candidates for the realization of color superconductivity are the extremely dense cores of neutron stars, which typically have very large magnetic fields, the magnetic phases here discussed could have implications for the physics of these compact objects.
The study of the formation of molecular hydrogen on low temperature surfaces is of interest both because it allows to explore elementary steps in the heterogeneous catalysis of a simple molecule and because of the applications in astrochemistry. Here we report results of experiments of molecular hydrogen formation on amorphous silicate surfaces using temperature-programmed desorption (TPD). In these experiments beams of H and D atoms are irradiated on the surface of an amorphous silicate sample. The desorption rate of HD molecules is monitored using a mass spectrometer during a subsequent TPD run. The results are analyzed using rate equations and the activation energies of the processes leading to molecular hydrogen formation are obtained from the TPD data. We show that a model based on a single isotope provides the correct results for the activation energies for diffusion and desorption of H atoms. These results can thus be used to evaluate the formation rate of H_2 on dust grains under the actual conditions present in interstellar clouds.
We shall first discuss motivation for higher dimension even for classical description of gravitational dynamics and then construct a black hole out of an anti-deSitter (AdS) spacetime by prescribing a coupling between Gauss-Bonnet parameter, constant curvature of extra dimensional space and $\Lambda$. This is a creation of pure curvature which establishes the fundamental reciprocity between matter and gravity/curvature.
Links to: arXiv, form interface, /find, astro-ph, /recent, /0708, /abs, contact, help (Access key information)
(Abridged) We conduct a series of high-resolution, dissipationless N-body simulations to investigate the cumulative effect of substructure mergers onto thin disk galaxies in the context of the LCDM paradigm of structure formation. Our simulation campaign is based on a hybrid approach. Substructure properties are culled directly from cosmological simulations of galaxy-sized cold dark matter (CDM) halos. In contrast to what can be inferred from statistics of the present-day substructure populations, accretions of massive subhalos onto the central regions of host halos, where the galactic disk resides, since z~1 should be common occurrences. One host halo merger history is subsequently used to seed controlled numerical experiments of repeated satellite impacts on an initially-thin Milky Way-type disk galaxy. We show that these accretion events produce several distinctive observational signatures in the stellar disk including: a ring-like feature in the outskirts; a significant flare; a central bar; and faint filamentary structures that (spuriously) resemble tidal streams. The final distribution of disk stars exhibits a complex vertical structure that is well-described by a standard ``thin-thick'' disk decomposition. We conclude that satellite-disk encounters of the kind expected in LCDM models can induce morphological features in galactic disks that are similar to those being discovered in the Milky Way, M31, and in other disk galaxies. These results highlight the significant role of CDM substructure in setting the structure of disk galaxies and driving galaxy evolution. Upcoming galactic structure surveys and astrometric satellites may be able to distinguish between competing cosmological models by testing whether the detailed structure of galactic disks is as excited as predicted by the CDM paradigm.
Flux-limited X-ray samples indicate that about half of rich galaxy clusters have cool cores. Why do only some clusters have cool cores while others do not? In this paper, cosmological N-body + Eulerian hydrodynamic simulations, including radiative cooling and heating, are used to address this question as we examine the formation and evolution of cool core (CC) and non-cool core (NCC) clusters. These adaptive mesh refinement simulations produce both CC and NCC clusters in the same volume. They have a peak resolution of 15.6 h^{-1} kpc within a (256 h^{-1} Mpc)^3 box. Our simulations suggest that there are important evolutionary differences between CC clusters and their NCC counterparts. Many of the numerical CC clusters accreted mass more slowly over time and grew enhanced cool cores via hierarchical mergers; when late major mergers occurred, the CC's survived the collisions. By contrast, NCC clusters experienced major mergers early in their evolution that destroyed embryonic cool cores and produced conditions that prevented CC re-formation. As a result, our simulations predict observationally testable distinctions in the properties of CC and NCC beyond the core regions in clusters. In particular, we find differences between CC versus NCC clusters in the shapes of X-ray surface brightness profiles, between the temperatures and hardness ratios beyond the cores, between the distribution of masses, and between their supercluster environs. It also appears that CC clusters are no closer to hydrostatic equilibrium than NCC clusters, an issue important for precision cosmology measurements.
Pair creation supernovae (PCSN) are thought to be produced from very massive low metallicity stars. The spectacularly bright SN 2006gy does show signatures expected from PCSNe. Here, we investigate the metallicity threshold below which PCSN can form and estimate their occurrence rate. We perform stellar evolution calculations for stars of 150$\mso$ and 250$\mso$ of low metallicity (Z$_{\odot}$/5 and Z$_{\odot}$/20), and analyze their mass loss rates. We find that the bifurcation between quasi-chemically homogeneous evolution for fast rotation and conventional evolution for slower rotation, which has been found earlier for massive low metallicity stars, persists in the mass range considered here. Consequently, there are two separate PCSN progenitor types: (I) Fast rotators produce PCSNe from very massive Wolf-Rayet stars, and (II) Slower rotators that generate PCSNe in hydrogen-rich massive yellow hypergiants. We find that hydrogen-rich PCSNe could occur at metallicities as high as Z$_{\odot}$/3, which -- assuming standard IMFs are still valid to estimate their birth rates -- results in a rate of about one PCSN per 1000 supernovae in the local universe, and one PCSN per 100 supernovae at a redshift of $z=5$. PCSNe from WC-type Wolf-Rayet stars are restricted to much lower metallicity.
We use the GALPROP code and the Advanced Composition Explorer (ACE) data to derive the cosmic ray (CR) isotopic composition at the sources. The composition is derived for two propagation models, diffusive reacceleration and plain diffusion. We show that the compositions derived assuming these two propagation models are different. We also compare the isotopic composition at the sources with the latest solar composition.
Recent high-resolution simulations of the formation of dark-matter halos have shown that the distribution of subhalos is scale-free, in the sense that if scaled by the velocity dispersion of the parent halo, the velocity distribution function of galaxy-sized and cluster-sized halos are identical. For cluster-sized halos, simulation results agreed well with observations. Simulations, however, predicted far too many subhalos for galaxy-sized halos. Our galaxy has several tens of known dwarf galaxies. On the other hands, simulated dark-matter halos contain thousands of subhalos. We have performed simulation of a single large volume and measured the abundance of subhalos in all massive halos. We found that the variation of the subhalo abundance is very large, and those with largest number of subhalos correspond to simulated halos in previous studies. The subhalo abundance depends strongly on the local density of the background. Halos in high-density regions contain large number of subhalos. Our galaxy is in the low-density region. For our simulated halos in low-density regions, the number of subhalos is within a factor of three to that of our galaxy. We argue that the ``missing dwarf problem'' is not a real problem but caused by the biased selection of the initial conditions in previous studies, which were not appropriate for field galaxies.
Frequencies in oscillating $\beta$ Cephei stars are usually inferred by means
of radial velocities measured from the SiIII triplet 4552-4574 A. These lines,
relatively insensitive to the variation of Teff through a pulsation cycle, show
small equivalent width variations. In this study we aimed to verify if the
behavior of radial velocities and equivalent widths measured from other ions
are compatible with the one observed from SiIII lines and than to verify the
possible vertical stratification along the stellar atmosphere. For this reason
we selected from our spectra a number of, unblended and well isolated, CII, NII
and OII lines besides the famous SiIII triplet. All those lines cover the range
in optical depth between -2.1 and -0.5. Unfortunately, we did not find any
differences in the radial velocities behavior line-by-line and then we derived
the frequency of the principal radial mode combining all the velocities derived
from each spectral line separately. The inferred frequency was
f1=5.249677+/-0.000007 c/d.
Another important task we would like to accomplish with this paper is to make
available to the community our large sample of spectroscopic data, that is 932
velocities and equivalent widths measured from our sample of C, N, O and Si
lines. All the spectra were acquired at the 1-meter class telescope of the
stellar station of the INAF - Osservatorio Astrofisico di Catania, in the
period starting from July, the 27th 2005 to November, the 1st 2006.
We report on results from Suzaku broadband X-ray observations of the southwest part of the Galactic supernova remnant (SNR) RX J1713.7-3946 with an energy coverage of 0.4-40 keV. The X-ray spectrum, presumably of synchrotron origin, is known to be completely lineless, making this SNR ideally suited for a detailed study of the X-ray spectral shape formed through efficient particle acceleration at high speed shocks. With a sensitive hard X-ray measurement from the HXD PIN on board Suzaku, we determine the hard X-ray spectrum in the 12--40 keV range to be described by a power law with photon index Gamma = 3.2+/- 0.2, significantly steeper than the soft X-ray index of Gamma = 2.4+/- 0.05 measured previously with ASCA and other missions. We find that a simple power law fails to describe the full spectral range of 0.4-40 keV and instead a power-law with an exponential cutoff with hard index Gamma = 1.50+/- 0.09 and high-energy cutoff epsilon_c = 1.2+/- 0.3 keV formally provides an excellent fit over the full bandpass. If we use the so-called SRCUT model, as an alternative model, it gives the best-fit rolloff energy of epsilon_{roll} = 0.95+/- 0.04 keV. Together with the TeV gamma-ray spectrum ranging from 0.3 to 100 TeV obtained recently by HESS observations, our Suzaku observations of RX J1713.7-3946 provide stringent constraints on the highest energy particles accelerated in a supernova shock.
To expand the range in the colour-magnitude diagram where asteroseismology can be applied, we organized a photometry campaign to find evidence for solar-like oscillations in giant stars in the globular cluster M4. The aim was to detect the comb-like p-mode structure characteristic for solar-like oscillations in the amplitude spectra. The two dozen main target stars are in the region of the bump stars and have luminosities in the range 50-140 Lsun. We collected 6160 CCD frames and light curves for about 14000 stars were extracted. We obtain high quality light curves for the K giants, but no clear oscillation signal is detected. High precision differential photometry is possible even in very crowded regions like the core of M4. Solar-like oscillations are probably present in K giants, but the amplitudes are lower than classical scaling laws predict.
Distortions of CMB temperature and polarization anisotropy maps caused by gravitational lensing, observable with high angular resolution and sensitivity, can be used to constrain the sterile neutrino mass, offering several advantages against the analysis based on the combination of CMB, LSS and Ly\alpha forest power spectra. As the gravitational lensing effect depends on the matter distribution, no assumption on light-to-mass bias is required. In addition, unlike the galaxy clustering and Ly\alpha forest power spectra, the projected gravitational potential power spectrum probes a larger range of angular scales, the non-linear corrections being required only at very small scales. Taking into account the changes in the time-temperature relation of the primordial plasma and the modification of the neutrino thermal potential, we compute the projected gravitational potential power spectrum and its correlation with the temperature in the presence of DM sterile neutrino. We show that the cosmological parameters are generally not biased when DM sterile neutrino is included. From this analysis we found a lower limit on DM sterile neutrino mass m_s >2.08 keV at 95% CL, consistent with the lower mass limit obtained from the combined analysis of CMB, SDSS 3D power spectrum and SDSS Ly\alpha forest power spectrum ($m_{\nu_s}>1.7$ keV). We conclude that although the information that can be obtained from lensing extraction is rather limited due to the high level of the lensing noise of Planck experiment, weak lensing of CMB offers a valuable alternative to constrain the dark matter sterile neutrino mass.
There are only a few dark galaxy candidates discovered to date in the local Universe, with one of the most prominent such object - the SW component in a merging system HI 1225+01. At the same time, the number of known very metal-poor gas-rich dwarfs, similar to IZw18 and SBS 0335-052 E,W have grown drastically during the last decade, from a dozen and a half to about five dozen. Many of them are very gas-rich (0.9-0.99 of all baryons are in gas). For several of them with the available deep photometry, no evidences of old stars are found. At least a half of such galaxies with prominent starbursts have more or less clear evidences of interactions, including advanced mergers. This suggests that a fraction of this group can be a kind of very stable protogalaxies (or "dark galaxies"), recently experienced strong disturbances from nearby massive galaxy-size bodies. Such a collision causes gas instabilities and collapse with the subsequent onset of starburst. We briefly discuss the morphology and gas kinematics for the sample of very metal-poor dwarfs that illustrate this picture. We then discuss the relation of these rare galaxies to the processes by which "dark galaxies" can time by time transform to optically visible galaxies.
We consider the shape of an accretion disc whose outer regions are misaligned with the spin axis of a central black hole and calculate the steady state form of the warped disc in the case where the viscosity and surface densities are power laws in the distance from the central black hole. We discuss the shape of the resulting disc in both the frame of the black hole and that of the outer disc. We note that some parts of the disc and also any companion star maybe shadowed from the central regions by the warp. We compute the torque on the black hole caused by the Lense-Thirring precession and hence compute the alignment and precession timescales. We generalise the case with viscosity and hence surface density independent of radius to more realistic density distributions for which the surface density is a decreasing function of radius. We find that the alignment timescale does not change greatly but the precession timescale is more sensitive. We also determine the effect on this timescale if we truncate the disc. For a given truncation radius, the the timescales are less affected for more sharply falling density distributions.
We present a VLT/FORS1 survey of Wolf-Rayet (WR) stars in the spiral galaxy NGC 1313. In total, 94 WR candidate sources have been identified from narrow-band imaging. Of these, 82 have been spectroscopically observed, for which WR emission features are confirmed in 70 cases, one of which also exhibits strong nebular HeII 686 emission. We also detect strong nebular HeII 4686 emission within two other regions of NGC 1313, one of which is a possible supernova remnant. Nebular properties confirm that NGC 1313 has a metal-content log(O/H)+12=8.23+/-0.06, in good agreement with previous studies. From continuum subtracted Halpha images we infer a global star formation rate of 0.6 Msun/yr. Using template LMC WR stars, spectroscopy reveals that NGC 1313 hosts a minimum of 84 WR stars. Our census comprises 51 WN stars, including a rare WN/C transition star plus 32 WC stars. In addition, we identify one WO star which represents the first such case identified beyond the Local Group. The bright giant HII region PES 1, comparable in Halpha luminosity to NGC 595 in M 33, is found to host a minimum of 17 WR stars. The remaining photometric candidates generally display photometric properties consistent with WN stars, such that we expect a global WR population of $\sim$115 stars with N(WR)/N(WO)~0.01 and N(WC)/N(WN)~0.4.
[Abridged] We present a comprehensive study of the metallicity dependence of the mass-loss rates in stationary stellar winds of hot massive stars. Assuming a power-law dependence of mass loss on metallicity, Mdot \propto Z^{m}, and adopting a theoretical relation between the terminal velocity and metallicity, v_inf \propto Z^{0.13} (Leitherer et al.), we find m = 0.83 +/- 0.16 for non-clumped outflows from an analysis of the wind momentum luminosity relation (WLR) for stars more luminous than 10^{5.2} Lsun. Within the errors, this result agrees with the prediction of m = 0.69 +/- 0.10 from Vink et al. For the high luminosity stars we find the mass loss rates to be greater than the predictions, implying wind clumping factors in their line-forming regions of ~4. For lower luminosity stars, the winds are so weak that their strengths cannot be reliably derived from optical lines, and one must rely on analysis of UV lines. In the low-luminosity domain the Galactic WLR is found to be much steeper than expected from theory, leading to a discrepancy between UV mass-loss rates and the predictions by a factor 100 at luminosities of L ~ 10^{4.75} Lsun, the origin of which is unknown. We emphasize that even if the current mass-loss rates of hot luminous stars are overestimated as a result of wind clumping, the degree of clumping would likely to be independent of metallicity, so the scalings derived in this study are expected to remain correct.
Consecutive height series of Ha spectra in solar limb spicules taken on the 53 cm coronagraph of Abastumani Astrophysical Observatory at the heights of 3800-8700 km above the photosphere have been analyzed. The aim is to observe oscillatory phenomena in spicules and consequently to trace wave propagations through the chromosphere. The Discrete Fourier Transform analysis of Ha Doppler shift time series constructed from the observed spectra at each height is used. Doppler velocities of solar limb spicules show oscillations with periods of 20-55 and 75-110 s. There is also the clear evidence of 3-min oscillations at the observed heights. The oscillations can be caused by wave propagations in thin magnetic flux tubes anchored in the photosphere. We suggest the granulation as a possible source for the wave excitation. Observed waves can be used as a tool for spicule seismology; the magnetic field strength in spicules at the height of about 6000 km above the photosphere is estimated as 12-15 G.
The propagation of radio emission in pulsar magnetospheres is discussed. We follow a kinematics model in order to derive dispersion relations for electromagnetic oscillations and transversal waves, propagating in a cold moving plasma. We have included relativistic corrections on the dispersion properties, involved with the relativistic motion of the emitting plasma. The occurrence of plasma instabilities is analyzed beside the conditions which should be fulfilled in order to permit the wave propagation and conversion in regions close to the cutoffs of the system. The existence of various frequencies of resonance has been predicted and we are working out these results in order to explain the low-frequency cutoffs observed in radio pulsar spectra.
We present the results of the interferometric observations of the circumstellar disk surrounding MWC 297 in the continuum at 230 GHz (1.3 mm) and in the (J=2-1) rotational transitions of $^{12}$CO,$^{13}$CO and C$^{18}$O using the Submillimeter Array. At a distance of 250 pc, MWC 297 is one of the closest, young massive stars (M$_{\star}$ $\sim$10 M$_{\odot}$) to us. Compact continuum emission is detected towards MWC 297 from which we estimate a disk mass (gas+dust) of 0.07 M$_{\odot}$ and a disk radius of $\le$ 80 AU. Our result demonstrates that circumstellar disks can survive around massive stars well into their main sequence phase even after they have become optically visible. Complementing our observations with the data compiled from the literature, we find the submm dust opacity index $\beta$ to be between 0.1 and 0.3. If the emission is optically thin, the low value of $\beta$ indicates the presence of relatively large grains in the disk, possibly because of grain growth. We do not detect any CO emission associated with the continuum source. We argue that the $^{13}$CO emission from the disk is likely optically thin, in which case, we derive an upper limit to the gas mass which implies significant depletion of molecular gas in the disk. The mass of this disk and the evolutionary trends observed are similar to those found for intermediate mass Herbig Ae stars and low mass T Tauri stars.
We study the spectroscopic binary system Gl 375. We employ medium resolution echelle spectra obtained at the 2.15 m telescope at the Argentinian observatory CASLEO and photometric observations obtained from the ASAS database. We separate the composite spectra into those corresponding to both components. The separated spectra allow us to confirm that the spectral types of both components are similar (dMe3.5) and to obtain precise measurements of the orbital period (P = 1.87844 days), minimum masses (M_1 sin^3 i = 0.35 M_sun and M_2 sin^3 i =0.33 M_sun) and other orbital parameters. The photometric observations exhibit a sinusoidal variation with the same period as the orbital period. We interpret this as signs of active regions carried along with rotation in a tidally synchronized system, and study the evolution of the amplitude of the modulation in longer timescales. Together with the mean magnitude, the modulation exhibits a roughly cyclic variation with a period of around 800 days. This periodicity is also found in the flux of the Ca II K lines of both components, which seem to be in phase. The periodic changes in the three observables are interpreted as a sign of a stellar activity cycle. Both components appear to be in phase, which implies that they are magnetically connected. The measured cycle of approximately 2.2 years (800 days) is consistent with previous determinations of activity cycles in similar stars.
We present the results of Monte Carlo mass-loss predictions for massive stars covering a wide range of stellar parameters. We critically test our predictions against a range of observed mass-loss rates -- in light of the recent discussions on wind clumping. We also present a model to compute the clumping-induced polarimetric variability of hot stars and we compare this with observations of Luminous Blue Variables, for which polarimetric variability is larger than for O and Wolf-Rayet stars. Luminous Blue Variables comprise an ideal testbed for studies of wind clumping and wind geometry, as well as for wind strength calculations, and we propose they may be direct supernova progenitors.
The characteristics of the resonant disturbing function for an asteroid perturbed by a planet in circular orbit are discussed. The location of the libration centers and their dependence with the orbital elements of the resonant orbit are analyzed. A proposed numerical method (Gallardo 2006a) for computing the strengths of the resonances is revised and applied to the region of the main belt of asteroids showing the relevance of several mean motion resonances (MMR) with several planets.
In this article, we present the results of a series of twelve 3.6-cm radio continuum observations of T Tau Sb, one of the companions of the famous young stellar object T Tauri. The data were collected roughly every two months between September 2003 and July 2005 with the Very Long Baseline Array (VLBA). Thanks to the remarkably accurate astrometry delivered by the VLBA, the absolute position of T Tau Sb could be measured with a precision typically better than about 100 micro-arcseconds at each of the twelve observed epochs. The trajectory of T Tau Sb on the plane of the sky could, therefore, be traced very precisely, and modeled as the superposition of the trigonometric parallax of the source and an accelerated proper motion. The best fit yields a distance to T Tau Sb of 147.6 +/- 0.6 pc. The observed positions of T Tau Sb are in good agreement with recent infrared measurements, but seem to favor a somewhat longer orbital period than that recently reported by Duchene et al. (2006) for the T Tau Sa/T Tau Sb system.
Astrophysical neutrinos in the EeV range (particularly those generated by the interaction of cosmic rays with the cosmic microwave background) promise to be a valuable tool to study astrophysics and particle physics at the highest energies. Much could be learned from temporal, spectral, and angular distributions of ~100 events, which could be collected by a detector with ~100 km^3 effective volume in a few years. Scaling the optical Cherenkov technique to this scale is prohibitive. However, using the thick ice sheet available at the South Pole, the radio and acoustic techniques promise to provide sufficient sensitivity with sparse instrumentation. The best strategy may be a hybrid approach combining all three techniques. A new array of acoustic transmitters and sensors, the South Pole Acoustic Test Setup, was installed in three IceCube holes in January 2007. The purpose of SPATS is to measure the attenuation length, background noise, and sound speed for 10-100 kHz acoustic waves. Favorable results would pave the way for a large hybrid array. SPATS is the first array to study the possibility of acoustic neutrino detection in ice, the medium expected to be best for the purpose. First results from SPATS are presented.
One of the effective mechanisms of neutrino energy losses in red giants, presupernovae and in the cores of white dwarfs is the emission of neutrino-antineutrino pairs in the process of plasmon decay. In this paper, we numerically calculate the emissivity due to plasmon decay in a wide range of temperatures (10^7-10^11) K and densities (200-10^14) g cm^-3. Numerical results are approximated by convenient analytical expressions. We also calculate and approximate by analytical expressions the neutrino luminosity of white dwarfs due to plasmon decay, as a function of their mass and internal temperature. This neutrino luminosity depends on the chemical composition of white dwarfs only through the parameter mu_e (the net number of baryons per electron) and is the dominant neutrino luminosity in all white dwarfs at the neutrino cooling stage.
We have studied the feasibility of a silicon photomultiplier (SiPM) to detect liquid xenon (LXe) scintillation light. The SiPM was operated inside a small volume of pure LXe, at -95 degree Celsius, irradiated with an internal Am-241 alpha source. The gain of the SiPM at this temperature was estimated to be 1.8 x 10^6 with bias voltage at 52 V. Based on the geometry of the setup, the quantum efficiency of the SiPM was estimated to be 22% at the Xe wavelength of 178 nm. The low excess noise factor, high single photoelectron detection efficiency, and low bias voltage of SiPMs make them attractive alternative UV photon detection devices to photomultiplier tubes (PMTs) for liquid xenon detectors, especially for experiments requiring a very low energy detection threshold, such as neutralino dark matter searches.
Scintillation light produced in liquid xenon (LXe) by alpha particles, electrons and gamma-rays was detected with a large area avalanche photodiode (LAAPD) immersed in the liquid. The alpha scintillation yield was measured as a function of applied electric field. We estimate the quantum efficiency of the LAAPD to be 45%. The best energy resolution from the light measurement at zero electric field is 7.5%(sigma) for 976 keV internal conversion electrons from Bi-207 and 2.6%(sigma) for 5.5 MeV alpha particles from Am-241. The detector used for these measurements was also operated as a gridded ionization chamber to measure the charge yield. We confirm that using a LAAPD in LXe does not introduce impurities which inhibit the drifting of free electrons.
Scintillation light from gamma ray irradiation in liquid xenon is detected by two Hamamatsu R9288 photomultiplier tubes (PMTs) immersed in the liquid. UV light reflector material, PTFE, is used to optimize the light collection efficiency. The detector gives a high light yield of 6 photoelectron per keV (pe/keV), which allows efficient detection of the 122 keV gamma-ray line from Co-57, with a measured energy resolution of (8.8+/-0.6)% (sigma). The best achievable energy resolution, by removing the instrumental fluctuations, from liquid xenon scintillation light is estimated to be around 6-8% (sigma) for gamma-ray with energy between 662 keV and 122 keV.
We propose a quasi-local formula for the linear momentum of black-hole horizons inspired by the formalism of quasi-local horizons. We test this formula using two complementary configurations: (i) by calculating the large orbital linear momentum of the two black holes in an orbiting, unequal-mass, zero-spin, quasi-circular binary and (ii) by calculating the very small recoil momentum imparted to the remnant of the head-on collision of an equal-mass, anti-aligned-spin binary. We obtain results consistent with the horizon trajectory in the orbiting case, and consistent with the radiated linear momentum for the much smaller head-on recoil velocity.
We examine a scenario where the Higgs boson is coupled to an additional singlet scalar field which we identify with a quintessence field. We show that this results in an unified picture of dark matter and dark energy, where dark energy is the zero-mode classical field rolling the usual quintessence potential and the dark matter candidate is the quantum excitation (particle) of the field, which is produced in the universe due to its coupling to the Higgs boson.
Time-dependent soliton solutions are explicitly derived in a five-dimensional theory endowed with one (warped) extra-dimension. Some of the obtained geometries, everywhere well defined and technically regular, smoothly interpolate between two five-dimensional anti-de Sitter space-times for fixed value of the conformal time coordinate. Time dependent solutions containing both topological and non-topological sectors are also obtained. Supplementary degrees of freedom can be also included and, in this case, the resulting multi-soliton solutions may describe time-dependent kink-antikink systems.
We present numerical results for U(1) gauge theory in 2d and 4d spaces involving a non-commutative plane. Simulations are feasible thanks to a mapping of the non-commutative plane onto a twisted matrix model. In d=2 it was a long-standing issue if Wilson loops are (partially) invariant under area-preserving diffeomorphisms. We show that non-perturbatively this invariance breaks, including the subgroup SL(2,R). In both cases, d=2 and d=4, we extrapolate our results to the continuum and infinite volume by means of a Double Scaling Limit. In d=4 this limit leads to a phase with broken translation symmetry, which is not affected by the perturbatively known IR instability. Therefore the photon may survive in a non-commutative world.
Links to: arXiv, form interface, /find, astro-ph, /recent, /0708, /abs, contact, help (Access key information)
The new photometric space-borne survey missions CoRoT and Kepler will be able to detect minute flux variations in binary stars due to relativistic beaming caused by the line-of-sight motion of their components. In all but very short period binaries (P>10d), these variations will dominate over the ellipsoidal and reflection periodic variability. Thus, CoRoT and Kepler will discover a new observational class: photometric beaming binary stars. We examine this new category and the information that the photometric variations can provide. The variations that result from the observatory heliocentric velocity can be used to extract some spectral information even for single stars.
We present Spitzer IRS spectra (R ~600, 10 - 38 micron) of 38 positions in the Galactic Center (GC), all at the same Galactic longitude and spanning plus/minus 0.3 degrees in latitude. Our positions include the Arches Cluster, the Arched Filaments, regions near the Quintuplet Cluster, the ``Bubble'' lying along the same line-of-sight as the molecular cloud G0.11-0.11, and the diffuse interstellar gas along the line-of-sight at higher Galactic latitudes. From measurements of the [O IV], [Ne II], [Ne III], [Si II], [S III], [S IV], [Fe II], [Fe III], and H_2 S(0), S(1), and S(2) lines we determine the gas excitation and ionic abundance ratios. The Ne/H and S/H abundance ratios are ~ 1.6 times that of the Orion Nebula. The main source of excitation is photoionization, with the Arches Cluster ionizing the Arched Filaments and the Quintuplet Cluster ionizing the gas nearby and at lower Galactic latitudes including the far side of the Bubble. In addition, strong shocks ionize gas to O^{+3} and destroy dust grains, releasing iron into the gas phase (Fe/H ~ 1.3 times 10^{-6} in the Arched Filaments and Fe/H ~ 8.8 times 10^{-6} in the Bubble). The shock effects are particularly noticeable in the center of the Bubble, but O$^{+3}$ is present in all positions. We suggest that the shocks are due to the winds from the Quintuplet Cluster Wolf-Rayet stars. On the other hand, the H_2 line ratios can be explained with multi-component models of warm molecular gas in photodissociation regions without the need for H_2 production in shocks.
Observational and theoretical evidence that internal, slow ("secular") evolution reshapes galaxy disks is reviewed in Kormendy & Kennicutt (2004, ARAA, 42, 603). This update has three aims. First, I emphasize that this evolution is very general -- it is as fundamental to the evolution of galaxy disks as (e.g.) core collapse is to globular clusters, as the production of hot Jupiters is to the evolution of protoplanetary disks, and as evolution to red giants containing proto-white-dwarfs is to stellar evolution. One consequence for disk galaxies is the buildup of dense central components that get mistaken for classical (i.e., merger-built) bulges but that were grown out of disk stars and gas. We call these pseudobulges. Second, I review new results on pseudobulge star formation and structure and on the distinction between boxy and disky pseudobulges. Finally, I highlight how these results make a galaxy formation problem more acute. How can hierarchical clustering produce so many pure disk galaxies with no evidence for merger-built bulges?
The two closest Gamma-Ray Bursts so far detected (GRBs 980425 & 060218) were both under-luminous, spectrally soft, long duration bursts with smooth, single-peaked light curves. Only of the order of 100 GRBs have measured redshifts, and there are, for example, 2704 GRBs in the BATSE catalogue alone. It is therefore plausible that other nearby GRBs have been observed but not identified as relatively nearby. Here we search for statistical correlations between BATSE long duration GRBs and galaxy samples with recession velocities v <= 11,000 km/s (z = 0.0367, ~ 155 Mpc) selected from two catalogues of nearby galaxies. We also examine the correlations using burst sub-samples restricted to those with properties similar to the two known nearby bursts. Our results show correlation of the entire long GRB sample to remain consistent with zero out to the highest radii considered whereas a sub-sample selected to be low fluence, spectrally soft, with smooth single-peaked light curves (177 bursts) demonstrates increased correlation with galaxies within ~ 155 Mpc. The measured correlation (28% +/- 16% of the sample) suggests that BATSE observed between 2 and 9 long duration GRBs per year similar to, and from within similar distances to GRBs 980425 and 060218. This implies an observed local rate density (to BATSE limits) of 700 +/- 360 Gpc^{-3}yr^{-1} within 155 Mpc.
Integral field, or 3D, spectroscopy is the technique of obtaining spectral information over a two-dimensional, hopefully contiguous, field of view. While there is some form of astronomical 3D spectroscopy at all wavelengths, there has been a rapid increase in interest in optical and near-infrared 3D spectroscopy. This has resulted in the deployment of a large variety of integral-field spectrographs on most of the large optical/infrared telescopes. The amount of IFU data available in observatory archives is large and growing rapidly. The complications of treating IFU data as both imaging and spectroscopy make it a special challenge for the virtual observatory. This article describes the various techniques of optical and near-infrared spectroscopy and some of the general needs and issues related to the handling of 3D data by the virtual observatory.
The likelihood of detecting individual discrete sources of cosmic rays depends on the mean separation between sources. The analysis here derives the minimum separation that makes it likely that the closest source is detectable. For super-GZK energies, detection is signal limited and magnetic fields should not matter. For sub-GZK energies, detection is background limited, and intergalactic magnetic fields enter the analysis through one adjustable parameter. Both super-GZK and sub-GZK results are presented for four different types of sources: steady isotropic sources, steady jet sources, isotropic bursts, and jet bursts.
A simple way to couple an interface dynamo model to a fast tachocline model is presented, under the assumption that the dynamo saturation is due to a quadratic process and that the effect of finite shear layer thickness on the dynamo wave frequency is analoguous to the effect of finite water depth on surface gravity waves. The model contains one free parameter which is fixed by the requirement that a solution should reproduce the helioseismically determined thickness of the tachocline. In this case it is found that, in addition to this solution, another steady solution exists, characterized by a four times thicker tachocline and 4-5 times weaker magnetic fields. It is tempting to relate the existence of this second solution to the occurrence of grand minima in solar activity.
We have used the VLA at 43 GHz to image the radio continuum emission from o Ceti, R Leo, and W Hya and to precisely locate their SiO maser emission with respect to the star. The radio continuum emission region for all three stars has a diameter close to 5.6 AU. These diameters are similar to those measured at infrared wavelengths in bands containing strong molecular opacity and about twice those measured in line-free regions of the infrared spectrum. Thus, the radio photosphere and the infrared molecular layer appear to be coextensive. The 43 GHz continuum emission is consistent with temperatures near 1600 K and opacity from H-minus free-free interactions. While the continuum image of o Ceti appears nearly circular, both R Leo and W Hya display significant elongations. The SiO masers for all three stars show partial rings with diameters close to 8 AU.
We present an extended optical spectropolarimetry of R CrB from 1998 January to 2003 September. The polarization was almost constant in the phase of maximum brightness, being consistent with past observations. We detected, however, temporal changes of polarization ($\sim 0.5$ %) in 2001 March and August, which were the first detection of large polarization variability in R CrB near maximum brightness. The amplitude and the position angle of the `transient polarization' were almost constant with wavelength in both two events. There was a difference by about 20 degrees in the position angle between the two events. Each event could be explained by light scattering due to short-lived dust puff occasionally ejected off the line of sight. The flatness of the polarization against the wavelength suggests that the scatterer is a mixture of dust grains having various sizes. The rapid growth and fading of the transient polarization favors the phenomenological model of dust formation near the stellar photosphere (e.g., within two stellar radii) proposed for the time evolution of brightness and chromospheric emission lines during deeply declining periods, although the fading timescale can hardly be explained by a simple dispersal of expanding dust puff with a velocity of $\sim 200-350$ km s $^{-1}$. Higher expansion velocity or some mechanism to destroy the dust grains should be needed.
We present the distribution of luminous and dark matter in a set of strong lensing (early-type) galaxies. By combining two independent techniques - stellar population synthesis and gravitational lensing - we can compare the baryonic and dark matter content in these galaxies within the regions that can be probed using the images of the lensed background source. Two samples were studied, extracted from the CASTLES and SLACS surveys. The former probes a wider range of redshifts and allows us to explore the mass distribution out to ~5Re. The high resolution optical images of the latter (using HST/ACS) are used to show a pixellated map of the ratio between total and baryonic matter. We find dark matter to be absent in the cores of these galaxies, with an increasing contribution at projected radii R>Re. The slopes are roughly compatible with an isothermal slope (better interpreted as an adiabatically contracted NFW profile), but a large scatter in the slope exists among galaxies. There is a trend suggesting most massive galaxies have a higher content of dark matter in the regions probed by this analysis.
We use a statistical thermodynamic approach to determine the composition of clathrate hydrates which may form from a multiple compound gas whose composition is similar to that of Titan's atmosphere. Assuming that noble gases are initially present in this gas phase, we calculate the ratios of xenon, krypton and argon to species trapped in clathrate hydrates. We find that these ratios calculated for xenon and krypton are several orders of magnitude higher than in the coexisting gas at temperature and pressure conditions close to those of Titan's present atmosphere at ground level. Furthermore we show that, by contrast, argon is poorly trapped in these ices. This trapping mechanism implies that the gas-phase is progressively depleted in xenon and krypton when the coexisting clathrate hydrates form whereas the initial abundance of argon remains almost constant. Our results are thus compatible with the deficiency of Titan's atmosphere in xenon and krypton measured by the {\it Huygens} probe during its descent on January 14, 2005. However, in order to interpret the subsolar abundance of primordial Ar also revealed by {\it Huygens}, other processes that occurred either during the formation of Titan or during its evolution must be also invoked.
Utilizing the data of the Jodrell-Bank VLA Astrometric Survey(JVAS) and the Cosmic Lens All-Sky Survey(CLASS), we investigate the constraint of the splitting angle statistic of strong gravitational lenses(SGL) on the equation-of-state parameter $w=p/\rho$ of the dark energy in the flat cold dark matter cosmology. Through the comoving number density of dark halos described by Press-Schechter theory, dark energy affects the efficiency with which dark-matter concentrations produce strong lensing signals. The constraints on both constant $w$ and time-varying $w(z)=w_0+w_az/(1+z)$ from the SGL splitting angle statistic are consistently obtained by adopting a two model combined mechanism of dark halo density profile matched at the mass scale $M_c$. Our main observations are: (a) the resulting model parameter $M_c$ is found to be $M_c \sim 2$ for both constant $w$ and time-varying $w(z)$, which is twice larger than $M_c \sim 1$ obtained in literatures; (b) the fit result for the constant $w$ is found to be $w =-0.58 \sim -1.18$, which mainly depends on the source redshift distributions and is consistent with the $\Lambda \rm CDM$ at 95% C.L; (c) the influence of $\sigma_8$ on the time-varying $w(z)$ is not significant when $\sigma_8$ changes from 0.74 to 0.9. After marginalizing the likelihood functions over the cosmological parameters $(\Omega_m, h, \sigma_8)$ and the model parameter $M_c$, we find that the data of SGL splitting angle statistic favor more negative values for the double parameter $(w_0, w_a)$.
The existence of dark matter can be proved in an astrophysical context by the discovery of a system in which the observed baryons and the inferred dark matter are spatially segregated, such as the bullet cluster (1E0657-558). The full descriptions of the dark matter halo and X-ray gas substructure motions are necessary to forecast the location of the dark halo from X-ray maps, which can be confirmed by the detection of a galaxy concentration or by gravitational lensing. We present an analytical hydrodynamic model to determine the distance between the X-ray and dark-matter components and the Mach number of the merger shock. An approximate solution is given for the problem of the substructure propagation in merging clusters. A new method to predict the position of a dark matter halo in clusters, where there is a separation between the X-ray gas and the dark halo, is proposed and applied to the clusters 1E0657-558 and Abell 1763.
Star formation laws, like i.e. the Schmidt law relating star formation rate and total gas density, have been studied in several spiral galaxies but the underlying physics are not yet well understood. M51, as a nearby face-on, grand design spiral galaxy studied in many line transitions, is an ideal target to study the connection between physical conditions of the gas and star formation activity. In this contribution we combine molecular, atomic, total gas and stellar surface densities and study the gravitational stability of the gas (Schuster et al.2007, Hitschfeld et al. in prep.). From our IRAM-30m 12 CO2-1 map and complementary HI-, Radio Continuum- and ACS-HST B-band-data we derive maps of the total gas density and the stellar surface density to study the gravitational stability of the gas via the Toomre Q parameter.
We introduce the log(Ha/[SII]6717+6731) vs. log(Ha/[NII]6583) (S2N2) diagnostic diagram as metallicity and ionisation parameter indicator for HII regions in external galaxies. The location of HII regions in the S2N2 diagram was studied both empirically and theoretically. We found that, for a wide range of metallicities, the S2N2 diagram gives single valued results in the metallicity-ionisation parameter plane. We demonstrate that the S2N2 diagram is a powerful tool to estimate metallicities of high-redshift (z ~ 2) HII galaxies. Finally, we derive the metallicity for 76 HII regions in M33 from the S2N2 diagram and calculate an O/H abundance gradient for this galaxy of -0.05 (+-0.01) dex kpc^-1.
We present NAOMI/OASIS adaptive-optics assisted integral-field spectroscopy of the transitional massive hypergiant IRC +10420, an extreme mass-losing star apparently in the process of evolving from a Red Supergiant toward the Wolf-Rayet phase. To investigate the present-day mass-loss geometry of the star, we study the appearance of the line-emission from the inner wind as viewed when reflected off the surrounding nebula. We find that, contrary to previous work, there is strong evidence for wind axi-symmetry, based on the equivalent-width and velocity variations of H$\alpha$ and Fe {\sc ii} $\lambda$6516. We attribute this behaviour to the appearance of the complex line-profiles when viewed from different angles. We also speculate that the Ti {\sc ii} emission originates in the outer nebula in a region analogous to the Strontium Filament of $\eta$ Carinae, based on the morphology of the line-emission. Finally, we suggest that the present-day axisymmetric wind of IRC +10420, combined with its continued blueward evolution, is evidence that the star is evolving toward the B[e] supergiant phase.
We model mock observations of collisionless N-body disc-disc mergers with an axisymmetric orbit superposition program that has been used to model Coma ellipticals. The remnants sample representatively the shapes of disc-disc mergers including prolate, triaxial and oblate objects. The aim is to better understand how the assumption of axial symmetry affects reconstructed masses and stellar motions of systems which are intrinsically not axisymmetric, whether it leads to a bias and how such a potential bias can be recognised in models of real galaxies. The mass recovery at the half-light radius depends on viewing-angle and intrinsic shape: edge-on views allow to reconstruct total masses with an accuracy between 20% (triaxial/prolate remnants) and 3% (oblate remnant). Masses of highly flattened, face-on systems are underestimated by up to 50%. Deviations in local mass densities can be larger where remnants are strongly triaxial or prolate. Luminous M/L are sensitive to box orbits in the remnants. Box orbits cause the central kinematics to vary with viewing-angle. Reconstructed luminous M/L and central masses follow this variation. Luminous M/L are always underestimated (up to a factor of 2.5). Respective dark halos in the models can be overestimated by about the same amount, depending again on viewing angle. Reconstructed velocity anisotropies depend on viewing angle and on the orbital composition of the remnant. We construct N-body realisations of the Schwarzschild models to discuss chaotic orbits and the virial equilibrium in our models. Apparently flattened, rotating ellipticals of intermediate mass are likely close to both, axial symmetry and edge-on orientation. Our results imply that Schwarzschild models allow a reconstruction of their masses and stellar anisotropies with high accuracy. (abridged)
The previously known, 6-yr spectroscopic binary HR 6046 has been speculated in the past to contain a compact object as the secondary. A recent study has re-determined the orbit with great accuracy, and shown that the companion is an evolved but otherwise normal star of nearly identical mass as the primary, which is also a giant. The binary motion was detected by the Hipparcos mission but was not properly accounted for in the published astrometric solution. Here we use the Hipparcos intermediate data in combination with the spectroscopic results to revise that solution and establish the orbital inclination angle for the first time, and with it the absolute masses M(A) = 1.38 [-0.03,+0.09] M(Sun) and M(B) = 1.36 [-0.02,+0.07] M(Sun). Aided by other constraints, we investigate the evolutionary status and confirm that the primary star is approaching the tip of the red-giant branch, while the secondary is beginning its first ascent.
The Maxwell-Boltzmannian approach to nuclear reaction rate theory is extended to cover Tsallis statistics (Tsallis, 1988) and more general cases of distribution functions. An analytical study of respective thermonuclear functions is being conducted with the help of statistical techniques. The pathway model, recently introduced by Mathai (2005), is utilized for thermonuclear functions and closed-form representations are obtained in terms of H-functions and G-functions. Maxwell-Boltzmannian thermonuclear functions become particular cases of the extended thermonuclear functions. A brief review on the development of the theory of analytic representations of nuclear reaction rates is given.
This paper reports a direct measurement of the Be7 solar neutrino signal rate performed with the Borexino low background liquid scintillator detector. This is the first real-time spectral measurement of sub-MeV solar neutrinos. The result for 0.862 MeV Be7 is 47 +- 7 (stat} +- 12 (sys} counts/(day x 100 ton), consistent with predictions of Standard Solar Models and neutrino oscillations with LMA-MSW parameters.
We present the photometric calibration of the Swift UltraViolet/Optical Telescope (UVOT) which includes: optimum photometric and background apertures, effective area curves, colour transformations, conversion factors for count rates to flux, and the photometric zero points (which are accurate to better than 4 per cent) for each of the seven UVOT broadband filters. The calibration was performed with observations of standard stars and standard star fields that represent a wide range of spectral star types. The calibration results include the position dependent uniformity, and instrument response over the 1600-8000A operational range. Because the UVOT is a photon counting instrument, we also discuss the effect of coincidence loss on the calibration results. We provide practical guidelines for using the calibration in UVOT data analysis. The results presented here supersede previous calibration results.
Solar mid-IR observations in the 8-15 micrometer band continuum with moderate angular resolution (18 arcseconds) reveal the presence of bright structures surrounding sunspots. These plage-like features present good association with calcium CaII K1v plages and active region magnetograms. We describe a new optical setup with reflecting mirrors to produce solar images on the focal plane array of uncooled bolometers of a commercial camera preceded by germanium optics. First observations of a sunspot on September 11, 2006 show a mid-IR continuum plage exhibiting spatial distribution closely associated with CaII K1v line plage and magnetogram structures. The mid-IR continuum bright plage is about 140 K hotter than the neighboring photospheric regions, consistent with hot plasma confined by the magnetic spatial structures in and above the active region
Early measurements of SN 1987A can be interpreted in light of the beam/jet (BJ) which had to hit polar ejecta (PE) to produce the "Mystery Spot" (MS), some 22 light-days distant. Other details of SN 1987A strongly suggest that it resulted from a merger of two stellar cores of a common envelope (CE) binary, i.e. a "double degenerate" (DD)-initiated SN. Without having to blast through the CE of Sk -69 202, it is likely that the BJ would have caused a full, long-soft gamma-ray burst (lGRB) upon hitting the PE, thus DD can produce lGRBs (and, of course, MSPs). Because DD must be the overwhelmingly dominant merger/SN mechanism in elliptical galaxies, where only short, hard GRBs (sGRBs) have been observed, DD without CE or PE must also produce sGRBs, and thus the pre-CE/PE impact photon spectrum of 99% of all GRBs is known, and neutron star (NS)-NS mergers may not make GRBs as we know them, and/or be as common as previously thought. The many details of Ia's strongly suggest that these are also DD formed, and the single degenerate total thermonuclear disruption paradigm is now in serious doubt as well. This is a cause for concern in Ia Cosmology, because Type Ia SNe will appear to be Ic's when viewed from their DD merger poles, given sufficient matter above that lost to core-collapse. As a DD-initiated SN, 1987A appears to be the Rosetta Stone for 99% of SNe, GRBs and MSPs, including all recent nearby SNe except SN 1986J, and the more distant SN 2006gy. There is no for exotica, such as "collapsars," to account for GRBs.
Warm inflationary universe models on a warped Dvali-Gabadadze-Porrati brane are studied. General conditions required for these models to be realizable are derived and discussed. By using an effective exponential potential we develop models for constant and variable dissipation coefficient ratio $r=\frac{\Gamma}{3 H}$. We use recent astronomical observations for constraining the parameters appearing in our models.
We report the preparation of neutron-activated xenon for the calibration of liquid xenon (LXe) detectors. Gamma rays from the decay of xenon metastable states, produced by fast neutron activation, were detected and their activities measured in a LXe scintillation detector. Following a five-day activation of natural xenon gas with a Cf-252 (4 x 10^5 n/s) source, the activities of two gamma ray lines at 164 keV and 236 keV, from Xe-131m and Xe-129m metastable states, were measured at about 95 and 130 Bq/kg, respectively. We also observed three additional lines at 35 keV, 100 keV and 275 keV, which decay away within a few days. No long-lifetime activity was observed after the neutron activation.
We reply to the recent criticism by Garriga and Tanaka of our proposal that quantum gravitational loop corrections may lead to a secular screening of the effective cosmological constant. Their argument rests upon a renormalization scheme in which the composite operator $(R \sqrt{-g} - 4 \Lambda \sqrt{-g} )_{\rm ren}$ is defined to be the trace of the renormalized field equations. Although this is a peculiar prescription, {\it we show that it does not preclude secular screening.} Other important points are: (1) gauge dependence does not render a Green's function devoid of physical content; (2) scalar models on a non-dynamical de Sitter background (for which there is no gauge issue) can induce arbitrarily large secular contributions to the stress tensor; (3) the same secular corrections appear in observable quantities in quantum gravity; and (4) the prospects seem good for deriving a simple stochastic formulation of quantum gravity in which the leading secular effects can be summed and for which the expectation values of even complicated, gauge invariant operators can be computed at leading order.
Links to: arXiv, form interface, /find, astro-ph, /recent, /0708, /abs, contact, help (Access key information)