

VUV-absorption cross sections of ices, photodissociation and photodesorption

G. M. Muñoz Caro, G. A. Cruz Díaz, R. Martín-Doménech Centro de Astrobiología (CAB), INTA-CSIC munozcg@cab.inta-csic.es

Outline

1. The astrophysical context: ice mantles

2. Photodissociation, photodesorption, and "photochemidesorption"

3. VUV-spectroscopy of pure ices

1. The astrophysical context: Ice mantles

Processing of interstellar ice mantles

Ice mantles are energetically processed (in **dense cloud interiors**):

- Thermal processing
- UV irradiation
- > Cosmic rays \rightarrow excitation of H₂ \rightarrow secondary UV-field

Energetic processing of ice mantles

Photon and ion processing

INTERSTELLAR

Dense cloud interiors

Interstellar ices

Photon and ion + thermal processing

CIRCUMSTELLAR

Hot cores

Solar System

Circumstellar ices

Cometary ices

- Thermal desorption
- Structural changes
 - Difussion
 - Phase transition
 - Segregation

The CO snowline

CO snow line observed with ALMA, using tracers of the absence of CO in the gas-phase. Dashed line is 17 K isotherm where CO freezes out.

Pontoppidan et al., Protostars and Planets VI, 2014

ISAC = InterStellar Astrochemistry Chamber

ISAC = InterStellar Astrochemistry Chamber

ISAC is UHV set-up, P~4 10⁻¹¹ mbar, for ice deposition at 8 K, which can be heated or irradiated.

Solid: IR, Raman, and vacuum-UV spectroscopy Gas: QMS

ISAC = InterStellar Astrochemistry Chamber

Sample irradiation with UV

Photoprocessing of ice analogs Vacuum-UV Spectroscopy

- McPherson monochromator + PMT
- 100 500 nm @ 0.4 nm resolution

0.

120

130

140

Wavelength [nm]

150

160

170

Photoprocessing of ice analogs UV spectrum of lamp vs. radiation field

Calculated secondary UV-field

Gredel et al. 1989

Spectrum of IC63 (emission nebula near Be star)

France et al. 2005

2. Photodissociation, photodesorption, and photochemidesorption

Photo-desorption experiments

HV

UHV

H₂O ice contamination

Ice sample

water accretion also N_2 , O_2

Ice sample

no water accretion or $N_2^{}$, $O_2^{}$

Photodesorption of CO ice

Solid sample $\leftarrow \rightarrow$ IR spectroscopy

IR bands are integrated to measure decrease in column density during irradiation

Muñoz Caro et al. 2010

Photodesorption of CO ice

Gas phase $\leftarrow \rightarrow$ Mass spectrometry

Muñoz Caro et al. 2010

Photodesorption of CO ice

Why is photodesorption rate independent of ice thickness if there are more than ~ 5 ML?

Indirect desorption induced by electronic transitions (DIET): Electronic excitation energy redistributed to neighbors provides energy to surface molecules to break intermolecular bonds.

For a better understanding of this process it is important to measure photodesorption rate *per absorbed photon*

UV absorption cross sections of ice analogs are required

Muñoz Caro et al. 2010, Fayolle et al. 2011, Chen et al. 2014

Photodesorption yield vs. ice deposition temperature

Muñoz Caro et al., in prep.

UV irradiation of pure CH₃OH ice

Non-thermal desorption mechanism of CH_3OH in cold regions is required to explain gas phase abundances.

We see photodesorption of m/z = 2 (H2), 28 (CO), 16 (CH4), 29 (HCO), 30 (H2CO), 32 (O2), but no m/z = 31... no methanol photodesorption!!! Rate <3 10⁻⁴ molecules/photon

"Photochemidesorption"

Photochemidesorption is an abbreviation for a photochemical process that leads to the formation of a photoproduct, which can

i) directly desorb when formed on the ice surface, or

ii) be formed in the ice bulk and desorb later via the DIET mechanism, after the ice monolayers on top were removed upon continued irradiation.

The first route (i), direct desorption, would lead to a direct rise of the QMS signal at the very beginning of irradiation, but in practice it is difficult to detect with the current sensibility of the QMS.

The second route (ii) will lead to an observable photochemidesorption when a sufficient amount of the photoproduct is accumulated in the ice bulk. An example is the observed photochemidesorption of CH_4 in the pure CH_3OH ice irradiation experiment. This mechanism is interesting since it allows the desorption of certain molecules, like CH_4 , which photodesorption is negligible when pure CH_4 ice is irradiated.

UV irradiation of pure CD_3OD ice

Cruz Diaz et al. 2015, A&A, sub.

Calibration of QMS for photodesorption (I)

$A(m/z) = k_{QMS} \sigma(X) N(X) I_f(X) F_f(X) S(m/z)$

A(m/z) is integrated area of QMS signal during photodesorption k_{QMS} is a proportionality constant σ (mol) is ionization cross section of species X for electron energy of MS N(X) is total number of desorbed molecules per cm⁻² l_f is fraction of molecules ionized z times in MS $F_f(X)$ is fraction of molecules ionized leading to a fragment of mass *m* in MS S(m/z) is sensitivity of QMS to the mass fragment *m/z*

Note: k_{QMS} and S(m/z) must be calibrated for every MS.

Calibration of QMS for photodesorption (II) $A(m/z) = k_{co} \times (\sigma(X)/\sigma(CO)) \times N(X) \times (I_t(X)/I_t(CO)) \times F_t(X)/F_t(CO) \times (S(m/z)/S(28))$ where $k_{co} = A(28)/N(CO)$

In addition we consider the mass dependence of QMS sensitivity, by fitting a sensitivity curve for He (m/z 4), Ne (m/z 20), Ar (m/z 40) measurements:

 $k_{CO} \ge S(m/z) = 6.5 \ge 10^{14} + 5.73 \ge 10^{15} \exp(-(m/z)/6.11)$

Infrared CO₂ ice bands decrease during irradiation

Martín-Doménech et al. 2015, submitted

Formation of photoproducts observed in infrared during irradiation

Photodesorption of CO and O₂ observed by QMS

Background contamination of CO and CO₂ (blank with no ice)

TPD curves of irradiated CO₂ ice showing desorption of photoproducts

For UV fluence in dense cloud interior (3 x 10^{17} photons cm⁻²), relative to the initial CO₂ ice:

CO	32%
CO_3	4%
O ₃	6%
02	15%

Only 4% of CO would photochemidesorb and a negligible amount of O₂

Thermal desorption is required to release the photoproducts to the gas phase

Photoproducts as a function of UV fluence

3. VUV-spectroscopy of pure ices

Vacuum-UV Spectroscopy

VUV emission of lamp

 $= I_0(\lambda) e^{-\sigma(\lambda)N}$

VUV ice absorption cross section

6.5

6.0

Polar ices

Methanol

Cruz-Diaz et al., A&A, 2014a

Hydrogen sulfide

Apolar ices

Carbon dioxide

Cruz-Diaz et al., A&A, 2014b

Oxygen

Isotopic Effects Cruz-Diaz et al., MNRAS, 2014

Deuterated water

Deuterated methanol

13-Carbon dioxide

Astrophysical implications

VUV penetration depth in ice

2-	95% photon absorption		99% photon absorption			
species	$Ly-\alpha$	Avg.	Max.	Ly- α	Avg.	Max.
	$(\times 10^{17} \text{ molecule cm}^{-2})$			$(\times 10^{17} \text{ molecule cm}^{-2})$		
D ₂ O	6.8	11.1	5.3	10.5	17.1	8.1
CD_3OD	3.1	6.5	3.1	4.7	10.0	4.7
13 CO ₂	27.2	43.7	12.0	41.8	67.1	18.4
$^{15}N_{2}$	19971	3443	749	30701	5293	1151
H ₂ O	5.8	8.3	4.9	8.9	13.0	7.7
CH ₃ OH	3.5	5.7	3.4	5.4	8.7	5.3
CO_2	29.3	44.5	15.1	45.1	68.4	23.3
N ₂	29957	4280	881	46052	6579	1354

Cruz-Diaz et al., 2014a,b,c

VUV spectroscopy of CO₂ and CO ice VUV - absorption cross section of CO₂ PROBLEM

CO formation by photodissociation of CO_2 during irradiation

 $N(CO) = 0.22 N(CO_2)_{i}$

contribution

CO₂ not affected compared to other works

CO blueshifted compared to pure ice

Astrophysical implications CO photodesorption

VUV – absorption cross section spectrum **VS** photodesorption rate at different wavelengths

Photodesorption driven by Desorption Induced by Electronic Transitions process (DIET)

Astrophysical implications O₂ photodesorption

VUV – absorption cross section spectrum **VS** photodesorption rate at different wavelengths

Astrophysical implications Photodesorption rate per absorbed photon VS Photodesorption rate per incident photon

photodesortpion rate (e.g. IR spectroscopy)

Astrophysical implications Photodesorption rate per absorbed photon VS Photodesorption rate per incident photon

N(CO) = 5 ML (Muñoz Caro et al. 2010)

	Irrad. energy eV	R ^{inc} ph-des molec./photon _{inc}	$\sigma m cm^2$	R ^{abs} ph-des molec./photon _{abs}
Fayolle et al. 201	10.2 9.2 8.2	$\begin{array}{c} 6.9 \pm 2.4 \times 10^{-3} \\ 1.3 \pm 0.91 \times 10^{-2} \\ 5 \times 10^{-2} \end{array}$	1.1×10^{-19} 2.8×10^{-18} 9.3×10^{-18}	12.5 ± 4.4 0.9 ± 0.6 1.1
Cruz-Diaz et al. 20	14a 8.6	$5.1 \pm 0.2 \times 10^{-2}$	4.7×10^{-18}	2.5 ± 0.1

$$R_{ph-des}^{abs} > 1$$

1 absorbed photon can induce photodesorption of more than 1 molecule!

Acknowledgements

ISAC:

R. Martín Doménech, G.A. Cruz Díaz, J. Manzano, A. Jiménez Escobar, B. M. Giuliano.

Colaborators:

E. Dartois (IAS), Y. J. Chen (Taiwan), A. Ciaravella & C. Cecchi-Pestellini (O. Palermo), R. Escribano and B. Maté (IEM), J. Cernicharo (ICMM), W.-F. Thi (Garching), S. Cazaux (Groningen), I. Jiménez-Serra (UCL), COSAC-Rosetta team...

