
Radial drift of solid particles in gaseous discs

Let’s consider a gaseous discs and a solid body imbedded into it. Both gas
and the body feel the gravitational attraction of a central mass M . However
the fact that the body does not have the same internal pressure forces as the
gas results in a different dynamics. Specifically, whether the body is small or
large (and we will define it), it experience radial inward drifting ultimately due
to gas drag. We want to calculate here which is the maximum radial drag that

a body can experience.

Figure 1: Sketch of the (thin) disc geometry, where H is the presuure scale hight
and a is the radial distance from the central object

To calculate it let’s first evaluate the difference in azimuthal velocity between
the body and the gas particles. Gas in discs are partially supported against
gravity by a radial (outward) gradient of pressure. To deduce its circular velocity
Vgas at a distance a from M , we write approximated radial
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equations of motion, where H is the disc thickness at the location (one pressure
scale height) and the subscript c refers to quantities evaluated at the mid-plane.
The second term of eq. 1 is an approximation for the radial pressure gradient,
which counteracts together with the centrifugal force (right hand side term)
the radial gravitational force. In eq. 2 the left hand side term is the vertical

pressure gradient which is assumed to balance the vertical component of the
gravitational force, arising from the central star. Combining eq. 1 and eq. 2 we
get the classic result,
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where the second equality holds for thin discs H/a ≪ 1. Eq. tells us that the
gas moves slower than a purely Keplerian velocity VK =

√

GM/a, in which
only the centrifugal force balances the gravitational force. In the following we
consider two extreme regimes, and we will see that at the transition point we
have the maximum of the inward drag.

1 Small Friction–Large Bodies

In this regime the azimuthal velocity of the body is Keplerian, since the drag
is just a small perturbation, Vφ ∼ VK. However, the difference in velocities
between the gas and the body results in a (azimuthal) frictional deceleration af

and corresponding loss of angular momentum at a rate

d(aVK)

dt
≃ −

a

tf
(VK − Vgas) , (4)

where the friction time is defined as

tf =
∆V

|af |
, (5)

where ∆V is the difference in velocity between the gas and the body and we
remind the reader that af is the acceleration given by the friction force (see below
§3.1). In this case the acceleration is mainly azimuthal and tf = (VK − Vgas) /af .
Observing that da = Vrdt and combined with eq. 3, we get
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where Ω−1 is proportional to the orbital period. We note that the stronger the
drag is, the shorter tf and the larger is the radial drift. This formula is valid up
to tf ∼ Ω−1, where Vr = Vgas ∼ VK(H/a)2, and the drag acceleration becomes
radial.

2 Large Friction-Small Bodies

In this regime, instead, the small body is swept with the flow and moves with
Vφ = Vgas. Now the body is forced to rotate with a sub-keplerian velocity that
is not enough to counteract the gravitational force. The difference between this
two forces results in a inward acceleration, which in turns arises radial viscous
forces
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(radial equation of motion for the body) where we have assume that the radial
gas velocity Vr,gas given by viscous processes is negligible. Equation 7 together
with eq. 3 thus give
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. (8)

In this regime, the smaller is the drag, the faster the body drifts inward.

3 The maximum radial drift

Comparing eq. 6 and eq. 8, we conclude that the larger radial drifting is obtained
from bodies whose friction time (the time it takes by friction to change their
velocity by a factor of 2) its equal the local dynamical time. For tf ≃ Ω−1,

Vr,max = VK ×

(

H

a

)2

, (9)

and the body suffers a deceleration

af,max ∼ Vr,maxΩ =
c2
s

a
, (10)

where cs is the gas sound speed and we use the fact that H/a = cs/VK.

3.1 Friction timescale

In all above equations we treat the friction time as a parameter and we alluded
to the two regimes as involving ”large” and ”small” bodies, without explanation.
We are now going to explicitly derive the dependence of the friction time-scale
on the body (linear) size s, assuming that the body density is actually constant.

The friction force can be in general written as

Ff ∝ −πs
2ρ|∆V|2, (11)

where ρ is the density of the surrounding gas. The acceleration is thus af =
Ff/m, where m ∝ s3. From equation 5 we thus get

tf ∝ s. (12)

Therefore, the larger the body the longer the time-scale to arise the difference
in velocity between the body and the surrounding gas. It turns out that for for
proto-planetary condition, tf ≃ Ω−1 for body that are a meter size. They will
drift in with the maximum radial velocity given by eq. 9.
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4 The maximum binary radius

Let’s consider two body interacting gravitationally. We saw that bodies with
different sizes experience different drag forces. There is thus a maximum binary
radius Rs below which they can form a binary. For larger separations the drag
will tear the binary apart. Let’s take a meter size body orbiting around a
body with a very different radial drag. The drag force per unit mass suffer by
the binary is thus given by eq. 10. We now impose that this acceleration is
counter-balanced by the mutual gravity

c2
s

a
=

Gm

R2
s

, (13)

where m is the mass of the one meter size body. Let’s introduce the Hill radius
RH = a(m/M)1/3, which is the larger separation at which a binary can counter
act the central object’s tides,
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From eq. 13 we get

Rs
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=
(m

M

)1/6

(a/H) ≃ 10−3. (15)

The binaries must indeed be very close to survive disruption from gas drag !

(16)
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