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Over the last few decades there has been a great deal of research relating gravity to

the dynamics of fluids. In the weakly turbulent regime fluids can be described using the

wave turbulence formulation rather than full-blown Kolmogorov turbulence, which uses

vortices. It is with these two ideas in mind that we construct a wave equation describing

the gravitational collapse of a scalar field in anti-de Sitter (AdS) space as follows from

Einstein’s field equations. By developing this approximation we find a kinetic equation

with truncated terms for increasingly ”complicated” mode interactions. While this

formulation was motivated by and has implications in the AdS/CFT correspondence

we are more concerned with the implications of this wave turbulence formulation as it

relates to gravitational waves in asymptotically flat spacetime. When there is negligible

interaction between modes of the wave they act as simple harmonic oscillators, but for

time scales on the order of ∼ 1/A2 where A is the amplitude of the wave the interactions

become important and we simulate the energy cascade from one mode of the wave to

the next using numerical techniques. The end result connects general relativity to a

fluid description of the massless scalar field in a fully dynamical setting. Our ultimate

goal is to determine if the wave turbulence approach to describing gravitational collapse

of a massless scalar field in AdS is superior to methods that have been used in the past.
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1 Introduction

1.1 Motivation I: Einstein and Navier-Stokes

The Einstein equation

Rµν −
1

2
Rgµν =

8πG

c4
Tµν (1.1)

governs the long-distance behavior of essentially any gravitational system while

the Navier-Stokes equation governs the hydrodynamics of most fluids. The connection

between general relativity and hydrodynamics is perhaps most evident in that for ev-

ery solution of the incompressible Navier-Stokes equation there is a ”dual” solution in

the vacuum Einstein equations. In other words, the near-horizon expansion in grav-

ity is shown to be mathematically equivalent to the hydrodynamic expansion in fluid

dynamics [1].

Out of these two universal theories arises an important area of interest in gravita-

tional physics: the thermodynamical and hydrodynamical properties near black holes.

A robust review of the topic is provided by [2, 3]; these monographs detail how entropy

and quantum effects manifest near the event horizon. Friedel and Yokokura discuss the

non-equilibrium thermodynamics of a constructed gravitational screen and find that

the screen has the same thermodynamic properties of a viscous bubble [4]. Interest-

ingly enough, the bubble’s entropy production is analogous to propagating gravitational

waves in the context of general relativity. One attempt in recent years to solve the quan-

tum gravity problem is the anti de-Sitter / conformal field theory (AdS/CFT) corre-

spondence, which Maldacena introduced in [5] (see his lecture notes [6]). AdS/CFT

unites the gravity theories in AdS to gauge theories describing quantum phenomena

and strings. Rangamani discusses the hydrodynamic description of strongly coupled

conformal field theories [7] and highlights the emergence of an effective Navier-Stokes

equation, namely

∂t~u+ (u · ∇)~u− ν∇2~u = −∇w + ~g, (1.2)

where ~u is the flow velocity of the fluid. (G.K. Batchelor’s textbook on fluid

dynamics serves as a good introduction to the topic.) The non-linearity of (1.2) hints

at a turbulent system. With this in mind we propose a turbulence equation can be

written that can describe the gravitational collapse of a scalar field with the properties

of a fluid in AdS.
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1.2 Motivation II: Collapse and turbulence as it relates to gravity

In 2016 Rica formulated the longtime evolution of spacetime fluctuations using the

language of wave turbulence [8]. The Einstein equations in vacuum imply the Ricci

tensor (Rµν in (1.1)) goes to zero, and Rica uses the harmonic gauge gµνΓ
λ
µν = 0. In this

weak field limit the metric can be written as gµν = ηµν+εhµν where ηµν is the Minkowski

metric, ε is a small parameter, and hµν is the metric that encapsulates the gravitational

wave. By using a normal mode expansion [9] Rica gets an equation that relates the

perturbed metric hµν to the Fourier amplitudes Asσ (where σ labels the two polarization

states of gravitational waves) and the dispersion relation ωk = ck. Furthermore, the

author extrapolates a second-order differential equation describing the wave amplitudes

(assuming to first order the Ricci tensor is zero), and the consequent wave equation.

These are listed as equations (1.3),(1.4), and (1.5).

hµν =
∑
s,σ

∫
1
√
ωk
As~k,σ(t)e(s)

µν (~k, σ)ei
~k·~xd3~k, (1.3)

Äs~k,σ(t) + ω2
kA

s
~k,σ

(t) = 0, (1.4)

Ȧs~k,σ = isωkA
s
~k,σ

+ higher order terms. (1.5)

Through further manipulation the author arrives at an explicit description of the

wave interaction amplitude that scales as the square root of the dispersion relation. This

formulation is generally what we are trying to do; we start with Einstein’s equations

in AdS and recognize the gravitational collapse of a massless scalar field.

An approach to collapse of a scalar field in AdS was proposed in [10]; the authors

adopt Eddington-Finkelstein coordinates and use perturbation theory to formulate col-

lapse. They find a wave propagates radially inward to form a black brane in d + 1

dimensions. However, their motivation and conclusions are different from ours. Wave

turbulence is not used, and the purpose is to probe the AdS/CFT correspondence. For

spherically symmetric gravitational collapse in asymptotically AdS space the system is

turbulent and can be described using a power law [11]. In this paper the authors find

that there is a weakly nonlinear time followed by a devolution of the power spectrum of

the Ricci scalar with frequency ω as ω−s with s ≈ 1.7± 0.1. Our hope is to formulate

a wave equation that describes collapse in this weakly turbulent regime.

The motivation to use spectral methods and nonlinear dynamical systems is elabo-

rated on in [12]; using spectral methods allows us to analyze the evolution of individual

modes of the wave before a singularity forms. This is evident in our formulation of the

wave equation as we approximate the Einstein equations Φ and Π (introduced in sec-

tion 3.1) as an appropriate series where the temporal basis functions are the unknown
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modes. The rescaling of the spatial dimension allows for smoothness at the origin and

spatial infinity, in addition to a finite value of the mass-energy. The surprising result

was that only a small perturbation of the initial scalar field distribution will lead to

collapse, and is in part the motivation for this investigation into the mechanism with

which collapse occurs; it has recently been suggested that the instability of asymptoti-

cally AdS spacetimes proceed through a turbulent mechanism [13, 14].

In [15] the authors find that for a small initial amplitude of the scalar field the field

oscillates in a way consistent with geodesics in AdS, and for larger oscillations black

holes will form. They also analyzed the process of thermalization numerically and

found that it occurs rapidly for a variety of initial scalar field amplitude perturbations

and resulting black hole masses, given that the amplitude is large enough. Black hole

formation is interpreted on the field theory side as thermalization and the results of [15]

indicate that thermalization is occurring as fast as possible while still being compatible

with causality. Ja lmużna et al. extend the claims made [15] as they found this weakly

turbulent instability in AdS in all dimensions d+ 1 for d ≥ 3 [16].

1.3 What is wave turbulence?

Wave turbulence pertains to aspects of turbulence that can be captured by the wave

approximation. Wave turbulence is generally defined as out-of-equilibrium statistical

mechanics of random non-linear waves. There have been several monographs written

on the subject [17–20]. The textbook written by Nazarenko provides an excellent

description of wave turbulence and current unsolved problems in physics to which it

is applicable. Turbulence is best described as an energy flux through scales, and the

provided energy spectrum is

E(3D)(~k) =
1

2

∫
IR3

〈~u(~x) · ~u(~x+ ~r)〉e−i~k·~r d~r

(2π)3
. (1.6)

If we assume isotropic turbulence this reduces to a more simple form, where we

can integrate the spectrum over the 3D ~k space,

1

2
〈u2〉 =

∫
IR3

E(3D)(~k)d~k =

∫ ∞
0

E(1D)(k)dk. (1.7)

A distinct property of wave turbulence is that the primary ingredient is a propa-

gating wave rather than a hydrodynamic vortex. To illustrate how difficult the analytic

description of turbulence can be, a quote from Werner Heisenberg: ”When I meet God,

I am going to ask him two questions: why relativity and why turbulence? I really
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Figure 1. Van Gogh’s De Sterrennacht, which depicts turbulent flow with remarkable accu-

racy. These particular eddies were later found to be consistent with Kolmogorov’s formula-

tion of turbulence (see [21] for more details.) Hokusai’s The Great Wave off Kanagawa drove

physicists to wonder if the turbulent flow indicated a tsunami or a rogue wave (it turned out

to be the latter, see [24].)

believe he will have an answer for the first. [21]” Russian mathematician Andrey Kol-

mogorov found that vortices strongly interact only when their spatial extensions are of

the same order, giving rise of the energy cascade from large eddies to smaller ones [22].

Nazarenko’s book only provides a passing mention of collapse being analyzed using

wave turbulence but it is in the context of the nonlinear Schrödinger model rather than

gravity (see [23] for an application of this equation to Bose-Einstein condensates).

Shortly after the Nazarenko book was published Bizoń, Rostworowski, and Ja lmużna

wrote several papers on the weakly turbulent instability of AdS space and the collapse

of a scalar field in AdS in higher dimensions. The equations needed to start our formu-

lation (described in section 2.1) are from [13], where the authors determine that AdS is

unstable under arbitrarily small generic perturbations. Further investigation provides

evidence that the turbulence is too weak to produce a naked singularity and is therefore

in agreement with the cosmic censorship hypothesis. Other investigations into collapse

in AdS have been successful as well. Craps et. al. studied the collapse of a scalar field

in AdS by using a resummation method identical to the renormalization group that

fixes ultraviolet divergencies in perturbative quantum field theory; see [25, 26] for more

details. Using what is called the two-time perturbative formalism the authors of [27]

solve the problem of gravitational collapse in AdS by finding a class of quasiperiodic

solutions that accurately describe the cascade of energy between modes.

1.4 Why wave turbulence precisely?

The steady-state assumption in turbulent flows is achieved in gravitational collapse

through a separation of scales. Given the connections between Einstein equation and
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the Navier-Stokes equation that has been evolving for over three decades [28] it is

necessary to pursue a description of collapse from the perspective of turbulent fluid

dynamics. In particular, we have indications that the phenomena we are witnessing

in gravitational collapse is more along the lines of wave turbulence [17, 18]. Given

that waves are simpler than vortices mathematically and the relevant energy scales

in this thesis it is a reasonable conclusion that we should use wave turbulence in our

formulation.

1.5 What is AdS space and why we chose it

Bengtsson provides an excellent overview of AdS space [30], which is considerably

different from the familiar Minkowski space and therefore deserves some introduction.

AdSn is written as the quadric

X2
1 + · · ·+X2

n +X2
n+1 − U2 − V 2 = −1 (1.8)

embedded in a flat n+ 1 dimensional space with the following metric

ds2 = dX2
1 + · · ·+ dX2

n−1 − dU2 − dV 2. (1.9)

X2
1 + · · · + X2

n − X2
n+1 is an n-dimensional one sheeted hyperboloid embedded

in a n + 1-space. AdS2, for example, is a two dimensional hyperboloid of one sheet

embedded in a three-dimensional Minkowski space, which is shown in figure 2. This

metric lends itself to the usage of hyperbolic geometry which then sheds light on the

conformal boundary of the space (which is what we are interested in). Due to the

negative curvature of the space we can solve Einstein’s equations

Rαβ = λgαβ (1.10)

with a negative cosmological constant. Using ”sausage” coordinates [30], similar

to the more familiar spherical coordinates with a temporal dimension tacked on,

dŝ2 = −dt2 +
4

(1 + ρ2)2
(dρ2 + ρ2dθ2 + ρ2 sin2 θdφ2). (1.11)

This unphysical spacetime metric is a conformal subset related to the Einstein

static universe. For asymptotically AdS space the Weyl tensor, which is in a sense a

measure of the tidal forces felt at any point in a manifold, vanishes at infinity.
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Figure 2. A visualization of null geodesics in AdS2 courtesy of [30] and Christopher Wren.

Rangamani’s lecture notes on the AdS/CFT correspondence also elaborate on

asymptotically AdS spaces for any number of dimensions. The line element for a

Schwarzschild black hole in AdSd+1 is

ds2 = −r2f(br)dt2 +
dr2

r2f(br)
+ r2δijdx

idxj, (1.12)

with f(r) = 1− 1

rd
, (1.13)

where b is inversely proportional to the temperature of the black hole. This gives

rise to a stress tensor that is an ideal conformal fluid stress tensor that corresponds to

global thermal equilibrium.

1.6 Gravitational waves in asymptotically flat space

Albert Einstein’s theory of general relativity revolutionized our understanding of the

universe and served as a marked improvement on Newtonian mechanics. General rel-

ativity explained unsolved problems (the precession of the perihelion of Mercury) and

predicted unforeseen phenomena (bending of starlight around the Sun) [31]. There

were other parts of the theory that would have to wait to be confirmed by future gen-

erations of physicists like the existence of black holes. In September of 2015 the LIGO

collaboration confirmed directly one of the more peculiar relics of Einstein’s general rel-

ativity, gravitational waves, and in the process provided the strongest confirmation yet

of GR. A good explanation of the formulation for propagation of gravitational waves is

provided by [32]. In the weak field limit we can approximate the metric as Minkowski

plus a small correction:
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gab = ηab + εhab. (1.14)

We must introduce a variable ψab and rewrite the Ricci scalar in terms of this new

variable:

ψab ≡ hab −
1

2
ηabh, (1.15)

R =
1

2
ε(2ψcd,cd −�h). (1.16)

When subjected to the d’Alembert operator the perturbing metric (which encapsu-

lates the gravitational wave) must be zero in this linearized regime. Using the Einstein

gauge (where the field equations read �ψab = 0), we find that the equation of motion

leads to the following wave equation:

� hab = 0 (1.17)

→ hab =


0 0 0 0

0 0 0 0

0 0 h22 h23

0 0 h23 −h22

 . (1.18)

This can be decomposed into + and × polarizations (mentioned in section 1.2);

gravitational waves are typically in a superposition of these two polarization states as

they propagate in a direction parallel to the stretching and squeezing of spacetime. The

Rica paper [8] illustrates that the language of wave turbulence can be used to discern

the behavior of gravitational waves in asymptotically flat space.

2 Collapse in Asymptotically (d + 1)-dimensional AdS Space-

times

2.1 The effective action, length element, and Einstein field equations

In this formulation we consider the dynamics of a massless scalar field ϕ in d + 1

dimensions that is described by the following effective action,

S =

∫
dd+1x

√
−g
( 1

16πG
(R− Λ)− 1

2
(∂ϕ)2

)
, (2.1)
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where G is Newton’s constant and R is the Ricci scalar. The cosmological constant

Λ is negative, as is the case for anti de Sitter space. If we set the cosmological constant

equal to zero the metric would reduce to flat Minkowski space, and if its positive then

we get a metric that describes de Sitter space. We are concerned with spherically

symmetric configurations and assume the following ansatz for the metric:

ds2 = sec2
(x
l

)(
− Ae−2δdt2 + A−1dx2 + l2 sin2

(x
l

)
dΩ2

d−1

)
, (2.2)

where dΩ is the differential displacement along the unit d− 1 sphere.

By introducing auxiliary variables Φ ≡ ϕ′ and Π ≡ A−1eδϕ̇ (where primes de-

note spatial derivatives and dots denote temporal ones) we can rewrite Einstein’s field

equations in the following way:

A′ =
1 + 2 sin2(x)

sin(x) cos(x)
(1− A)− A sin(x) cos(x)(Φ2 + Π2), (2.3)

δ′ = − sin(x) cos(x)(Φ2 + Π2), (2.4)

Φ̇ = (Ae−δΠ)′, (2.5)

Π̇ =
1

tan2 x

(
Ae−δΦ tan2 x

)′
. (2.6)

Each of these four equations is dependent on t and x and l2 = −d(d−1)
2Λ

. Note

that this constrains x to the range 0 < x < π
2
. The spherically symmetric solutions

in vacuum can be achieved by setting the scalar field ϕ equal to zero and fixing the

Einstein vacuum equations A and δ equal to 1 and 0, respectively. A and δ constrain

the scalar field, while the equation for Π is a re-derivation of the Klein-Gordon equation

gµν∇µ(∂νϕ) = 0. Π is like momentum so the right hand side of (2.6) acts as a force

term.

2.2 The field equations and natural mass function

Here we introduce the ADM formalism to general relativity ([33] uses asymptotically

flat spacetime in its formulation but the general principles are still applicable). There

is a generalization of the ADM mass function m(x, t) for AdS,

1− 2m

rd−2
+
r2

l2
= gαβ ∂αr ∂βr, (2.7)

where r is a standard spherical coordinate related to the spatial AdS coordinate,

x, in the following way:
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r = l tan(x/l). (2.8)

This formalism is applicable to spacetimes that asymptotically approach a well-

defined metric tensor (AdS in our investigation, Minkowski in others.) In this formu-

lation spacetime is a family of spacelike surfaces and on each slice there exists a metric

tensor describing the spatial coordinates and conjugate momenta. The ADM mass is all

of the mass enclosed in the space and is therefore related to gravity at spatial infinity:

lim
x→π

2

m(x, t) = MADM . (2.9)

This formalism is a Hamiltonian formulation, rather than the familiar Lagrangian

formulation, of general relativity. In numerical relativity it is more prudent to use the

Hamiltonian formulation because there is a set of first order, rather than the more

complicated second order, differential equations to be solved.

3 A Kinetic Equation for AdS Gravitational Collapse

The AdS limit of the metric (2.2) corresponds to A = 1 and δ = 0. To find a scalar

field ϕ that satisfies the Einstein equations (2.3), (2.4), (2.5), and (2.6) we can write

the scalar field as a superposition of eigenmodes [13].

ϕ(t, x) =
∞∑
j=0

aj cos(ωjt+ βj)ej(x), (3.1)

ϕ̈ =
∞∑
j=0

−ω2
jaj cos(ωjt+ βj)ej(x). (3.2)

To first order the Sturm-Liouville operator L̂ will provide an explicit form of the

eigenmodes. The first order approximation of the scalar field is denoted by ϕ1.
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L̂ϕ1 =
∞∑
j=0

aj cos(ωjt+ βj)

(
−1

tan2(x)
∂x

(
tan2(x)

dej(x)

dx

))
, (3.3)

L̂ϕ1 =
∞∑
j=0

aj cos(ωjt+ βj)

(
− d2ej(x)

dx2
− 2

sec2(x)

tan(x)

dej(x)

dx

)
, (3.4)

0 =
∞∑
j=0

aj cos(ωjt+ βj)

(
− d2ej(x)

dx2
− 2

sec2(x)

tan(x)

dej(x)

dx
− ω2

j ej(x)

)
, (3.5)

→ 0 =
d2ej(x)

dx2
+ 2

sec2(x)

tan(x)

dej(x)

dx
+ ω2

j ej(x). (3.6)

Using a computer algebra program we confirm the form of the equations in [13]

that show the eigenvalues and eigenfunctions (”oscillons”) of L̂ are

ω2
j = (3 + 2j)2, (3.7)

ej(x) = dj cos3(x) 2F1

(
− j, 3 + j,

3

2
; sin2 x

)
, (3.8)

dj =

√
16(j + 1)(j + 2)

π
. (3.9)

The inner product in this particular Hilbert space between two oscillons of different

modes is
∫ π/2

0
ej(x)ek(x) tan2 xdx. The operator L̂ is Hermitian so there is an orthonor-

mality condition involving the normalized oscillons available that will be of the utmost

importance later,

∫ π/2

0

ej(x)ek(x) tan2 xdx = δjk, (3.10)

where δjk is the familiar Kronecker delta. While difficult to prove using the explicit

form of the oscillons it is a relatively easy matter to confirm this condition using a

computer algebra program and testing the value for different modes.

3.1 Deriving more useful forms of A and δ

A more useful form of δ can be recovered through direct integration:
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dδ(t, x) = − sin(x) cos(x)(Φ2 + Π2)dx, (3.11)

dx ≡ dy, (3.12)

→ dδ = − sin(y) cos(y)(Φ2 + Π2)dy, (3.13)

δ(t, x) = δ1 −
∫ x

0

sin(y) cos(y)(Φ2 + Π2)dy. (3.14)

A more useful form of A can be found using an integrating factor:

A′ + p(x)A = q(x), (3.15)

I(x) ≡ e
∫
p(x)dx, (3.16)

d

dx
(I(x)A) = I(x)A′ + I(x)p(x)A = I(x)q(x), (3.17)

→ A =
1

I(x)

(
C1 +

∫
I(x)q(x)dx

)
. (3.18)

Let us simplify this a bit:

∫ x

y0

−1

sin(y) cos(y)
dy =

∫ x

y0

−1

2 sin(2y)
d(2y), (3.19)

= ln(cot(x))− ln(cot(y0)), (3.20)

exp

(∫ x

y0

−1

sin(y) cos(y)
dy

)
=

cotx

cot y0

,

∫ x

y0

−2 sin2(y)

sin(y) cos(y)
dy = 2 log(cos(y))

∣∣∣∣x
y0

. (3.21)

Therefore,

exp

(
−
∫ x

y0

1 + 2 sin2(y)

sin(y) cos(y)
dy

)
=

cot(x) cos2(x)

cot(y0) cos2(y0)
, (3.22)

exp
(
−
∫ z
y0

1+2 sin2(y)
sin(y) cos(y)

dy
)

cos z sin z
=

sec4(z)

cot(y0) cos2(y0)
. (3.23)

Now we have

A =
1

cot2(y0) cos4(y0)
cos2(x) cot(x) exp

(
−
∫ x

y0

(Φ2 + Π2) sin(y) cos(y)dy

)
(3.24)

×
(
C1 +

∫ x

z0

exp

(
−
∫ x

y0

(Φ2 + Π2) sin(y) cos(y)dy

)
sec4(z)(1 + 2 sin2(z)dz)

)
.
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Combining terms (and assuming boundary conditions δ1 = C1 = 0, 1
cot2(y0) cos4(y0)

=

1), we recover a new form of Ae−δ:

ν(z) ≡ sec4 z(1 + 2 sin2 z), (3.25)

Ae−δ = cos2(x) cotx

∫ x

z0

exp

(∫ z

y0

sin(y) cos(y)(Φ2 + Π2)dy

)
ν(z)dz. (3.26)

3.2 Deriving more useful forms of Π and Φ

A central goal in the formulation of wave turbulence is finding the kinetic equation that

governs the flow of the turbulent fluid (which is the scalar field ϕ in this case). To do

so to we have to rewrite Φ and Π,

Φ̇ =
d

dt
(ϕ′) =

d

dt
(Ae−δΠ)′, (3.27)

Π̇ =
1

tan2(x)

(
Ae−δΦ tan2(x)

)′
, (3.28)

in terms of nonlinear dynamics. We can write both of these equations as an infinite

series (see section 1.2):

Π =
∞∑
j=0

aj(t)ej(x), (3.29)

Φ =
∞∑
j=0

bj(t)gj(x). (3.30)

The set of gj eigenfunctions form an orthonormal basis with the following proper-

ties:

gj ≡
e′j

3 + 2j
, (3.31)

d

dx

(
1

tan2(x)

d

dx
(tan2(x)gj(x))

)
+ (3 + 2j)2gj = 0. (3.32)

This ej term is like a potential term and its spatial derivative, gj, is like a force

term. We want to find the time derivatives of the temporal functions used in the infinite

series. For bj(t),
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∫ π/2

0

(Ae−δΠ)′gj(x) tan2(x)dx =

∫ π/2

0

gjΦ̇ tan2(x)dx, (3.33)

=
∞∑
k=0

ḃk(t)

∫ π/2

0

tan2(x)gj(x)
( ∞∑
k=0

gk(x)
)
dx.(3.34)

Remembering the orthonormality condition from earlier,

δjk

∞∑
k=0

ḃk(t) =

∫ π/2

0

(Ae−δΠ)′gjdx, (3.35)

→ ḃj(t) =

∫ π/2

0

(Ae−δΠ)′gj(x) tan2(x)dx. (3.36)

For aj(t) we can do something similar:

∫ π/2

0

(Ae−δΦ tan2 x)′ej(x)dx =

∫ π/2

0

( ∞∑
k=0

ȧk(t)ek(x)
)
ej(x) tan2 x dx, (3.37)

=
( ∞∑
k=0

ȧk(t)
)
δjk, (3.38)

→ ȧj(t) =

∫ π/2

0

(Ae−δΦ tan2 x)′ej(x)dx. (3.39)

3.3 Moving toward a kinetic equation

By integrating over all AdS we ensure independence from the spatial coordinate for

a and b. These are more useful forms of each eigenfunction that when summed over

all modes make up Π and Φ and their first derivatives. We introduce a complex wave

equation that incorporates the temporal functions and is therefore only dependent on

time.

Bs
j ≡

aj + isbj√
3 + 2j

. (3.40)

It is important to note that the spectral parameter s can only have the values ±
1. Differentiating with respect to time we get

Ḃs
j =

1√
3 + 2j

∫ π/2

0

tan2 x

(
(Ae−δΦ)′ej(x) + is(Ae−δΠ)′gj(x)

)
dx. (3.41)
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This form of the equation is not particularly useful so we need to rearrange the

integrand so there are no derivative terms (i.e. Φ’ or Π’).

∫ π/2

0

(Ae−δΦ tan2(x))′ejdx = ejAe
−δΦ tan2 x

∣∣∣π/2
0

(3.42)

−
∫ π/2

0

Ae−δ tan2 xΦe′jdx,∫ π/2

0

is(Ae−δΠ)′gj tan2 xdx = is

[
gj tan2 xAe−δΠ

∣∣∣π/2
0

(3.43)

−
∫ π/2

0

(Ae−δ)(gj tan2 x)′dx

]
,

(gj tan2 x)′ = −(3 + 2j)ej tan2(x). (3.44)

After plugging in the evaluations of these integrals the time derivative of the wave

can be written in the following way:

Ḃs
j = −

√
3 + 2j

∫ π/2

0

Ae−δ tan2 x(Φgj − isΠej)dx. (3.45)

We need a way to write Π and Φ as a sum over terms that are a product of an

oscillon and our new wave equation.

Π =
∞∑
j=0

aj(t)ej(x), (3.46)√
3 + 2jBs

j = aj + isbj, (3.47)∑
s

√
3 + 2jBs

j = (aj + ibj) + (aj − ibj), (3.48)

Π =
1

2

∞∑
j=0

∑
s

√
3 + 2jBs

jej(x), (3.49)
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Φ =
∞∑
j=0

bj(t)gj(x), (3.50)√
3 + 2jsBs

j = saj + is2bj, (3.51)∑
s

√
3 + 2jsBs

j = 2ibj, (3.52)

Φ = − i
2

∞∑
j=0

∑
s

s
√

3 + 2jBs
jgj(x). (3.53)

We can write the new equation as a sum over modes rather than as an integral

that involves Π and Φ (as it is written in equation (3.41)).

Ḃj
s = s

i

2

∞∑
j1=0

∑
s1

√
3 + 2j

√
3 + 2j1

∫ π/2

0

Ae−δ(ejej1 + ss1gjgj1)dxB
s1
j1
. (3.54)

We want to Taylor expand the exponential function inside Ae−δ, as Ae−δ is nested

inside the integral that determines Ḃj
s . This is the method with which we truncate our

wave equation.

Ae−δ = cos2(x) cotx

∫ x

z0

(1 +

∫ z

y0

sin(y) cos(y)(Φ2 + Π2)dy + . . . )ν(z)dz. (3.55)

A change in variables ξ(y) ≡ (Φ2 + Π2) sin y cos y shortens the form of the equation

in such a way that we can neatly provide more orders of the expansion:

Ae−δ = 1 +
∞∑
n=1

1

n!

∫ x

0

(∫ z

0

ξdy
)n
ν(z)dz, (3.56)

Ae−δ = 1 + cos2 x cotx

∫ x

0

(∫ z

0

ξdy
)
ν(z)dz, (3.57)

+
1

2
cos2 x cotx

∫ x

0

(∫ z

0

ξdy
)2

ν(z)dz + . . . .

To make this computation easier let’s introduce a new function F that will make

equation (3.54) a little more palatable:
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F s1s2
j1j2

(y) =
1

4

√
3 + 2j1

√
3 + 2j2(ej1ej2 − s1s2gj1gj2) sin y cos y, (3.58)

Π2 =
1

4

∑
j1j2

∑
s1s2

√
3 + 2j1

√
3 + 2j2B

s1
j1
Bs2
j2
ej1ej2 , (3.59)

Φ2 = −1

4

∑
j1j2

∑
s1s2

s1s2

√
3 + 2j1

√
3 + 2j2B

s1
j1
Bs2
j2
gj1gj2 , (3.60)

ξ(y) = F s1s2
j1j2

Bs1
j1
Bs2
j2
. (3.61)

At this point we need to introduce a new index m ≡ 2n,

Ae−δ = 1 +
N∑
n=1

1

n!

∑∑∫ x

0

cos2 x cotx (3.62)

×
(( M∏

m=2

∫ z

0

F jm−1jm
sm−1sm

dy
)
ν(z)dz

)( M∏
m=2

Bjm−1
sm−1

Bjm
sm

)
dx,

where the index m is positive even integers greater than 2 and M = 2N . For

N = 2,

Ae−δ = 1 +
∑
j1j2

∑
s1s2

∫ x

0

cos2 x cotx
(∫ z

0

F s1s2
j1j2

(y)dy
)
ν(z)dz Bs1

j1
Bs2
j2
, (3.63)

+
1

2

∑
j1j2j3j4

∑
s1s2s3s4

∫ x

0

cos2 x cotx

×
(∫ z

0

F s1s2
j1j2

(y)dy
)(∫ z

0

F s3s4
j3j4

(y)dy
)
ν(z)dz Bs1

j1
Bs2
j2
Bs3
j3
Bs4
j4
.

3.3.1 First order of the kinetic equation

To first order Ae−δ = 1 so we can proceed with finding the first term in the kinetic

equation:

s
i

2

∑
j1

∑
s1

√
3 + 2j

√
3 + 2j1

∫ π/2

0

(1) tan2 x(ejej1 + ss1gjgj1)dxB
s1
j1
. (3.64)

Using the orthonormality condition involving the inner product of oscillons, this

can be simplified.

– 16 –



= is
∑
j1

∑
s1

1

2

√
3 + 2j

√
3 + 2j1(δjj1 + ss1δjj1)B

s1
j1
, (3.65)

= is(3 + 2j)Bj
s . (3.66)

3.3.2 The final kinetic equation extended to Nth order

We now introduce what is called the resonance manifold, or a coefficient that describes

how the modes of our wave interact with each other.

Γ
−ss1...sm−1

jj1...jm−1
≡ 1

n!

∫ π/2

0

F−ss1jj1
(x), (3.67)

×
(∫ x

0

ν(z)dz
( M∏
m=4

∫ z

0

F
sm−2sm−3

jm−2jm−3
(y)dy

)
dx

)
,

F−ss1jj1
(x) =

1

4

√
3 + 2j

√
3 + 2j1(ejej1 + ss1gjgj1) sinx cosx, (3.68)

tan2 x cos2 x cotx = sin x cosx. (3.69)

The higher order terms of the kinetic equation then take on the following form:

= is
∑∑√

3 + 2j1

√
3 + 2j (3.70)

× 1

2× 4

∫ π/2

0

(∫ x

0

( M∏
m=4

∫ z

0

F
sm−3sm−2

jm−3jm−2
(y)dy

)
ν(z)dz

)
× sinx cosx(ejej1 + ss1gjgj1)dxB

s1
j1
. . . Bjm−1

sm−1
.

The product index is even integers greater than 4 and M is the order desired

multiplied by 2. It is apparent that a pattern continues for higher order terms such that

there for an nth order expansion there are 2n− 1 B’s and wave interaction coefficients

with 2n− 1 covariant and contravariant modes. This is because for each higher order

truncation of Ae−δ we introduce 2 new B’s and one new (
∫
F ). The (n!) term cancels

out the one introduced by Γ. The explicit form after N = 1 is

i
(n!

8

)
s
∑

j1...jm−1

∑
s1...sm−1

Γ
−ss1...sm−1

jj1...jm−1
Bs1
j1
. . . B

sm−1

jm−1
. (3.71)

Therefore, the kinetic equation to Nth order is
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Ḃs
j = is(3 + 2j)Bj

s +
1

8

N∑
n=2

i(n!)s
∑

j1...jm−1

∑
s1...sm−1

Γ
−ss1...sm−1

jj1...jm−1
Bs1
j1
. . . B

sm−1

jm−1
. (3.72)

For N = 4 (higher order expansions will be difficult to analyze numerically),

Ḃs
j = is(3 + 2j)Bj

s +
is

4

∑
j1j2j3

∑
s1s2s3

Γ−ss1s2s3jj1j2j3
Bs1
j1
Bs2
j2
Bs3
j3

(3.73)

+
i3s

4

∑
j1j2j3j4j5

∑
s1s2s3s4s5

Γ−ss1s2s3s4s5jj1j2j3j4j5
Bs1
j1
Bs2
j2
Bs3
j3
Bs4
j4
Bs5
j5

+ i3s
∑

j1j2j3j4j5j6j7

∑
s1s2s3s4s5s6s7

Γ−ss1s2s3s4s5s6s7jj1j2j3j4j5j6j7
Bs1
j1
Bs2
j2
Bs3
j3
Bs4
j4
Bs5
j5
Bs6
j6
Bs7
j7
.

In future work we will be using the resonance manifold for the first three non-free

orders of the expansion, which can be written explicitly in the following way:

Γ−ss1s2s3jj1j2j3
=

1

2

∫ π/2

0

F−ss1jj1
(x)
(∫ x

0

ν(z)dz
)(∫ z

0

F s2s3
j2j3

(y)dy
)
dx, (3.74)

Γ−ss1s2s3s4s5jj1j2j3j4j5
=

1

6

∫ π/2

0

F−ss1jj1
(x)
(∫ x

0

ν(z)dz
)(∫ z

0

F s2s3
j2j3

(y)dy
)

(3.75)

×
(∫ z

0

F s4s5
j4j5

(y)dy
)
dx,

Γ−ss1s2s3s4s5s6s7jj1j2j3j4j5j6j7
=

1

24

∫ π/2

0

F−ss1jj1
(x)
(∫ x

0

ν(z)dz
)(∫ z

0

F s2s3
j2j3

(y)dy
)

(3.76)

×
(∫ z

0

F s4s5
j4j5

(y)dy
)(∫ z

0

F s6s7
j6j7

(y)dy
)
dx.

In practice summing to N orders is not feasible because the wave is only weakly

turbulent and higher orders of the resonance manifold encapsulate unaccessible modes.

We now have developed a kinetic equation that can be used to evaluate the evolution

of the wave that proceeds through mode interactions. In the next section we elaborate

on the numerical techniques that can be used.

4 Numerical Simulations

4.1 Simulations of the kinetic equation: the free limit

The free limit simply means that all wave interaction amplitudes are equal to zero and
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Ḃj
s = is(3 + 2j)Bj

s , (4.1)

see figures 3 and 4 for plots of the temporal functions and Bj
s in this limit.

Figure 3. Free limit temporal eigenfunctions, first few modes.

(a) aj(t) in the free limit. (b) bj(t) in the free limit.

4.2 Simulations of the kinetic equation: truncation

The first step in this process is to find the wave interaction amplitudes. Given that

s is constrained to two values the resonance manifold for given order N will have

16N4 terms. First we plot ej(x) and gj(x) (whose analytic form was computed using

Mathematica) for the first few modes in figure 5. Next we must compute the function

F given a certain set of modes (see equation (3.58)) and the plot of different F ’s for

N = 3 is shown in figure 6. Our goal is to find the resonance manifold using (3.74),

(3.75), (3.76); further investigation will deal with possibly higher modes but for now

we will limit ourselves to N = 2. The end goal of this research, but beyond the scope

of this thesis, is to simulate our kinetic equation using the array of wave interaction

amplitudes being generated. Using Richardson’s integration routine we found the 256

wave interaction amplitudes associated with N = 2. While most were about 0, 20

were between −25 and 15, and 4 were on the order of 106. It makes sense that most

were very small; modes of the wave only interact with similarly energetic modes (as

is typical of turbulent systems). Each of these four Γ’s occurred when j2, j3 = 2. See

figure 7 for more details.

5 Discussion

In this thesis we started with the tangible idea that there is a connection between

gravity and the behavior of fluids. Using the wave turbulence formulation in the regime
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Figure 4. Bs
j with no interaction between modes for four different modes.

(a) j = 1 (b) j = 3

(c) j = 5 (d) j = 10

Figure 5. First few oscillon modes (j = 1 . . . 7).

(a) ej(x) for the first 7 modes. (b) gj(x) for the first 7 modes.

described in section 2 we were able to formally construct a kinetic wave equation

truncated to any desired order but a statistical foundation is still lacking. After a time

where the free limit is an appropriate approximation the resonance manifold becomes
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Figure 6. F (s1, s2, j1, j2, x) from j = 1 to j = 3.

Figure 7. While unsurprisingly most wave interaction amplitudes were zero there were 4 out

of 256 that were on the order of a million (neglected in this histogram, might be attributable

to numerical routine that was written to compute these values.) Turbulent systems are self-

similar so modes of the wave will only interact with modes equipped with similar energy.

increasingly important as modes of the wave interact with each other. We lay the

foundations for a program aimed at recasting gravity into fluid dynamics, ultimately

paving the way to identifying the precise content of the Einstein field equations as a

form of the Navier-Stokes equation.
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6 Prospects for Future Research: Wave Turbulence → Nu-

merical Collapse

Sections 2 through 4 lay the foundations for further research, namely simulating the

collapse of a massless scalar field in AdS using the methods of wave turbulence. The ex-

istence of a Kolmogorov-Zakharov spectrum in a particular regime has been established

by numerically studying gravitational collapse. Can this spectrum be reproduced in the

framework of wave turbulence where the spectrum is viewed as a stationary solution of

the wave equation? Will wave turbulence improve upon the two-time formalism (elabo-

rated on in section 1.3)? Choptuik scaling is a universal property of many gravitational

systems near the threshold of black hole formation. Can the Choptuik spacetimes be

better understood in the context of wave turbulence? Given that the critical exponent

has the same value in asymptotically flat space and in asymptotically AdS spaces, we

expect the critical solution to be a solution of the kinetic equation with some particular

property, most naturally discrete self-similarity. Is the Choptuik scaling of universality

at the threshold of black hole formation a result of wave turbulence in the gravity equa-

tions? Recall that Choptuik scaling is a mechanism by which the threshold of black

hole formation has been shown to be universal in asymptotically AdS spacetimes. We

propose to cast the problem of gravitational collapse in asymptotically AdS spacetimes

in the appropriate language of wave turbulence and to use these powerful methods to

better describe the process.

A Appendix I: Properties of the metric using Maple

Recall from section 2.1 that A and δ are the Einstein field equations that constrain

the scalar field. Using the tensor package available in Maple we were able to find the

Ricci scalar, Ricci tensor, and nonzero Riemann tensor components for the spacetime

endowed with the metric (2.2) in 2+1 dimensions. The explicit form of these equations

are difficult to recover (see (3.63)) so we simply write them as functions of x and t. To

run this program for d − 1 dimensions we would replace the differential displacement

along the 1-sphere (dθ2) with the with the appropriate dΩ2
d−1 term. Using the ADM

formalism (see sections 6 and 7 of [33] for details) we could use the Ricci scalar to solve

the Hamiltonian and recover the equations of motion through this spacetime. This

calculation, however, is beyond the scope of this thesis. The resulting output from our

Maple program is attached as an appendix.
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(3)(3)

#Metric for d=2
with tensor :
coord  t, x,

coord  t, x,

g array symmetric, sparse, 1 ..3, 1 ..3 :

g 1, 1   sec
x
l

2
A x, t e 2 x, t ; g 2, 2  

1
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 sec
x
l

2

g1, 1  sec
x
l

A x, t  e 2 x, t
2
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sec

x
l

2

A x, t

g 3, 3 sec
x
l

2
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x
l

2

g3, 3  sec
x
l

2
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x
l

2

metric create 1, 1 , eval g ;

metric  table compts

=
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x
l
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2

0 0

0
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x
l

2

A x, t
0

0 0 sec
x
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2
 l2 sin

x
l

2

, index_char =
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(4)(4)
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1, 1

tensorsGR coord, metric,'contra_metric ','det_met ','C1 ','C2 ','Rm ','Rc ','R ','G ','C ' :
displayGR Ricciscalar, R ;

The Ricci Scalar
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x
l

A x, t  e 2 x, t
2
 sec

x
l

A x, t  e 2 x, t  A x,

t 3 e 2 x, t  l2 4 cos
x
l

2
 

2

x2  A x, t  D sec
x
l
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x
l
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l
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x
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l
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x
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x
l

A x, t  e 2 x, t
2
 sec
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x
l
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x
l
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l
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l
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l
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x
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(4)(4)
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l
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x
l
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2
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l
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2
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x
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2

displayGR Ricci, Rc ;

The Ricci tensor
non-zero components :
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2
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l
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x
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l
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x
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l
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x
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l

2
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x
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l
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2
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l

2
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x
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x
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t
2
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l
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2
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l
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2
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2
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l

2
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x
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x
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2
 D sec
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l
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l
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l

2
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x
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x
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x
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l
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l
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x
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x
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x
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x
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x
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2
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x
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x
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x
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l
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x
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x
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x
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x
l
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x
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x
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x
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x
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