Hypervelocity Stars
A New Probe for Near-Field Cosmology

Omar Contigiani

Student Colloquium, 20/06/2017, Leiden

Co-supervisor: Msc. T. Marchetti

Supervisor: Dr. E.M. Rossi
Near-Field Cosmology

And why a new probe would useful
Near-Field Cosmology - Structure Formation

MILKY WAY
Near-Field Cosmology - Structure Formation

DM HALO DENSITY PROFILE
Navarro–Frenk–White

\[\rho(r) = \frac{M_h}{4\pi} \frac{1}{r(r + rh)^2} \]

Oblate/Prolate
Near-Field Cosmology - Structure Formation

DM HALO DENSITY PROFILE
Navarro–Frenk–White

\[\rho(r) = \frac{M_h}{4\pi} \frac{1}{r^2 + \frac{r h}{2} \frac{1}{2}} \]

Oblate/Prolate

PREDICTIONS, e.g.

- Self interacting DM ⇒ Inner spherical halo (Peter+ 2013)

- Light MW halo ⇒ No more “missing satellites” (Wang+ 2011)
Near-Field Cosmology - Structure Formation

DM HALO DENSITY PROFILE
Navarro–Frenk–White

\[\rho(r) = \frac{M_h}{4\pi r} \frac{1}{r + r_h}\]

DYNAMICAL TRACERS, e.g.:
- Stellar streams
- Globular clusters
- Stellar streams

Credit: ESO, F. Ferraro // NASA/JPL-Caltech
Near-Field Cosmology - Measurements To Date

\[\rho(r) = \frac{M_h}{4\pi r (r + r_h)^2} \]

Credit: Wang+ 2015
Near-Field Cosmology - Measurements To Date

\[\rho(r) = \frac{M_h}{4\pi r(r + r_h^2)} \]

Streams
- Spherical (Bovy 2016)

Halo stars
- Oblate (Loebman+ 2014)

Tracers
- Prolate (Bowden+ 2016)

Credit: Wang+ 2015
Near-Field Cosmology - Measurements To Date

Systematic biases

Thorough statistical analysis required

$\rho(r) = \frac{M_h}{4\pi r(r + rh^2)}$

Credit: Wang+ 2015
Hypervelocity Stars

And why they are a hot topic right now

- High velocity: $v \gg \sigma_v$
- Orbits crossing Galactic center

Credit: Brown 2015
Hypervelocity Stars - Observations To Date

[2005]

DISCOVERY OF AN UNBOUND HYPERVELOCITY STAR IN THE MILKY WAY HALO

WARREN R. BROWN, MARGARET J. GELLER, SCOTT J. KENYON, AND MICHAEL J. KURTZ
Smithsonian Astrophysical Observatory, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138;
wbrown@cfa.harvard.edu, mgeller@cfa.harvard.edu, skenyon@cfa.harvard.edu, mkurtz@cfa.harvard.edu

Received 2005 January 7; accepted 2005 February 3; published 2005 February 21

![Graph showing radial velocity distribution with peaks at 709 km s⁻¹ and a dispersion of 120 km s⁻¹]
Hypervelocity Stars - Observations To Date

[2005]

DISCOVERY OF AN UNBOUND HYPERVELOCITY STAR IN THE MILKY WAY HALO
WARREN R. BROWN, MARGARET J. GELLER, SCOTT J. KENYON, AND MICHAEL J. KURTZ
Smithsonian Astrophysical Observatory, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138;
wbrown@cfa.harvard.edu, mgeller@cfa.harvard.edu, skenyon@cfa.harvard.edu, mkurtz@cfa.harvard.edu
Received 2005 January 7; accepted 2005 February 3; published 2005 February 21

[2014]

MMT HYPERVELOCITY STAR SURVEY. III. THE COMPLETE SURVEY
WARREN R. BROWN, MARGARET J. GELLER, AND SCOTT J. KENYON
Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138, USA; wbrown@cfa.harvard.edu,
mgeller@cfa.harvard.edu, skenyon@cfa.harvard.edu
Received 2013 December 5; accepted 2014 April 9; published 2014 May 6

Figure:
- Diagram showing the distribution of hypervelocity stars with radial velocity and distance from the galactic center.
- The text provides statistical information such as the dispersion of velocities ($\sigma = 120$ km s$^{-1}$) and a prominent velocity of 709 km s$^{-1}$.
Hypervelocity Stars - Leading mechanism [1988]

Hyper-velocity and tidal stars from binaries disrupted by a massive Galactic black hole

J. G. Hills

- Three body interaction binary system and MBH

Credit: Brown 2015
Hypervelocity Stars - Leading mechanism [1988]

Hyper-velocity and tidal stars from binaries disrupted by a massive Galactic black hole

J. G. Hills

- Three body interaction binary system and MBH
- S-star is left behind
Hypervelocity Stars - Leading mechanism [1988]

Hyper-velocity and tidal stars from binaries disrupted by a massive Galactic black hole

J. G. Hills

- Three body interaction, binary system and MBH
- S-star is left behind
- Hypervelocity star is ejected

$V \sim 1000 \text{ km/s}$
PROBING THE SHAPE OF THE GALACTIC HALO WITH HYPERVELOCITY STARS

OLEG Y. Gnedin,1 ANDREW GOULD,1 JORDI MIRALDA-ESCUDÉ,1 AND ANDREW R. ZENTNER2

Received 2005 June 30; accepted 2005 August 4
Hypervelocity Stars - Promising Past

PROBING THE SHAPE OF THE GALACTIC HALO WITH HYPERVELOCITY STARS
Oleg Y. Gnedin,1 Andrew Gould,1 Jordi Miralda-Escudé,1 and Andrew R. Zentner2
Received 2005 June 30; accepted 2005 August 4

[2005]

Joint constraints on the Galactic dark matter halo and Galactic Centre from hypervelocity stars
E. M. Rossi,1,* T. Marchetti,1 M. Cacciato,1 M. Kuijack1,2 and R. Sari3,4
1Leiden Observatory, Leiden University, PO Box 9513, NL-2300 RA Leiden, the Netherlands
2Kapteyn Institute, University of Amsterdam, PO Box 94249, NL-1090 GE Amsterdam, the Netherlands
3Racah Institute of Physics, Hebrew University, 91904 Jerusalem, Israel
4Theoretical astrophysics 350-17, California Institute of Technology, Pasadena, CA 91125, USA

[2017]
Hypervelocity Stars - Promising Future

Quantity

10^9 stars

Quality

Spectroscopic subsample w/ full 3D velocity and position

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^9 stars</td>
<td>Spectroscopic subsample w/ full 3D velocity and position</td>
</tr>
</tbody>
</table>

Credit: ESA/Gaia/DPAC. A. Moitinho & M. Barros (CENTRA – University of Lisbon)
Statistical Inference

Crash Course

Data
\((X_1, X_2, \ldots, X_n)\)

Model
\(f(X, \theta)\)

\(\mathcal{L}(\theta) = \prod_i f(X_i, \theta)\)

Constraints on model parameters
\(\tilde{\theta}\)
Statistical Inference - Unit (Fisher) Information

\[I(\theta)_{i,j} = E \left[\left(\frac{\partial \log f(X|\theta)}{\partial \theta_i} \right) \left(\frac{\partial \log f(X|\theta)}{\partial \theta_j} \right) \right] \]

\[\text{Cov} (\hat{\theta}) \geq \frac{1}{I(\theta)} \]

Depends only on how sensible the model is to a change of parameters.
Research Project Goals

Study the kinematics of HVS to obtain:
Research Project Goals

Study the kinematics of HVS to obtain:

1) **FISHER FORECAST**
 To assess the potential.

 Compute the information and display the contours for DM halo parameters.
Research Project Goals

Study the kinematics of HVS to obtain:

1) **FISHER FORECAST**
 To assess the potential.
 Compute the information and display the contours for DM halo parameters.

2) **ESTIMATED POPULATIONS**
 How many HVSs could be there?
 Construct mock catalog of the galactic population and infer how many of them will be observed by Gaia.

<table>
<thead>
<tr>
<th>m</th>
<th>vlos</th>
<th>dist</th>
<th>ra</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4553</td>
<td>-214.358222</td>
<td>2.74557</td>
<td>233.04656</td>
</tr>
<tr>
<td>3.76849</td>
<td>30.22415</td>
<td>4.6058</td>
<td>238.86041</td>
</tr>
<tr>
<td>5.30614</td>
<td>-298.15277</td>
<td>9.195</td>
<td>265.2593</td>
</tr>
<tr>
<td>3.21015</td>
<td>465.89783</td>
<td>10.15517</td>
<td>265.69731</td>
</tr>
<tr>
<td>2.33559</td>
<td>260.5524</td>
<td>7.61815</td>
<td>261.81496</td>
</tr>
<tr>
<td>2.76146</td>
<td>373.42735</td>
<td>11.87023</td>
<td>215.55720</td>
</tr>
<tr>
<td>2.48972</td>
<td>27.62396</td>
<td>5.94945</td>
<td>249.04319</td>
</tr>
<tr>
<td>1.41571</td>
<td>-30.36881</td>
<td>4.39806</td>
<td>312.58829</td>
</tr>
<tr>
<td>3.35765</td>
<td>63.08018</td>
<td>10.47993</td>
<td>255.94434</td>
</tr>
<tr>
<td>3.35765</td>
<td>254.36938</td>
<td>9.735</td>
<td>255.68784</td>
</tr>
<tr>
<td>4.57646</td>
<td>184.99292</td>
<td>12.44809</td>
<td>236.27294</td>
</tr>
<tr>
<td>4.57646</td>
<td>215.99292</td>
<td>8.4596</td>
<td>239.23031</td>
</tr>
</tbody>
</table>
Research Project Goals

Study the kinematics of HVS to obtain:

1) **FISHER FORECAST**
 To assess the potential. Compute the information and display the contours for DM halo parameters.

2) **ESTIMATED POPULATIONS**
 How many HVSs could be there? Construct mock catalog of the galactic population and infer how many of them will be observed by Gaia.

3) **LIKELIHOOD PIPELINE**
 Develop a technique! Feed the mock catalog into it and obtain realistic constraints.

<table>
<thead>
<tr>
<th>m</th>
<th>v_{los}</th>
<th>dist</th>
<th>ra</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4553</td>
<td>-214.35822</td>
<td>2.74557</td>
<td>233.04656</td>
</tr>
<tr>
<td>3.76849</td>
<td>30.22415</td>
<td>4.6059</td>
<td>238.86041</td>
</tr>
<tr>
<td>5.3014</td>
<td>-298.15277</td>
<td>9.195</td>
<td>295.2593</td>
</tr>
<tr>
<td>3.21015</td>
<td>465.69763</td>
<td>10.15517</td>
<td>265.69731</td>
</tr>
<tr>
<td>2.33559</td>
<td>260.5524</td>
<td>7.61815</td>
<td>261.81496</td>
</tr>
<tr>
<td>2.76146</td>
<td>373.42735</td>
<td>11.87029</td>
<td>215.55720</td>
</tr>
<tr>
<td>2.48972</td>
<td>27.62396</td>
<td>5.94945</td>
<td>249.04319</td>
</tr>
<tr>
<td>1.41571</td>
<td>-30.36681</td>
<td>4.30806</td>
<td>312.58828</td>
</tr>
<tr>
<td>3.35765</td>
<td>63.08018</td>
<td>10.54793</td>
<td>255.94434</td>
</tr>
<tr>
<td>3.35765</td>
<td>254.36938</td>
<td>9.735</td>
<td>255.68784</td>
</tr>
<tr>
<td>4.57646</td>
<td>184.99232</td>
<td>12.44809</td>
<td>236.27294</td>
</tr>
<tr>
<td>4.57646</td>
<td>215.95921</td>
<td>8.4596</td>
<td>259.23031</td>
</tr>
</tbody>
</table>
Formalism

Starting from the physics

Treat HVS as a statistical ensemble defined in the configuration space

\[
\left(\vec{x}, \vec{v}, m \right)
\]

\(\vec{w} \) Phase-space coordinate

\(f(\vec{w}, m) \) Number density in configuration space

Stellar mass
1) Steady state
Time-independent potential

Time-independent ejection rate

\[\frac{\partial}{\partial t} = 0 \]
Phase-space distribution - Assumptions

1) Steady state

\[\frac{\partial}{\partial t} = 0 \]

2) Source

How many HVSs are ejected per unit mass, volume, velocity?

Usually done with Monte Carlo simulations.

In our case, analytic function (Rossi+ 2014) which fits MC.
Phase-space distribution - Assumptions

1) **Steady state**

\[\frac{\partial}{\partial t} = 0 \]

2) **Source**

Analytic function which fits MC.

3) **Sink**

When to HVS “disappear”?
Phase-space distribution - Assumptions

1) Steady state
\[\frac{\partial}{\partial t} = 0 \]

2) Source
Analytic function which fits MC.

3) Sink
When to HVS “disappear”?

\[T_{\text{flight}}(m) = \varepsilon_1 \varepsilon_2 T_{\text{MS}}(m) \]

\[\varepsilon \quad \text{Uniformly distributed between [0, 1]} \]
Phase-space distribution - Solving continuity equation

\[
\frac{df}{dt}(\vec{w}, m) = R(\vec{w}, m) - S(\vec{w}, m)
\]
Phase-space distribution - Solving continuity equation

\[f(\vec{w}(t), m) = \int_{0}^{\infty} R(w(t-t'), m) g(t') \, dt' \]

Analytic formula, that can be computed for any assumed

\[R \quad \& \quad g \]

Ejection rate \hspace{1cm} Dying rate

Unfortunately, it requires the numerical integration of the trajectory

\[\vec{w}(t) \]
Fisher Forecast

Estimates based on Unit Information - assuming a 1D toy model of the galaxy

\[I(\vec{\theta})_{i,j} = E \left[\left(\frac{\partial \log f(X|\vec{\theta})}{\partial \theta_i} \right) \left(\frac{\partial \log f(X|\vec{\theta})}{\partial \theta_j} \right) \right] \]

Credit: Selletin+ 2014
Fisher Forecast - Contours

ASSUMPTIONS:

- 1D toy model
- 5 M_\odot HVSs
BAD NEWS:

Large relative errors.

\[M_h \left(10^{12} M_\odot \right) = 0.70^{+1.49}_{-1.49} \]

\[r_h \, (\text{kpc}) = 16.00^{+12.24}_{-12.24} \]
BAD NEWS:
Large relative errors.

GOOD NEWS:
Strong degeneracy, worth investigating.
Mock catalogs

Simulation of the HVS Galactic and Gaia populations

Previous Results

Predicted ejection rate
theory (Yu+Tremaine 2013) & observations (Kollmeier+ 2010)

10^{-4} yr$^{-1}$

Predicted pop. of 2.5-4 M$_\odot$ within 100 kpc

Observations (Brown 2015)

300
Mock catalogs - Ingredients

1) Ejection Rate & Flight time distribution
Previously modelled

\[T_{\text{flight}}(m) = \varepsilon_1 \varepsilon_2 T_{\text{MS}}(m) \]
Mock catalogs - Ingredients

1) Ejection Rate & Flight time distribution
 Previously modelled

 \[T_{\text{flight}}(m) = \varepsilon_1 \varepsilon_2 T_{\text{MS}}(m) \]

2) Galactic Model
 Kenyon+ 2008 (Potential)
 Halo + Bulge (spherical)
 Disc (axisymmetric)

 Bovy+ 2015a (3D Dustmap)
 Green+ 15, Marshall+ 06, Drimmel+ 03

 \[f_{v,M} \propto M^{-1.7} |\vec{v}|^{-1} \]
 \[\log |\vec{v}| = \log(1200M_\odot/M) + 0.6 \text{ km/s} \]
Mock catalogs - Ingredients

1) **Ejection Rate & Flight time distribution**
 Previously modelled

 \[T_{\text{flight}}(m) = \varepsilon_1 \varepsilon_2 T_{\text{MS}}(m) \]

2) **Galactic Model**
 - Kenyon+ 2008 (Potential)
 - Bovy+ 2015a (Dustmap)

3) **Gaia Selection Function**
 \[G_{\text{RVS}} < 16 \]

 `pyGaia` (A. Brown) to reconstruct Errorbars on proper motions / parallax / radial velocity
Mock catalogs - HVS Galactic population

Total Galactic population

60% unbound
Mock catalogs- HVS Galactic population

Gaia 3d velocities and positions

10% unbound
Mock catalogs- HVS Galactic population

Gaia 3d velocities and positions (high velocity)

~200 stars
Full likelihood

Finally!

\[\mathcal{L}(\vec{\theta}) = \prod_{i} f(X_i, \vec{\theta}) \]

“Observed” data from mock catalogs

Formalism can predict different PDF for different parameters

\[f(X_i, \vec{\theta}) \]

\[M_h, r_h, c/a \]
Full Likelihood
Full Likelihood

GOOD NEWS

1) No bias

2) \(\frac{c}{a} = 0.98^{+0.04}_{-0.02} \)
Full Likelihood

GOOD NEWS

1) No bias

2) \(\frac{c}{a} = 0.98^{+0.04}_{-0.02} \)

MIXED NEWS

Effective constraint:

\[\frac{M_h}{r_h^2} \pm 8\% \]
Summary

1) FISHER FORECAST
To assess the potential.

2) ESTIMATED POPULATIONS
How many HVSs are expected.

3) LIKELIHOOD PIPELINE
Develop a technique!

FORMALISM

🔍

Scientific Outlook

1) BARYONIC POTENTIAL
Can HVSs constrain the disk/bulge?

2) CHECK CONTAMINATION
Weighted likelihood?

3) BREAK DEGENERACY
More contours!
Mock catalogs- HVSs Galactic population vs Gaia
Fisher Forecast - P-S distribution

ASSUMPTIONS:
- 2D toy model
- 5 M_\odot HVSs
Fisher Forecast - P-S distribution
Statistical Inference - Likelihood

Likelihood Principle:
All knowledge about the real parameters is in the likelihood.

Maximum Likelihood Estimation:
The point of maximum of the likelihood is a *good* estimator of the real parameters.

\[
\mathcal{L}(\vec{\theta}) = \prod_i f(X_i, \vec{\theta})
\]