Astronomische Waarneemtechnieken
(Astronomical Observing Technigues)

3rd Lecture: 22 September 2010
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1. Atmospheric Layers

Assumption: atmosphere is in local radiative equilibrium and
the composition is approximately constant.

The structure can be described by three parameters:

* altitude z
* temperature T(z)
« density p(z)

<

The pressure P(z) can be described by: lmv =P, e H

where H = scale height (A~ 8km near ground).




Vertical Profile

o
]

€=
=4
h
=

1T}

100— _ —— _ R
: | r0.001
0.001- |
-90 Thermosphere
|
Mesopause| -0.01
0.01-+80 = —_——
0| 0.1 | &
0.1 | s
B — Mesosphere m Shuttle
60 m_ __ n 2
E 2 T o
rml 1+30 ,lm __m:..p:cnnﬁ. -] W W
m M | W wl Aurora
= 40 7 Z o
) | d 10 A S
: m T B
10130 Stratosphere w|m >0 :
20 7 except for st m
1004~ inversion layers :
J_,ﬁdu_m?_ use T ]
-10 ﬁ ﬁ m .
Troposphere
1000« i —~._ 1000

180 200 220 240 260 280
Temperature [K]

Troposphere

Mount Evergst

Constituents of the Atmosphere

* Main constituents: O, and N,
relative constant proportions (78.1% N,, 20.9% O,) up to 100 km

« Water vapour - causes very strong absorption bands

« Ozone - absorbs mainly in the UV
« distribution depends on latitude and season
* maximum concentration around 16 km height

*« CO, - important component for (mid)IR absorption
* mixing independent of altitude (similar to N,, O,)

« Tons - varies strongly with altitude and solar activity
* relevant above 60km where reactions with UV photons occur:
O,+hv -0} +e and O,+hv —>0"+0+e

« electron showers along magnetic fields cause Aurora
« at 100 - 300 km height: n, ~ 105 - 106 cm-3
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More on Water Vapor |

The water vapor is a strong function of Tand z. 1

The precipitable water vapor (PWV) is the depth of | \\ j
the amount of water in a column of the atmosphere | =~
if all the water in that column were precipitatedas | —
-\.D:\_. . . () | 8H,0 nﬁawo:: !
The amount of PWV above an altitude z; is:
S\ANO v [ Zm QQNN , where N, LB&T 4.3x10%” WHH r(z)
2y 2 ’ o 1o

Scale height for _u,>\< is only ~3 km - observatories on high altitudes
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2. Absorption of Radiation

Atomic and molecular transitions that cause absorption features:
* pure rotational molecular transitions: H,O, CO,, O3,
* rotation-vibrational molecular transitions: CO,, NO, CO
« electronic molecular transitions: CH,, CO, H,0, O,, O;, OH

« electronic atomic transitions: O, N,

The attenuation at altitude z, is given by:

%&u@% |8w%Mi\§ov

(o]

for /absorbing species with an optical depth of 7; (4, NOVH ?ANV\QOANVR (A)dz

(@is the zenith distance; k is the absorption coefficient; p, is the mass density of air).




Atmospheric Bands

Two cases of absorption:
total absorption > atmospheric fransmission windows
partial absorption - reduced transmission due to narrow telluric*
absorption features

*Telluric = related to the Earth, of terrestrial origin

The atmospheric opacity defines the atmospheric transmission bands -
and thus the wavelengths that are accessible to observations
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Ground based astronomy is limited to visible, near/mid-IR and radio
wavelengths.
Space astronomy provides access to y-rays, X-rays, UV, FIR, sub-mm

._._.,Er%mf ._ﬂﬁ |

mwm,ﬁ,._m* ﬂ i
= F Do aou ﬂ«iﬁf?ﬁ#ﬁ&w&&&h S

Sea Lavel

SRR ﬁ.\.,.. ..“&....}x

U MRS HRAN




FIR/sub-

Side note: SOFIA

mm astronomy is also possible from airplanes, e.g. the

Stratospheric Observatory for Infrared Astronomy (SOFIA)

The HITRAN'2004 Database contains g& e
1,734,469 spectral lines for 37 different
molecules.
http://cfa-www.harvard.edu/hitran//

Atmospheric Transmission [%]

Side note: HITRAN
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3. Atmospheric Emission

A. Fluorescent Emission

Fluorenscence = recombination of electrons with ions.

The recombination probability is low; takes several hours < night time
* Produces both continuum + line emission = airglow
 Occurs mainly at ~ 100 km height

* Main sources of emissionare: O I, NaI, O,, OH (¢NIR), H

The emission intensity is measured in Rayleigh:
1.58-107"
Alnm]

1Rayleigh =10°photons cm™ s sr™' = Wem™ st

B. Thermal Emission

Up to 60 km is the atmosphere in local thermodynamic equilibrium (LTE),
i.e., the excitation levels are thermally populated.

Calculating the specific energy received requires a full radiative
transfer calculation (see below), but for 7<< 1 one can use the
approximation: — 1

I,(z)=7,B,(T)

cos @

where wﬁﬂv is the Planck function at the mean temperature of the

atmosphere.
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Exact Solution: full Radiative Transfer

Atmospheric Emission [W/cm?/um/sr] (HITRAN)
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Chopping & Nodding
High background: Poissonian photon shot noise + spatially & temporally
varying fluxes + instrumental drifts/artefacts - chopping/nodding
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4. Scattering, Refraction and
Dispersion

A. Scattering by Air Molecules

Molecular scattering in the visible and NIR is Rayleigh scattering
iven by:
’ Y 87’ ?N IHVN

3 N

op(A)=

where Nis the number of molecules per unit volume and #is the
refractive index of air (n-1~ 8-105P/T).

= NOPQNN (1+cos’ 8)de

Remember, Rayleigh scattering is not isotropic: 71 >
T




B. Aerosol Scattering

Aerosols (like sea salts, hydrocarbons, volcanic dust) are much bigger
than air molecules > Rayleigh scattering does not apply.

Instead, scattering is described by Mie's theory (from classical
electrodynamics, using a "scattering efficiency factor” Q):

o0, _ scattering cross section

Qmom:oa:m = 2 . .
Ja MOOBOQAON_ Cross section

If a>» A then anoimlsm ~ Qo_umo%io: and:
* the scattered power is equal to the absorbed power

* the effective cross section is twice the geomeftrical size

1

%, %
S~ Eosols

If a~ A then Qo< 1/A (for dielectric spheres):
* the scattered intensity goes with 1/A
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Atmospheric Refraction

Due to atmospheric refraction, the apparent location of a source is
significantly altered (up to half a degree near the horizon)
- telescope pointing model.

Refraction R=(n(1)—1)tan@
z Atmospheric Refraction
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Note that the refractive index of air depends on the wavelength A:

n(1)—1]x10° = 64.328 + 29498.1 | 2554

[n(2)-1] L, 2534
E?\m AT\@N

(valid for dry air, 1 atm pressure, T ~ 290K and Ay in [pm]).




Atmospheric Dispersion

Dispersion: The elongation of points in broadband filters due to n(A)

[© “rainbow"].

The magnitude of the dispersion is a strong function of airmass and

wavelength.

No problem is dispersion < A/D < o.k. for small or seeing limited
telescopes, but big problem for large diffraction limited telescopes
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Atmospheric Dispersion Corrector

To counterbalance atmospheric dispersion use:

1.
2.
maintain the optical axis

a refractive element (e.g., prism)
a second prism (different material with different dispersion) to

use a second (identical) double prism assembly to adjust the

strength of the correction for different zenith angles.
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5. Atmospheric Turbulence

The scales L,, L,, L; are characteristic of the outer (external) scales
of turbulence caused by the wind around the obstacles 1, 2, 3.

The Reynolds Number

Turbulence develops in a fluid when the Reynolds number Re
_pVL _VL
U 14

Re

exceeds a critical value.

V is the flow velocity
¢ is the dynamic viscosity
v the kinematic viscosity of the fluid (v,;,=1.5-10-°> m? s)

L the characteristic length, e.g. a pipe diameter.

At Re ~ 2200 the transition from laminar to turbulent flow happens.

Example: wind speed ~ 1 m/s, L = 15m - Re = 106 - turbulent!




The Power Spectrum of Turbulence

The kinetic energy of large scale (~L) movements is gradually
transferred to smaller and smaller scales, down to a minimum scale
length /,, at which the energy is dissipated by viscous friction.

The local velocity field can be decomposed into spatial harmonics of
the wave vector «.
The reciprocal value 1/« represents the scale under consideration.

The mean 1D spectrum of the kinetic energy, or Kolmogorov spectrum,
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Air Refractive Index Fluctuations

Winds mix layers of different temperature - fluctuations of
temperature T - fluctuations of density p> fluctuations of
refractive index ».

Of interest: difference between /(r) at point r and A(r+p) at a nearby
point. The variance of the two values is given by:

D,(p)= ATAL- n(r +bvﬁv =C:p*°

where D,(p) is the index structure function and C,2is the index
structure coefficient or structure constant of the refractive index.




Air Refractive Index Fluctuations (2)

Usually, one is only interested in the /ntegral/ of fluctuations along the

line of sight: C,2-Ah.

Typical value: C,2:Ah ~ 4-10'13 cm!/3  for a 3 km altitude layer
But: there are always several layers of turbulence
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Median seeing conditions on Mauna Kea
are taken to be r, ~ 0.23 meters at
0.55 microns. The 10% best seeing
conditions are taken to be r, ~ 0.40
meters. Figure taken from a paper by
Ellerbroek and Tyler (1997).
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Turbulence Correlation Time 7,

Often: time scales to generate turbulence >> time for the turbulent
medium to pass the telescope aperture (¢ wind speed).
=> correlation time 1.

Motion of a “frozen” patch of atmosphere across the 3.6m telescope aperture.
Pictures by E. Gendron (1994)

Wavefront Perturbations

Consider a monochromatic, plane wave y., = 1 which passes through a
turbulent layer of thickness Ah. ﬁ

g, =1 Unperturbed

wavefront

Turbulent
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Then the spatial correlation function of the wave across the telescope
aperture is: AS (x+&)y, @v = exp(—1.45k>C2Ah x*?) , where k = 211/A

and the correlation length x_ is: N
) _
X, nA_.Am»NﬁMDwv&a —11.45 w% QZN o 0I5




The Fried Parameter r,

Related to the correlation length x, is the so-called Fried parameter ry,.

It is the radius of the spatial coherence area:
-3/5

r,(4)=0.1852"7| [ C}(2)dz
0

Note that r, increases as the 6/5 power of the wavelength and
decreases as the -3/5 power of the air mass.

Another “"definition" is that ry is the average turbulent scale over which
the RMS optical phase distortion is 1 radian.

The angle A@ = 4 is often called the seeing.

T

Short Exposures through Turbulence

Random intensity distribution of speckles in the focal plane:
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The observed image from some source is given by the convolution of I,
with the MTF or pupil tfransfer function T(w):

16)=1,6)+1(6) or (i@ }=|1,(@)[ ([T(@[)

If a point source is observed as reference through the same r, we can
(w@f)

obs

calculate: |I,(w)|= -
AE@, v§ This is called speckle interferometry.




Speckle Interferometry

Example: Real-time bispectrum speckle interferometry: 76 mas resolution.
http://www.mpifr-bonn.mpg.de/div/ir-interferometry/movie/speckle/specklemovie.html

9909, 29-27HIP4549

Several related techniques do exist, e.g., Shift-and-add, Lucky
Imaging, bispectrum analysis, Aperture masking, Triple correlation, ...

Long Exposures through Turbulence

When t,,, > 7. the image is the mean of the instantaneous intensity:
1(6)=(1,(6)+T(6,1)) < Tow) >

With the mean modulation transfer
function (MTF):

T()) = exp|-1.45k>C2 AR (1)’ ]

o
|0
=

=> The image is smeared or spatially filtered (loss of high spatial
frequencies).

The angular dimension now has order of A/ry rather than A/D.

In other words:
As long as D > ry, bigger telescopes will not provide sharper images.




