(Astronomical Observing Techniques) Astronomische Waarneemtechnieken

3rd Lecture: 22 September 2010

- Atmospheric Layers
- 2. Absorption
- 3. Emission
- 4. Scattering, Refraction
- & Dispersion
- 5. Turbulence & Seeing

Atmospheric Layers

the composition is approximately constant. Assumption: atmosphere is in local radiative equilibrium and

The structure can be described by three parameters:

- altitude z
- temperature T(z)
- density p(z)

The pressure P(z) can be described by: $P(z) = P_0 e^{rac{z}{H}}$

where H= scale height (H~ 8km near ground).

Vertical Profile

Exosphere

Ionosphe (Kanosin (Kanosin

weather balloon

ount Everes

Constituents of the Atmosphere

- Main constituents: relative constant proportions (78.1% N_2 , 20.9% O_2) up to 100 km O_2 and N_2
- Water vapour causes very strong absorption bands
- Ozone absorbs mainly in the UV
- distribution depends on latitude and season
- maximum concentration around 16 km height
- CO₂ important component for (mid)IR absorption
- mixing independent of altitude (similar to N_2 , O_2)
- Ions varies strongly with altitude and solar activity
- relevant above 60km where reactions with UV photons occur:

$$O_2 + h\nu \rightarrow O_2^{+*} + e^-$$
 and $O_2 + h\nu \rightarrow O^+ + O + e^-$

- electron showers along magnetic fields cause Aurora
- at 100 300 km height: $n_e \sim 10^5 10^6 \, \text{cm}^{-3}$

More on Water Vapor

The water vapor is a strong function of ${\mathcal T}$ and ${\mathcal Z}$

if all the water in that column were precipitated as the amount of water in a column of the atmosphere The precipitable water vapor (PWV) is the depth of

The amount of PWV above an altitude z_0 is:

g_{H2O} per m³

$$w(z_0) = \int_{z_0}^{\infty} N_{H_2O} dz$$
, where $N_{H_2O}[\text{m}^{-3}] = 4.3 \times 10^{25} \frac{P}{P_0} \frac{T}{T_0} r(z)$

Scale height for PWV is only ~ 3 km \Rightarrow observatories on high altitudes

Absorption of Radiation

Atomic and molecular transitions that cause absorption features:

- pure rotational molecular transitions: H₂O, CO₂, O₃
- rotation-vibrational molecular transitions: CO2, NO, CO
- electronic molecular transitions: CH_4 , CO, H_2O , O_2 , O_3 , OH
- electronic atomic transitions: O, N, ...

The attenuation at altitude z_0 is given by:

$$\frac{I(z_0)}{I_0(\infty)} = \exp\left[-\frac{1}{\cos\theta} \sum_i \tau_i(\lambda, z_0)\right]$$

for i absorbing species with an optical depth of $\tau_i(\lambda,z_0) = \int r_i(z) \rho_0(z) \kappa_i(\lambda) dz$

(θ is the zenith distance; κ is the absorption coefficient; ρ_0 is the mass density of air).

Atmospheric Bands

Two cases of absorption:

partial absorption total absorption reduced transmission due to narrow telluric* atmospheric transmission windows absorption features

*Telluric = related to the Earth; of terrestrial origin

and thus the wavelengths that are accessible to observations The atmospheric opacity defines the atmospheric transmission bands

Side note: SOFIA

Stratospheric Observatory for Infrared Astronomy (SOFIA)

Side note: HITRAN

The HITRAN'2004 Database contains 1,734,469 spectral lines for 37 different molecules.

http://cfa-www.harvard.edu/hitran//

Hydroperoxy radical (HO2)	Hydrogen sulfide (H2S)	Hydrogen peroxide (H2O2) (7 =1)	Hydrogen iodide (HI)	Hydrogen fluoride (HF)	Hydrogen cyanide (HCN)	Hydrogen chloride (HCl)	Hydrogen bromide (HBr)	Formic acid (HCOOH)	Formaldehyde (H ₂ CO)	Ethylene (C2H4)	Ethane (C ₂ H ₆)	Chlorine oxide (ClO)	Chlorine nitrate (ClONO ₂)	Carbonyl sulfide (OCS)	Carbonyl fluoride (COF ₂)	Carbon tetrachloride (CC14)	Carbon monoxide (CO)	Carbon dioxide (CO ₂)	Ammonia (NH ₃)	Acetylene (C2H2)	Molecule
3436	2615	3593	2230	3961	3311	2886	2559	3570	2782	3026	2954	884	1737	859	1945	464	2143	1388	3337	3374	ГА
3436 1392 1098	1183	1396			713			2943	1746	1623	1388	i.	1293	520	963	217	r.	667	950	1974	¥2
1098	2626	866			2097			1770	1500	1342	995		809	2062	582	799		2349	3444	3289	¥3
	1	259						1387	2843	1023	289		780		1243	316			1627	612	<i>v</i> 4
	1	3560						1229	1249	3103	2896		563		619					729	V 5
	4	1236			ı			1106	1167	1236	1379	i.	435	ı	774	i.	r.	ı	ı		ν6
	1	4						625		949	2969		262		1						v7
	1	1			ı			1033		943	1468	i.	711	ı	1	i.	i.	ı	i	1	8.4
1	1				ı			638	ı	3106	823	i.	120	ï		i.	i.		ï		ν9
7		4			ī					826	2985	i.		ī			i.		ī		νIO
	1								ı	2989	1469	i.	ı	ı	i.	i.	i.		i		V11
	1	4			ı					1444	822	i.		ı	1	i.	i.		i	1	V12

3. Atmospheric Emission

A. Fluorescent Emission

Fluorenscence = recombination of electrons with ions

The recombination probability is low; takes several hours o night time

- Produces both continuum + line emission = airglow
- Occurs mainly at ~ 100 km height
- Main sources of emission are: O I, Na I, O_2 , OH (\leftarrow NIR), H

The emission intensity is measured in Rayleigh:

$$1 \text{ Rayleigh} = 10^6 \text{ photons cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1} = \frac{1.58 \cdot 10^{-11}}{\lambda [\text{nm}]} \text{ W cm}^{-2} \text{ sr}^{-1}$$

B. Thermal Emission

i.e., the excitation levels are thermally populated Up to 60 km is the atmosphere in local thermodynamic equilibrium (LTE),

approximation: Calculating the specific energy received requires a full radiative transfer calculation (see below), but for $\tau << 1$ one can use the

$$I_{\lambda}(z) = \tau_{\lambda} B_{\lambda}(\overline{T}) \frac{1}{\cos \theta}$$

atmosphere. where B(T) is the Planck function at the mean temperature of the

For \overline{T} = 250 K and θ = 0:

Intensity $[Jy arcsec^{-2}]^a$	Magnitude [arcsec ⁻²]	Mean optical depth τ	Mean wavelength [µm]	Spectral band (cf. Sect. 3.3)
0.16	8.1	0.15 0.3	3.4	L
0.16 22.5	2.0	0.3	5.0	M
250	-2.1	0.08	10.2	N
2 100	57.8	0.3	21.0	0

Exact Solution: full Radiative Transfer

Fluorescent and Thermal **Emission**

Chopping & Nodding

High background: Poissonian photon shot noise + spatially & temporally varying fluxes + instrumental drifts/artefacts >> chopping/nodding

4. Scattering, Refraction and Dispersion

Scattering by Air Molecules

given by: Molecular scattering in the visible and NIR is Rayleigh scattering

$$\sigma_R(\lambda) = \frac{8\pi^3}{3} \frac{(n^2 - 1)^2}{N^2 \lambda^4}$$

where N is the number of molecules per unit volume and n is the refractive index of air (n-1 ~ 8·10-5 P/T).

Remember, Rayleigh scattering is not isotropic: $I_{scattered} = I_0 \frac{3}{16\pi} \sigma_R (1 + \cos^2 \theta) d\omega$

P Aerosol Scattering

than air molecules → Rayleigh scattering does *not* apply. Aerosols (like sea salts, hydrocarbons, volcanic dust) are much bigger

electrodynamics, using a "scattering efficiency factor" Q): Instead, scattering is described by Mie's theory (from classical

$$Q_{\text{scattering}} = \frac{\sigma_M}{\pi a^2} = \frac{\text{scattering cross section}}{\text{geometrical cross section}}$$

H Q >> \

- A then Q_{scattering} ~ Q_{absorption} and: the scattered power is equal to the absorbed power
- the effective cross section is twice the geometrical size

If $a \sim \lambda$ then $Q_s \propto 1/\lambda$ (for dielectric spheres):

the scattered intensity goes with 1/A

Atmospheric Refraction

Due to atmospheric refraction, the apparent location of a source is significantly altered (up to half a degree near the horizon) telescope pointing model.

Refraction
$$R = (n(\lambda) - 1) \tan \theta$$

Note that the refractive index of air depends on the wavelength λ :

$$[n(\lambda) - 1] \times 10^6 = 64.328 + \frac{29498.1}{146 - \frac{1}{\lambda^2}} + \frac{255.4}{41 - \frac{1}{\lambda^2}}$$

(valid for dry air, 1 atm pressure, T \sim 290K and λ_0 in [µm]).

Atmospheric Dispersion

 $[\rightarrow$ "rainbow"]. Dispersion: The elongation of points in broadband filters due to $n(\lambda)$

wavelength. The magnitude of the dispersion is a strong function of airmass and

telescopes, but big problem for large diffraction limited telescopes No problem is dispersion < A/D ← o.k. for small or seeing limited

Atmospheric Dispersion Corrector

counterbalance atmospheric dispersion use:

- 1. a refractive element (e.g., prism)
- 5 a second prism (different material with different dispersion) to maintain the optical axis
- ω strength of the correction for different zenith angles use a second (identical) double prism assembly to adjust the

b. Atmospheric Turbulence

of turbulence caused by the wind around the obstacles 1, 2, 3. The scales L_1 , L_2 , L_3 are characteristic of the outer (external)

The Reynolds Number

Turbulence develops in a fluid when the Reynolds number *Re*

$$Re = \frac{\rho VL}{\mu} = \frac{VL}{\nu}$$

exceeds a critical value.

V is the flow velocity

 μ is the dynamic viscosity

 ν the kinematic viscosity of the fluid ($\nu_{\rm air}$ =1.5·10⁻⁵ m² s⁻¹)

L the characteristic length, e.g. a pipe diameter

At Re \sim 2200 the transition from laminar to turbulent flow happens.

Example: wind speed $\sim 1 \text{ m/s}$, L = 15m \rightarrow Re = 10⁶ \rightarrow turbulent!

The Power Spectrum of Turbulence

length l_{o} , at which the energy is dissipated by viscous friction. transferred to smaller and smaller scales, down to a minimum scale The kinetic energy of large scale (~L) movements is gradually

the wave vector **K**. The local velocity field can be decomposed into spatial harmonics of

The reciprocal value 1/ κ represents the scale under consideration.

The mean 1D spectrum of the kinetic energy, or Kolmogorov spectrum, $E(\kappa) \propto \kappa^{-5/3}$

where l_0 is the inner scale, L_0 the outer scale of the turbulence, and $L_0^{-1} < \kappa < l_0^{-1}$

Air Refractive Index Fluctuations

refractive index n. Winds mix layers of different temperature \Rightarrow fluctuations of temperature $T \Rightarrow$ fluctuations of density $\rho \Rightarrow$ fluctuations of

point. The variance of the two values is given by: Of interest: difference between n(r) at point r and n(r+p) at a nearby

$$D_n(\rho) = \left\langle \left| n(r) - n(r+\rho) \right|^2 \right\rangle = C_n^2 \rho^{2/3}$$

structure coefficient or structure constant of the refractive index where $O_n(\rho)$ is the index structure function and C_n^2 is the index

Air Refractive Index Fluctuations

line of sight: $C_n^2 \cdot \Delta h$. Usually, one is only interested in the integral of fluctuations along the

Typical value: $C_n^2 \cdot \Delta h \sim 4 \cdot 10^{-13} \text{ cm}^{1/3}$ for a 3 km altitude layer

But: there are always several layers of turbulence

Median seeing conditions on Mauna Kea are taken to be $r_o \sim 0.23$ meters at 0.55 microns. The 10% best seeing conditions are taken to be $r_o \sim 0.40$ meters. Figure taken from a paper by Ellerbroek and Tyler (1997).

Image Degradation by the Atmosphere

energy received by the pupil varies in time

average slope of the wavefront at the pupil

spatial coherence of the

wavefront is reduced

varies ("tip-tilt")

("seeing")

Turbulence Correlation Time

 \rightarrow correlation time τ_c . medium to pass the telescope aperture (\leftarrow wind speed). Often: time scales to generate turbulence >> time for the turbulent

Pictures by E. Gendron (1994) Motion of a "frozen" patch of atmosphere across the 3.6m telescope aperture

Wavefront Perturbations

turbulent layer of thickness Δh . Consider a monochromatic, plane wave $\psi_{\infty} = 1$ which passes through a

aperture is: and the correlation length x_c is: Then the spatial correlation function of the wave across the telescope $\langle \psi_h(x+\xi)\psi_h^*(\xi)\rangle = \exp(-1.45k^2C_n^2\Delta h \, x^{5/3})$, where k = $2\pi/\Lambda$

$$x_c \approx (1.45k^2C_n^2\Delta h)^{-3/5} = \left(1.45\left(\frac{2\pi}{\lambda}\right)^2 C_n^2\Delta h\right)^{-3/5} \propto \lambda^{6/5}$$

The Fried Parameter ro

Related to the correlation length x_c is the so-called Fried parameter r_0 . It is the radius of the spatial coherence area:

$$r_0(\lambda) = 0.185 \lambda^{6/5} \left[\int_0^\infty C_n^2(z) dz \right]^{-3/5}$$

Note that r_0 increases as the 6/5 power of the wavelength and decreases as the -3/5 power of the air mass.

the RMS optical phase distortion is 1 radian. Another "definition" is that r_0 is the average turbulent scale over which

The angle $\Delta \theta = \frac{\lambda}{2}$ is often called the seeing.

Short Exposures through Turbulence

Random intensity distribution of speckles in the focal plane

with the MTF or pupil transfer function $T(\omega)$: The observed image from some source is given by the convolution of ${
m I}_{
m O}$

$$I(\theta) = I_0(\theta) * T(\theta)$$
 or $\langle |I(\omega)|^2 \rangle = |I_0(\omega)|^2 \langle |T(\omega)|^2 \rangle$

If a point source is observed as reference through the same r_0 we can

calculate:
$$\left|I_{0}\left(\omega
ight)\right|=\left(rac{\left\langle \left|I_{0}\left(\omega
ight)
ight|^{2}
ight
angle _{obs}}{\left\langle \left|T\left(\omega
ight)
ight|^{2}
ight
angle _{obs}}
ight)^{2}}$$

This is called speckle interferometry.

Speckle Interferometry

http://www.mpifr-bonn.mpg.de/div/ir-interferometry/movie/speckle/specklemovie.html Example: Real-time bispectrum speckle interferometry: 76 mas resolution.

Several related techniques do exist, e.g., Shift-and-add, Lucky Imaging, bispectrum analysis, Aperture masking, Triple correlation, ...

Long Exposures through Turbulence

When $t_{int} \gg \tau_c$ the image is the mean of the instantaneous intensity:

$$I(\theta) = \langle I_0(\theta) * T(\theta, t) \rangle$$

With the mean modulation transfer function (MTF):

$$\left\langle \tilde{T}(\omega) \right\rangle \approx \exp\left[-1.45k^2C_n^2\Delta h \left(\lambda\omega\right)^{5/3}\right]$$

frequencies). → The image is smeared or spatially filtered (loss of high spatial

The angular dimension now has order of Λ/r_0 rather than Λ/D .

In other words:

As long as D \geq r_0 , bigger telescopes will not provide sharper images.