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Introduction to Interferometry

Timothy R. Bedding

School of Physics, University of Sydney 2006, Australia

Abstract. This tutorial gives a general introduction to optical and infrared interfer-
ometry. The observables measured by an interferometer are fringe visibility and closure
phase, which can then be fitted by a model or used to reconstruct an image. In order to
measure fringes, the path lengths from the source to the detector via the different indi-
vidual apertures must be equalized. This requires some form of fringe tracking, which
constrains the type of observations that are feasible and has important implications
for the complexity and size of the resulting image.

1 Basic principles

The purpose of these tutorials is address two questions: “Can I use VLTI to
observe my favourite object?” and “What will it tell me?” Technical details
of interferometry will only be discussed in so far as they affect the scientific
capabilities. For more details, the reader is referred to reviews by Woolf (1982),
Roddier (1988) and Shao & Colavita (1992).

1.1 Angular resolution

We begin with the fact that big telescopes produce sharper images. Neglecting
atmospheric effects, the angular resolution (in radians) of a telescope of diameter
D is given by

θ = λ/D. (1)

This omits a factor of 1.22 appropriate to a circular aperture, which we dismiss as
a technical detail, and neglects any image degradation from imperfections in the
optics. The following table shows typical angular resolutions in milliarcseconds
(mas) for three wavelength regimes:

Visible Near IR Mid-IR
0.4–1µm 1–5µm 10–20µm

D=8m 18mas 77mas 400mas
D=100m 1.4mas 6mas 30mas

Interferometry allows us to achieve high angular resolution without building a
telescope of enormous size (Figure 1). Instead, we synthesize a large aperture by
combining light beams from several small telescopes. When we observe a distant
object in this way, we see interference fringes. These fringes arise because of
the wave nature of light and they contain information about the object being
observed.

http://arXiv.org/abs/astro-ph/9609092v1
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Fig. 1. An expensive way to achieve high angular resolution from Paranal.

1.2 Fringe visibility

The visibility of fringes is a number between zero and one which measures the
fringe contrast (see Figure 2). It is defined as V = (Imax−Imin)/(Imax +Imin). If
the dark regions in the fringe pattern go down to zero, the fringes have a visibility
of one and we say the object is unresolved. If V = 0 there are no fringes and the
object is completely resolved.

It is important to remember that interferometers record fringes, not images
(unlike adaptive optics systems, which do record images). So the question “Can
I use VLTI to observe my favourite object?” becomes “Can I measure fringes
from my object?” If the object is very large and diffuse, the answer may be no.

1.3 Interpreting fringe visibility

In practice, fringes from an interferometer will never have perfect contrast (V =
1), even for a point source, because of atmospheric and instrumental effects.
One must therefore accompany each measurement of the target by a similar
measurement of an unresolved calibrator source. The ‘true’ visibility of the object
is then the observed visibility of the object divided by the observed visibility of
the calibrator.

As an example, consider a two-telescope interferometer which is measuring
the angular size of a star. The procedure is to measure V at different baselines,
one at a time, by moving the telescopes. From the sequence of measurements we
find that the fringe visibility goes down as the baseline increases (see Figure 2).
The star is becoming more resolved on longer baselines. Fitting a curve to the
measured visibilities allows you to determine the angular diameter of the star.
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Fig. 2. Left: examples of fringes with visibilities of 1, 0.5 and 0. Right: visibility as a
function of baseline for a resolved star.

This visibility curve has a special meaning: it is the Fourier transform of the
object’s brightness distribution. Thus, to make an image of the sky we need to
reverse this process, which means performing an inverse Fourier transform of
the measured visibilities. To do this accurately for anything but the most simple
object requires that you sample the visibility at many different baselines. We talk
about needing good coverage of the (u, v) plane, a phrase borrowed from radio
astronomers. Having more telescopes in your interferometer saves time, since it
allows you to measure visibilities on several baselines simultaneously (the number
of baselines from an array of M telescopes is M(M − 1)/2). Allowing the sky
to rotate during the night also improves (u, v) coverage, and this technique is
called earth rotation synthesis.

1.4 Closure phase

As stated above, the fringe visibility measured using a particular baseline tells
you one component of the object’s Fourier transform. However, a Fourier trans-
form is a complex quantity, having both an amplitude and phase. While the
amplitude is given by the fringe visibility, the phase is given by the position of
the fringes.

Unfortunately, the fringes from an interferometer continually move back-
wards and forwards because of atmospheric turbulence, which changes the path
length in front of each aperture. Therefore, it seems that the position of the
fringes tells you nothing about the object. However, consider the case of three
telescopes. We can observe three sets of fringes simultaneously, all moving, but
they don’t move independently. Their movement is due to the atmosphere, but
their relative positions contain information about the object. Thus, with three
telescopes you can measure an additional piece of information, called the closure
phase, which contains some (but not all) of the phase information. For example,
the closure phase tells you about the asymmetry of the object (but not its abso-
lute position on the sky). An array of more than three telescopes yields a closure
phase for each triangle, although not all these measurements are independent.
Combining these closure phases with the visibility measurements allows you to
reconstruct an image of the object.
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2 Interferometry in practice

2.1 Atmospheric effects

An interferometer measures fringes to obtain visibilities and closure phases. Why
is this so difficult? A plane wavefront from a distant star travels through the
atmosphere and is distorted by fluctuations in refractive index. The wavefront
that reaches our ground-based telescope is no longer flat. The angle between
different parts of the wavefront is about one arcsecond, which is why the image
seen by a single large telescope is a fuzzy blob about one arcsecond in size. A
useful analogy is to represent the distorted wavefront by a crumpled piece of
paper. An adaptive optics system tries to flatten the paper using a large number
of fingers (actuators). On the other hand, an interferometer takes small pieces
of the wavefront and combines them.

Note that the shape of the wavefront is approximately the same at all wave-
lengths: it has the same physical size in microns (because the refractive index of
air varies only weakly with wavelength). That is why the seeing in arcseconds
is approximately the same at all wavelengths. Why then is interferometry eas-
ier in the infrared? The important thing is the size of the wavefront measured
not in microns, but in wavelengths. As the wavelength increases, the distortions
become relatively less important.

We define the atmospheric coherence length r0 to be the size of a ‘flat’ patch
on the wavefront, where this is decided relative to the wavelength. More pre-
cisely, r0 is defined so that the rms variation in the wavefront across a patch of
that diameter is λ

2π (one radian of phase). In typical seeing r0 is 10–20 cm at
visible wavelengths and becomes larger at longer wavelengths. The increase is
not exactly linear, with r0 depending on wavelength as λ6/5.

What about time variation? The shape of the wavefront changes with time,
but to good approximation the dominant effect is the wind blowing the whole
pattern past the telescope. This model is known as frozen turbulence. We can
then define an atmospheric coherence time τ0, which is roughly the time taken for
one r0-sized patch to move past. In the visible this is a few tens of milliseconds,
again increasing with wavelength as λ6/5.

2.2 How does an interferometer work?

An interferometer combines two or more separate parts of the wavefront to pro-
duce fringes. This requires two corrections to the wavefront, as shown in Figure 3.
Firstly, although the wavefront across each individual telescope is approximately
flat, it will have a tilt, so we require tip-tilt correction to make the beams overlap.

The second correction is to make the path lengths equal, without which no
fringes will be visible. The crude part of this correction is to allow observations
of objects all over the sky, not just those which are directly overhead. This is
achieved by delaying one beam (by bouncing it back and forth along a tunnel),
which allows you to steer the interferometer. Much harder is to make the small
correction for the atmosphere, a few tens of microns, which varies rapidly and
randomly. This explains the need for fringe tracking.
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delay

Fig. 3. The wavefront above a two-element interferometer, showing the corrections
required for tip-tilt and delay

2.3 Fringe tracking

To measure fringes, we must maintain equal optical paths for a reasonable period
(minutes at a time). There are three ways to achieve this:

1. track fringes on the scientific target (which requires the target to have a
bright compact component)

2. track fringes on a nearby reference star (note that a laser beacon is not

compact enough)
3. blind tracking (which requires a very stable and well-calibrated system; this

may be possible in the mid-IR)

In addition, there are two levels of fringe tracking. The more difficult to
achieve is ‘cophasing,’ which means maintaining equal optical paths to within
a fraction of a wavelength. The fringes will then be steady, allowing integration
for many times τ0. This is clearly useful in the case of a bright reference star
and a faint and/or resolved target: fringes can be tracked to high accuracy on
the reference star, allowing long integrations on the target.

Less difficult is to track to within the coherence length of the light (λ2/∆λ),
so that the fringes are still detectable but are continually moving. In this case,
called ‘coherent’ tracking, you must measure the fringes in many short exposures
(τ0).

There are some tricks which help with fringe tracking. One is bootstrapping,
which involves tracking fringes on a series of short baselines (see Figure 4). A
possible problem is the propagation of errors, perhaps resulting in an unaccept-
ably large error on the long baselines. Of course, it also requires at least four
telescopes to make the gain worthwhile and, in terms of (u, v) coverage, these
must be deployed rather wastefully.

Another trick is to track at one wavelength and measure fringe visibilities
at another. For example, at longer wavelengths the object should be less well
resolved (Equation 1), so you can track at a long wavelength and observe at
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Fig. 4. Fringe tracking by bootstrapping. The dots are the individual telescopes. On
the short baselines (solid lines) the target is only partially resolved and fringe tracking
should therefore be easy. By tracking on each of these short segments, the fringes on
the longest baseline (dashed line) will be stable and can be measured, despite their low
visibility.

a shorter one. For some objects (e.g., Be stars) you can track on a compact
continuum source and observe extended structure in an emission line.

Nevertheless the ability to track fringes is a difficult requirement and will
usually set the limiting magnitude of the interferometer.

3 What can we expect?

3.1 Image complexity

We should not expect to produce complex images like those from the VLA and
similar radio interferometers. The best analogy between radio and optical in-
terferometry is VLBI, which use six or seven apertures over Intercontinental
baselines. An array of 27 radio telescopes gives 27 × 26/2 = 351 simultaneous
baselines, allowing very efficient coverage of the (u, v) plane. This works well in
the radio because you can amplify the signal from each telescope before com-
bining them. Unfortunately, in the visible and near infrared this cannot be done
without introducing noise that swamps the signal. Every extra telescope adds
noise, and there comes a point where it is detrimental to add more telescopes.
For fuller discussion of these points see Nityananda (1994) and Prasad (1994).

Of course, extra telescopes could be used in a completely separate array, by
combining their light on a second detector. But then the number of baselines
being measured simultaneously will be much less than M(M − 1)/2. For this
reason, no optical/infrared interferometer is being built with more than six ele-
ments. It is therefore unlikely that image complexity will match that of the VLA.
Roughly speaking, the number of non-zero resolution elements in the final image
equals the number of independent measurements in the (u, v) plane. For VLTI
this will be a few tens to a few hundreds. Finally, for on-source fringe tracking
there is an extra constraint on image complexity, namely that the object have a
compact component.

3.2 Field of view

How big will the final image be? One restriction comes directly from the pre-
ceding discussion on image complexity. The number of non-zero pixels is limited
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by (u, v) coverage while their size is set by the resolution of the interferometer.
Since this resolution is typically reckoned in milliarcseconds, the images of a
complex object (one with many non-zero pixels) cannot be very large.

There is another restriction on the field of view. Equal path lengths, necessary
to detect fringes in the first place, must be maintained over the whole field. Fringe
tracking will (hopefully) ensure that paths are equal at the centre of the field. But
looking off-axis by an angle θ introduces an extra path length of Dθ, where D is
the length of the baseline. This extra path difference will only be unimportant
if it is small compared to the coherence length of the light (λ2/∆λ). Thus, the
limit on the field of view is

θ <

∼

λ

D

λ

∆λ
.

Writing it in this way, we see that the field of view is set by the product of the
angular resolution and the spectral resolution. This limits the size of the region
over which fringes can be detected. For example, if the field width is to be 100
resolution elements, which would be about 0.6 arcsec for VLTI in the near IR,
the spectral resolution must be better than 100.

In principle this limit can be overcome by building a Fizeau interferome-
ter (also called homothetic mapping in ESO publications), which requires very
complicated extra optics to ensure path equality over the whole field. Another
approach is to build a separate delay compensator for each part of the field.
This is done for a dual-feed system, in which one (small) field is centred on the
target and the other on the reference star. In this case, the maximum separation
between object and reference is set by isoplanatism.

3.3 Dynamic range

This is the ratio of the brightest part of the image to the faintest part. Images
with 100:1 are already possible with optical interferometers, while 1000:1 will be
difficult. This must be kept in mind when deciding what to expect from VLTI
observations of your favourite object.

4 Conclusion

Interferometers give improvement in angular resolution of several orders of mag-
nitude over current ground- and space-based telescopes, but at a price. They
cannot produce beautiful images of complex objects like those from HST or
even the VLA. Despite the difficulties and limitations, the enormous poten-
tial gains in resolution have spurred more than a dozen major interferometry
projects around the world. The latest information on these can be found at
http://huey.jpl.nasa.gov/~shaklan/olbin/ (Optical Long Baseline Inter-
ferometry News).
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DISCUSSION

Theo ten Brummelaar: I think you glossed over the calibration problem

just a little bit too much. At the longest baselines, finding unresolved

objects will be difficult.

Tim Bedding: The object you use as a calibrator doesn’t have to be

unresolved, it just has to be known and preferably smaller than the

target object. But you are right, at the longest baselines almost

everything you look at will be resolved. You have to bootstrap,

calibrating on partially resolved stars. This is more of problem in the

visible than in the near and mid infrared, where the resolution is less.

Andreas Quirrenbach: Another comment on calibration. You are quite right

that this can be a big problem and not so much because the calibrator is

resolved but because of variations in time and over the sky. If you want

to have an image with a dynamic range of 100:1 or 1000:1, you also

require that precision in calibration of visibility measurements. You

have to measure fringe contrast to a precision of 1% or 0.1% through the

changing atmosphere. It’s basically the same problem as calibrating the

point-spread function in adaptive optics observations. The changes on the

timescale of ten minutes are very worrisome and you have to change

between your target object and the calibrator as fast as you can.

Theo ten Brummelaar: If you are cophasing three telescopes, aren’t you

servoing out one of the very things you are trying to measure?

Oskar von der Lühe: If you have three telescopes, it is sufficient to

stabilize fringes between two pairs. The phase on the third baseline will
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be determined by the object. So, no, you are not destroying a good

observable when you fringe track.

Martin Ward: How good could the astrometry be in principle?

Mike Shao: Tens of microarcseconds

George Miley: You mentioned that adding baselines wouldn’t improve

things. But of course the dynamic range is limited by the number of (u, v)
points, which is limited by the number of telescopes. Adding baselines

helps dynamic range, at least for bright objects, even though you do add

noise.

Tim Bedding: As far as image making is concerned I agree, the more

telescopes the better. I’m talking here about signal detection: the need

to detect fringes and track them. If you build an optical array with too

many telescopes, you won’t be able to measure fringes on any baseline,

because you are adding photons from all of those telescopes at once. [The

observed fringe visibility on a given baseline will decrease because the

fringes are seen against the background light from all the other

telescopes.]

Chris Haniff: If you’re doing regular astronomy, most astronomers agree

that if you have bigger telescopes you get better data. If you are

building an interferometer and someone gives you extra money, what would

you do? Should you build more telescopes or bigger telescopes?

Tim Bedding: Making the telescopes bigger only helps up to a point. Once

the telescope diameter reaches a few times r0, you don’t gain nearly as

quickly. For example, the VLTI Auxiliary Telescopes (ATs) are designed to

be 1.8 m because that is a few times r0 in the near infrared. You wouldn’t

try to operate a visible interferometer with 2 m telescopes. So the answer

depends on the wavelength. If you want to operate at 10µm then make them

8 metres, since at this wavelength an 8 m aperture is almost diffraction

limited (Section 1.1). The wavefront across those Unit Telescopes on

Paranal is almost flat in the mid-IR, which is why it’s such a great

interferometer. So if you want to operate in the mid-IR you would build

one or two more UTs. However, if you want to operate in the near-IR you

want more ATs, five or six of them.

Chris Haniff: But not twenty?

Tim Bedding: No.

Wesley Traub: If you had the money, another possibility is to invest in

making a laser guide star and adaptive optics for each telescope.

Tim Bedding: Yes, it would be great to have adaptive optics for the Unit

Telescopes in the near infrared. The other thing you could buy is one of

these superconducting tunnel junction detectors for fringe tracking.

Francesco Paresce: Do you think that in five minutes you could tell us

about phase closure?

Tim Bedding: The figure shows three telescopes all looking at the same

star. Above each telescope there is an unknown and continually changing

thickness of atmosphere. We measure the phase of fringes between each
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pair of telescopes. By phase, I mean the position of the fringes. The

phases are continually changing and tell you nothing about the object.

1
3

2

Now imagine adding an extra piece of atmosphere in front of Telescope 1.

The fringes on baselines 1-2 and 1-3 will both shift in the direction

shown by the arrows, while the fringes on baseline 2-3 will be

unaffected. What I measure is the algebraic sum of the three fringe

shifts, defining positive as clockwise round the triangle. Then the extra

atmosphere in front of Telescope 1 has shifted one set clockwise, one set

anticlockwise, and one set not at all. The algebraic sum φ12 + φ23 + φ31 is

called the closure phase and, from the preceding argument, it is

completely unaffected by atmospheric fluctuations. If the atmosphere

disappeared entirely we would get the same number. This number is telling

you something about the object.

Francesco Paresce: If you have four telescopes?

Tim Bedding: From four telescopes you can make four triangles, but only

three of these are independent. A nice thing is that, unlike with

visibility amplitudes, you don’t need to calibrate closure phase. If you

look at a point source, the closure phase is always zero. It is much more

resistant to variations in seeing. And it’s also sensitive to object

structure, telling you about asymmetries even below the diffraction limit

of the interferometer.

Jim Beletic: You could add that laser guide stars won’t help you phase

the three apertures because the light from the laser spot to each

telescope is coming through a different part of the atmosphere. You can

only use the laser to flatten the wavefront across each telescope.

Tim Bedding: Yes.


