Astronomische Waarneemtechnieken
(Astronomical Observing Technigues)

7™ Lecture: 29 October 2008

Based on "Observational Astrophysics” (Springer) by P. Lena, F. Lebrun
& F. Mignard, 2nd edition - Chapter 4.2 and on "Astronomical Optics” by
Daniel J. Schroeder

Part II
Diffraction Optics




Reminder: Coherent Radiation

A light source may exhibit temporal and spatial coherence. The
coherence function ', between two points (1,2) is the cross-
correlation between their complex amplitudes:

L, (T) = <E1(t T T)E; (t)>
The normalized representation is called the degree of coherence:
I (T)
712 (T) =

1,1,

which leads to an interference pattern® with an intensity distribution
of | =1,+1,+2L1, Re[y,(7)]
where 7| =1 coherent

7,|=0 incoherent

0<lyy,|<1  partial coherence

and the visibility V =y, (z)] for ;= I,

The Zernike-van Cittert Theorem (1)

Consider a monochromatic, extended,
incoherent source A, with intensity

I(x.y).

Consider further a surface element do - P X
(do <«<A), which illuminates two points P, -

and P, at distances R, and R, on a RS \
screen.

The quantity measuring the correlation of the electric fields between
P, and P, (for any surface element do at distance r) is:

s ()= [0 2R R

A, RR,




The Zernike-van Cittert Theorem (2)

Generally, the degree of coherence is then given by the Zernike-van
1 [ explik(R,—R,)] |

\/<’V1‘2><’V2‘2> source RR,

In words, the general Zernike-van Cittert theorem describes the
relation between the degree of coherence between two points on the
screen and the intensity distribution across the illuminating source A..

Cittert theorem: y,(0) =

Frits Zernike (1888-1966) : Dutch physicist
and winner of the Nobel prize for physics in
1953 for his invention of the phase
contrast microscope,

The Z-vC Theorem for Large Distances (3)

For large distances from source to screen (relative to,— 2
the distance between P, and P, and the size of the ( '
source) we can use angular variables [x/R=a, y/R=p, |
©=(a,p), and AX=X,-X;] to describe the source as seen s
from the screen.

Then the general Z-vC theorem simplifies (Lena p. 118) to:

IJ i( exp{— 7 (aAX + BAY )}de
‘7/12 (0)‘ S J-J-I (9)16’

source

For large distances, the modulus™ of the degree of coherence |y;,|
between two points is the modulus of the normalized Fourier transform
of the source intensity distribution.

*absolute value of a complex number




The Z-vC Theorem for a Circular Source (4)

Now: calculate the complex degree of coherence for a circular
source of radius ry.
Let P, be at the center of the screen and P, at distance p where

Owro/R. |(e)=H[2LrO)=H(2%o]

Then the modulus of the degree of coherence for a circular source is:

s Jl(zwo p)
A 2|3, (u
7.0) =] (0.0) = _23,(u)

70, £ d
A

1

0.577

0

The Coherence Etendue

1. Consider a point source at infinity: ©, = ro/R > 0 and thus |y;,| > 1.
In this case a plane wave illuminates the screen coherently.

2. Consider a source of finite size, which subtends a solid angle 2. An
circular area S = mp? of the screen corresponds to a beam étendue €

of: u=276,p1 2 H2
e=SQ=np° n6f = U’
4
A
If we choose e.g., u=2so that 2=270,p/A = p= —
7T 0
A 2J,(2
we can calculate that: 7(,0 = Ej = ‘17()‘ =0.577

which yields a degree of coherence greater than 50% (what we want!).

Hence, the beam remains coherent for an étendue & = ﬂ,z




Note: Beam Etendue, Axf2, and Throughput
Etendue (frz.) = "~ extent’

The geometrical étendue is the area A of the source times the solid
angle €1 the system's entrance pupil subtends as seen from the source.

The étendue never increases in any optical system. A perfect optical
system produces an image with the same étendue as the source.

The geometric étendue may be viewed as the maximum beam size the
instrument can accept.

Hence, the étendue is also called acceptance, throughput, and the
A-() product. Objctspace —

Here A=h2m, and (1 is given by the angle of |
the marginal ray.

Note:

So far we have considered
the coherence from a
source at infinity.

Now we will consider
diffraction caused by a
pupil "near infinity”.




The Huygens-Fresnel Principle

Fermat's view: "A wavefront is a surface on which every point has
the same OPD."

Huygens' view: "At a given time, each point on primary wavefront
acts as a source of secondary spherical wavelets. These propagate
with the same speed and frequency as the primary wave."

The Huygens-Fresnel principle was theoretically demonstrated by
Kirchhoff (> Fresnel-Kirchhoff diffraction integral)

Fresnel and Fraunhofer Diffraction

Fresnel diffraction = near-field diffraction

When a wave passes through an aperture and diffracts in the near
field it causes the observed diffraction pattern to differ in size and
shape for different distances.

For Fraunhofer diffraction at infinity (far-field) the wave becomes
planar.

Ap. ) 2
.« ||F Fresnel F= >1
U ‘ d-4
A\ i
)D)) YN Av<<>‘ </ ( — ‘- Fraunhofer: F = " <<1
o : (where r = aperture size
I, L, r |o and d = distance to screen)




Fraunhofer Diffraction at a Pupil
Consider a circular pupil function 6(r) of

unity within A and zero outside.
, 5

Then the diffraction at infinity is given

by:
’ —|2;; (6-6,)~ dr
w0,0-2]5 [fel)e o

screenA

Theorem: When a screen is illuminated by a source at infinity, the
amplitude of the field diffracted in any direction is the Fourier
transform of the pupil function characterizing the screen A.

The conjugate variables are the angular direction and the reduced
coordinates r/A on the screen.

Relation between Object and Image

Let V(O,) and V(O,) be the complex
field amplitutes of points in the
object and image plane.

Let K(©y:0,) be the transmission of
the system (i.e., the complex
amplitude per solid angle round O,)

Object

Then the image of an extended object is a linear superposition:

- ”Vo(eo) K(‘91 _eo)deo :\/0(6’0)>’< K(HO)

object
This is a convolution equation which can be conveniently addressed in
dr
Fourier s ith K(@ GeX|27z6?
ourier space wi ” p[ /1 } 7

and the spatial frequency w: V ”V )expl-i276,0]dw

object

and similarly: V(a))Z FT {V (6’1)}




Relation between ObJec‘l' and Image (2)
The convolution equation becomes V V K V G

In other words, the Fourier transform of the image equals the product
of Fourier transform of the object and the pupil function.

Note that:
Amplitude of Vy(w) & strength of frequency component w in the image
Phase of Vy(w) < position of this component w in the image

So far considered: Coherent sources
but more realistic in astronomy: Incoherent sources

Main difference: add intensities r'a‘rher' than amplitudes:
)= [[1.(@) K (6, -8 L) dé,
toget 1(0)=1,(0)H (o)

where H ()= FT{K‘Z}: FT{KK*}z G(1lw)*G* (- lw)

The Modulation Transfer Function (MTF)

The equation V V K V G can be interpreted as spatial
linear filtering, which depends only on the pupil function G(r/A)

For a centrally symmetric pupil the above autoconvolutionis just the
autocorrelation:

H(w)=G(10)*G" (- 10)= [[G(1o+r)G"(r )

pupil
and normalized to the pupil area (in the same reduced units of r/A):

: H(w)

()
[Jotre

pupil

The function 'T'(uu) is called the (intensity) modulation transfer function
(MTF).




The Point Spread Function (1)

The function ‘K‘Z =H(#) (i.e., the Fourier transform of H(w)) is
called the point spread function (PSF) of the system.

The PSF - if circular symmetric - is often described by the half
power beam width (HPBW) in angular units, which characterizes the
angular resolution of the image.

A word on filtering: all physical pupils have finite sizes > cut-off
frequencies o, = (uf +V? )Uz must exist. The pupil will act as a low-

pass filter on the spatial frequencies of the object I(O).

According to the Nyquist-Shannon sampling theorem I(O) shall be

sampled with a rate of at least AQ = %a)

The Point Spread Function (2)

Example: consider circular pupil with pupil function: G(r): H[%)
0

Then the autoconvolution is the autocorrelation,

1/2

2 r r r?

d G(r)*G(r)=rr? =arccos] — |——|1-——
an (r)+Glr)== Ol:ﬂ' (Zroj ro( 4r02j ]

The MTF is T(w)= 2 [arccos(

T

Right:
* the pupil function 6(r)

« its autocorrelation 6(r)*G(r)
e and its MTF.




The Point Spread Function (3)

When the circular pupil is illuminated by a point source [I,(O) = §(O)]
then the resulting PSF can be described with a 15" order Bessel

function by: 2
1.(60)= 2J,(2zr,012)
S 2714

This is also called the Airy function.

The radius of the first dark ring (minimum) is at:

r=122A(F#) or o =1 :1.22%

f

Light from B8
two objects
resolved

[

Reminder: the Rayleigh criterion states that
two sources can be resolved if the peak of
the second source is no closer than the 1st
dark Airy ring of the first source.

The PSF of a Real Telescope

Most "real” telescopes have a central obscuration, which modifies our
simple pupil function G(r)=T1(r/2r,)

The resulting PSF can be described by a modified function
1 (2J1(27r W0IA)_ 223, (2r rogem))z

|1(9) = 2
1-£2f\ 271012 27w 1,861 A

Radii of Dark Rings in Airy Pattern®

where ¢ is the fraction of central obscuration

to total pupil area. ‘ Wi "2 "3
0.00 1.220 2.2 3.238
0.10 1.205 2.269 3.182
0.20 1.167 2.357 3.087
0.33 [.098 2.424 3:137

Astronomical instruments sometimes use a 040 LOE 2588 2300
0.50 1.000 2.286 3.491

phase mask to reduce the secondary lobes of | ./ (o:7 5170 3380

the PSF (from diffraction at "hard edges”. — _ _

Phase masks infroduce a position dependent | it

phase change. This is called apodisation. w00




The Strehl Ratio

A convenient measure to assess the quality of an optical system is
the Strehl ratio.

The Strehl ratio (SR) is the ratio of the observed peak intensity of
the PSF compared to the theoretical maximum peak intensity of a
point source seen with a perfect imaging system working at the
diffraction limit.

Using the wavenumber k=2m/A and the RMS wavefront error w one
can calculate that:

SR=e¥" x1-k?w@?

Commonly, a SR > 0.8 is considered diffraction-limited, which
corresponds o an average wavefront error of about A/14.

The Encircled Energy

In many practical applications (e.g., imaging of very faint sources) the
main goal is the maximum concentration of light within a small area.
The fraction of the total PSF intensity within a certain radius is
given by the encircled energy (EE):

1_52 Vo
EE = [1(P)vav
0 o
Encircled Energy Fraction within Airy
Dark Rings®
EE, EE, EE,
0.00 0.838 0.910 0.938
0.10 0.818 0.906 0.925
0.20 0.764 0.900 0.908
0.33 0.654 0.898 (0.904
0.40 0.584 0.885 0.903
0.50 0.479 0.829 0.901
0.60 0.372 0.717 0.873
“Subscript on EE is number of dark
ring starting at innermost ring.




