
Astronomische Waarneemtechnieken (Astronomical Observing Techniques)

10th Lecture: 12 November 2012

- 1. Formation of Spectral Lines
- 2. General Principle
- 3. Gratings and Filters
- 4. Advanced Spectrometers
- 5. Spectral Line Analysis

Based on "Observational Astrophysics" (Springer) by P. Lena, Wikipedia, ESO, and "astronomical spectroscopy" by Massey & Hanson

ASTRONOMICAL SPECTRA

Excitation Processes

• Electronic transitions due to the change of the principal quantum numbers of the electronic states (\rightarrow visible).

• Electronic fine structure transitions due to the coupling of electron spin and nuclear spin.

• Electronic hyperfine structure transitions due to the interaction of the nuclear magnetic moment with the magnetic field of the electron.

• Molecular transitions such as <u>rotational</u> (change in angular momentum) and <u>vibrational</u> (change in vibrational energy) transitions^{*}, requiring dipole moment and moment of inertia $I (\rightarrow near-far-IR)$.

• Nuclear lines due to nuclear excititations or electron-positron annihilation (\rightarrow *MeV range*)

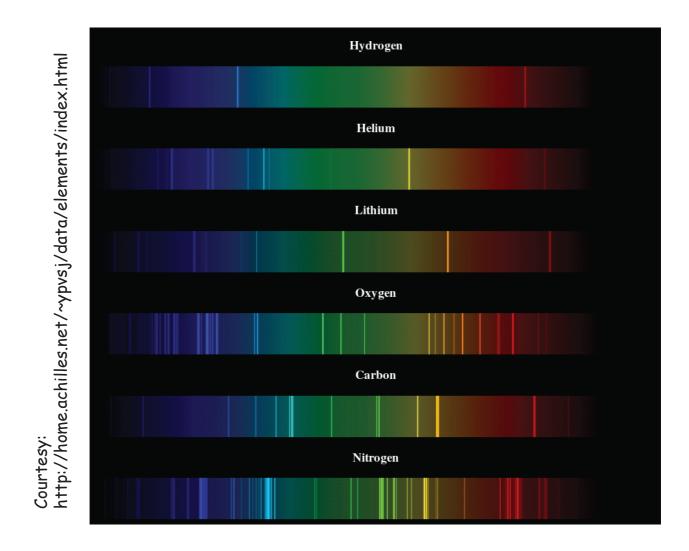
• Transitions in solids (ices) due to vibrations \rightarrow phonons (\rightarrow near-far-IR).

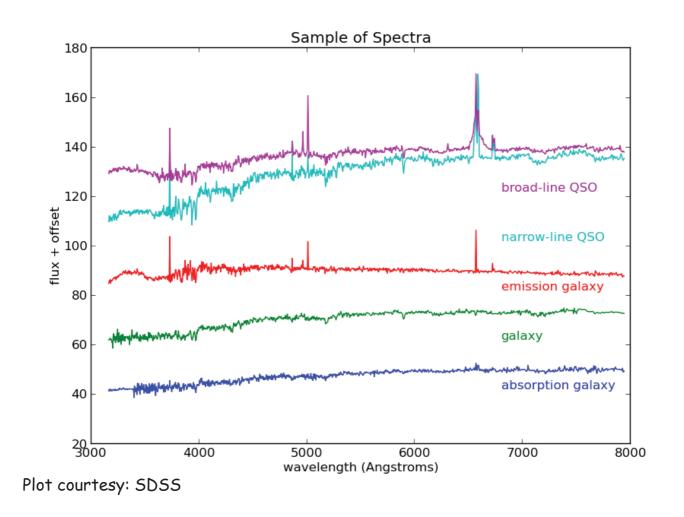
* rotational transitions are generally weaker and often coupled to vibrational transitions \rightarrow vibrational transitions split further: complex structure of vibrational-rotational transitions.

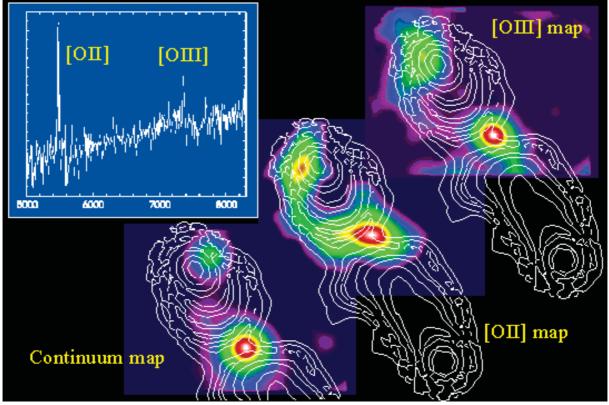
Transition	Energy [eV]	Spectral Region	Example
Hyperfine structure	10^{-5}	Radiofrequencies	21 cm hydrogen line
Spin-orbit coupling	10^{-5}	Radiofrequencies	1 667 MHz transitions of OH molecule
Molecular rotation	$10^{-2} - 10^{-4}$	Millimetre and infrared	1–0 transition of CO molecule at 2.6 mm
Molecular rotation- vibration	$1 - 10^{-1}$	Infrared	$\rm H_2$ lines near 2 μm
Atomic fine structure	$1 - 10^{-3}$	Infrared	Ne II line at 12.8 μm
Electronic transitions of atoms, molecules and ions	10 ⁻² -10	Ultraviolet, visible, infrared	Lyman, Balmer series, etc. of H; resonance lines of C I, He I; K, L shell electron lines (Fe XV, O VI)
Nuclear transitions	$> 10^4$	X- and γ-rays	$^{12}\mathrm{C}$ line at 15.11 keV
Annihilations	$\gtrsim 10^4$	γ-rays	Positronium line at 511 keV

Excitation Processes - Energy Ranges

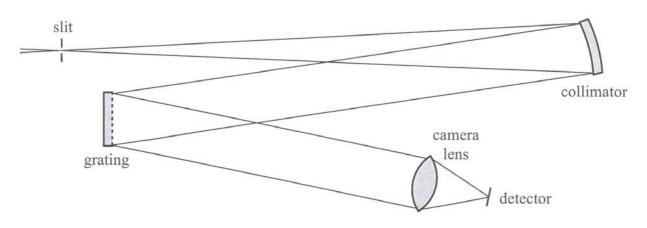
Three General Types of Spectra

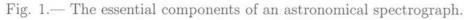

Continuous spectrum


Emission line spectrum

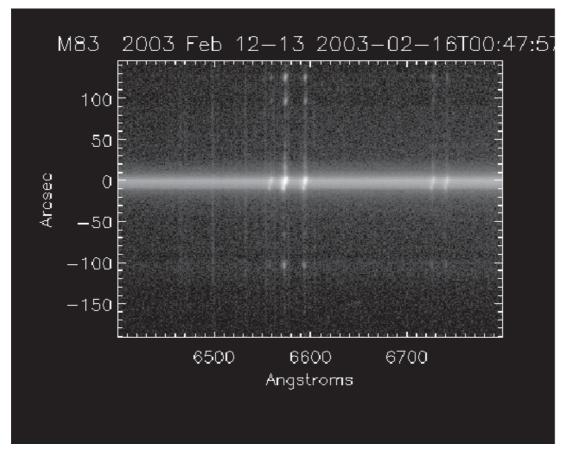

Absorption line spectrum

Spectral Line Maps


Radiogalaxy 3C435A radiogalaxy 3C435A Plot courtesy: Universite de Lyon, Recent TIGER Scientific Results


GENERAL PRINCIPLE OF A SPECTROMETER

The Basic Priciple


Main ingredients of a spectrometer:

- 1. A slit (ont which the light of the telescope is focused)
- 2. A collimator (diverging \rightarrow parallel/collimated light)
- 3. A disperser (to spectrally disperse the light)
- 4. A camera (to focus the spectrum onto the detector)

Data Products (1): Long Slit Spectra

Main Characteristics of a Spectrometer

- the spectral resolution or spectral resolving power is: $R = \frac{\lambda}{\Delta \lambda}$ $\Delta \lambda$ is called a spectral resolution element.
- the instrumental profile $P(\nu)$ broadens a theoretically infinitely

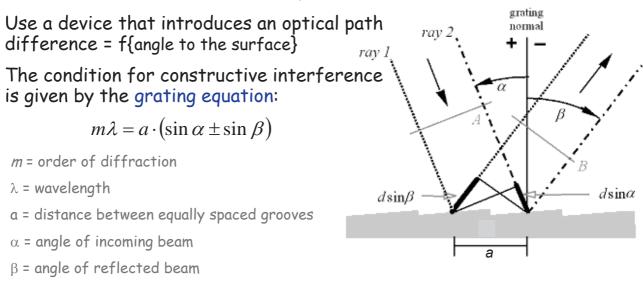
narrow line $I_0(v) = \delta(v - v_0)$ to the observed line width:

$$I(v) = P(v) * I_0(v)$$

Usually the instrumental profile determines the spectral resolution element, which is typically Nyquist-sampled.

- the beam étendue determines the light gathering power of the instrument. Larger étendues require larger dispersive elements (A) or highly inclined beams (Ω).
- the transmission determines the throughput $\eta(\nu) = \frac{I_{out}(\nu)}{I_{in}(\nu)}$

Spectral Resolution and S/N

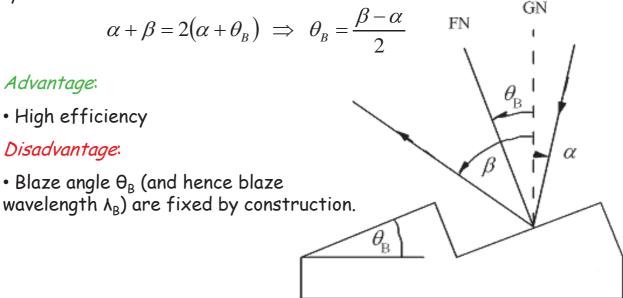

For <u>unresolved</u> lines, both the S/N and the line/continuum increases with increasing resolution:

Model spectra of C_2H_2 at 900K and HCN at 600K (assumed Doppler broadening ~4 km/s) at different spectrograph resolutions (figure provided by F. Lahuis).

General Principle of a Grating

Gratings are usually operated in a collimated beam at the pupil.

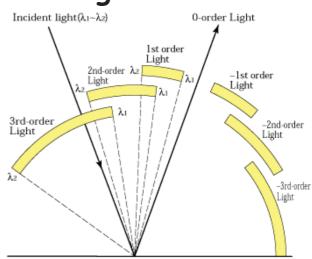
The maximum resolution is given by R = mN where N is the number of


(illuminated) periods (grooves), and the angular dispersion is $d\theta/d\lambda \sim \frac{m}{a}$.

Blaze Angle

Generally, the energy of the beam diffracted by a periodic structure is uniformly distributed over the different orders m.

If we observe only one arbitrary order this is very inefficient.

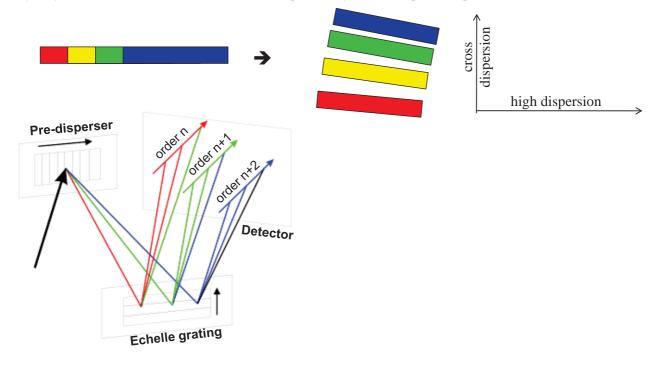

For blazed gratings the directions of constructive interference and specular reflection coincide:

Free Spectral Range .

A light bulb seen through a transmissive grating, showing three diffracted orders. m = 0 corresponds to direct transmission; colors with increasing wavelengths (from blue to red) are diffracted at increasing angles. Source: Wikipedia

Different diffraction orders overlap with each other:

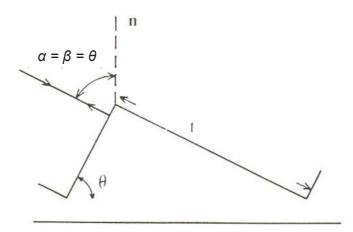
$$m\lambda = a(\sin\alpha + \sin\beta) = (m+1)\lambda'$$


The free spectral range is the largest wavelength range for a given order that does not overlap the same range in an adjacent order.

$$\Delta \lambda_{free} = \lambda - \lambda' = \frac{\lambda'}{m}$$

...and Cross-Dispersion

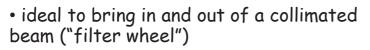
To spatially separate the orders and avoid overlap, an additional optical element will be needed:


A low-dispersion prism/grating with a dispersion direction perpendicular to that of the high-dispersion grating

Echelle Gratings

To get high dispersion $d\theta/d\lambda \sim \frac{m}{a}$ one could *either* increase the groove density, *or* use large groove periods (a $\gg \lambda$) and a large angle of incidence, and operate at a very high order of diffraction (m \sim 50).

If $a = \beta = \theta \rightarrow \text{Littrow configuration}$


In Littrow configuration the grating equation becomes: $m\lambda_B = 2a\sin\Theta$

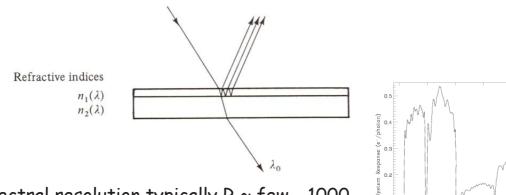
Grisms

Grism = transmission GRating + prISM

For a given wavelength and diffraction order the refraction of grating and prism may compensate each other and the optical axis remains (almost) unchanged.

Advantages:

reduces coma (if in non-collimated beam)


Disadvantage:

- difficult to manufacture (either by replication and gluing or by direct ruling.
- can be quite "bulky" (← filter wheel)

Interference (Transmission) Filters

Principle: interference layers deposited on a substrate.

The transmission is maximal where $\frac{2n_1d}{\lambda} + \frac{\pi}{2} = 2k\pi$

 \cdot spectral resolution typically R \sim few - 1000

• needs often multiple interference layers

- filters are often tilted with respect to the optical axis to avoid reflections \rightarrow shift of Λ_0
- wavelengths farther from Λ_0 (for which the above equation is also satisfied) need a blocking or absorbing filter.

Fabry-Perot Etalon Two parallel plates (Fabry-Perot etalon) of high reflectivity *r* and transmission *t* = 1-*r*.

The transmission is:

$$I = I_0 \left(\frac{r}{1-r}\right)^2 \left[1 + \frac{4r}{(1-r)^2} \sin^2(2\pi dk \cos i)\right]$$

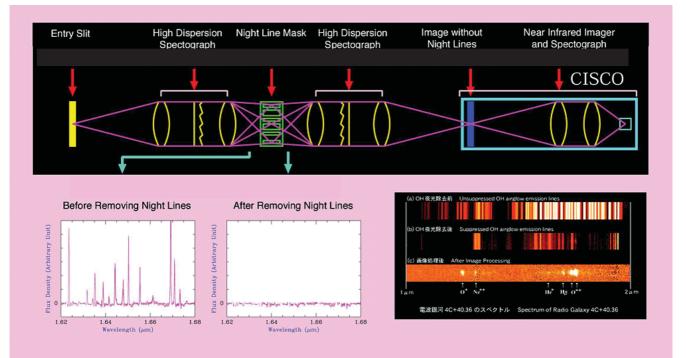
on

Ro

 R'_{0}

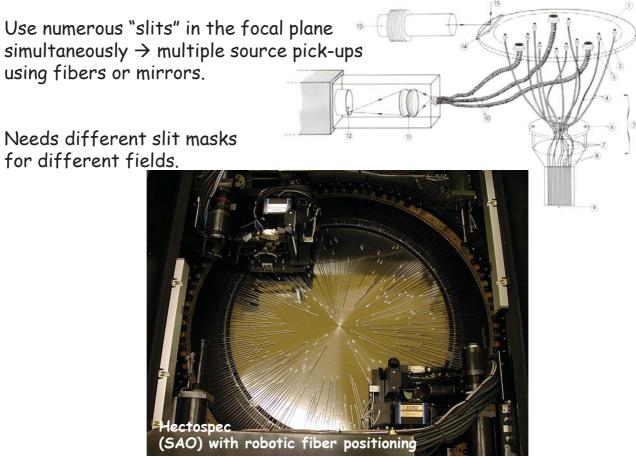
and has transmission peaks where $k = \frac{m}{2d}$

Here, *m* is the order of the interferometer, *d* is the separation of the plates, and $\Delta k = 1/2d$ the free spectral range.

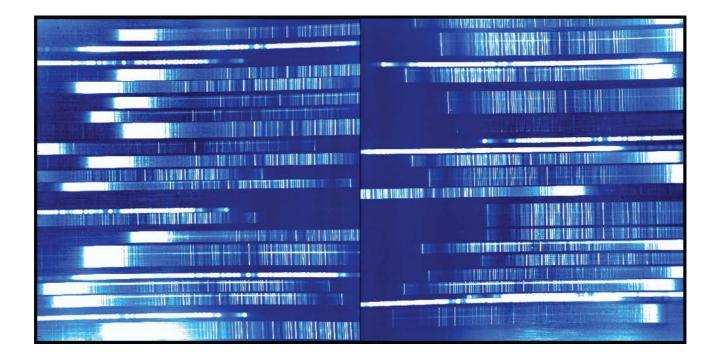

The performance of a Fabry-Perot is characterized by:

1. The finesse $F = \frac{\pi \sqrt{r}}{1-r}$, 2. The resolution $R = \frac{k}{\Delta k} = mF$, and 3. The maximum throughput $U = 2\pi \frac{S}{R}$ (S = illuminated area of the etalon).

ADVANCED SPECTROMETER CONCEPTS

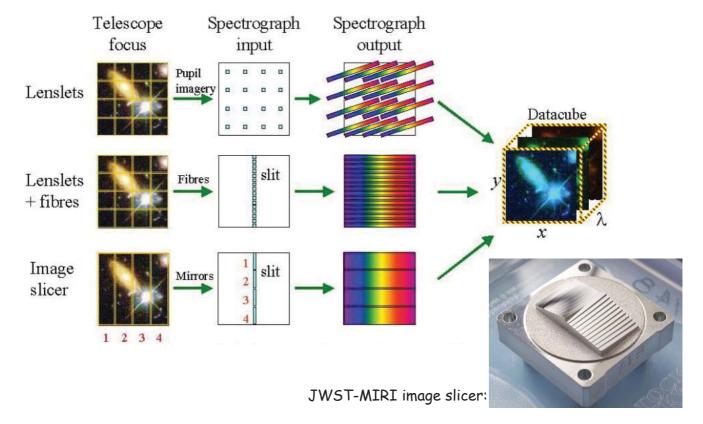

OH Suppression Spectrographs

OHS filter out the wavelengths of atmospheric OH lines, which contribute the major part of the near-IR background.



http://subarutelescope.org/Introduction/instrument/img/OHS_concept.gif

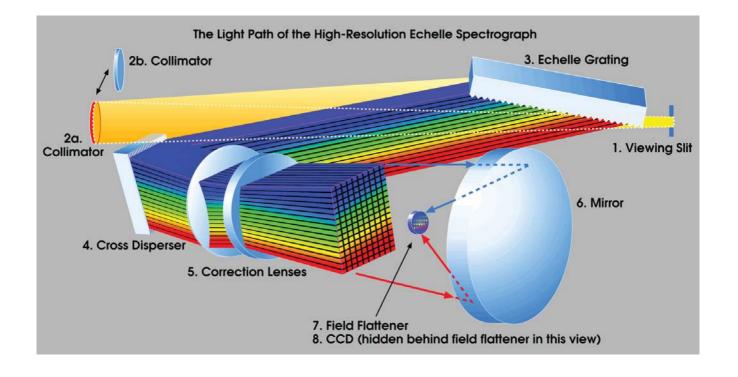
Multi-Object Spectrographs



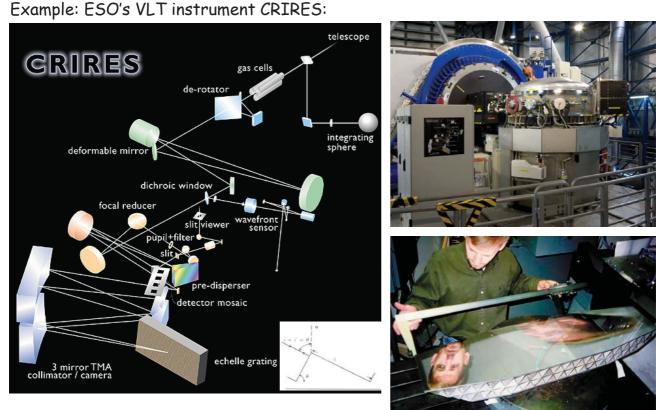
Data Products (2): MOS Spectra

Integral Field Spectrographs

Cut an area on the sky in several adjacent slices or sub-portions, realign them optically into one long slice and treat it as a long slit spectrograph.



Data Products (3): IFU Spectra


·
and the second

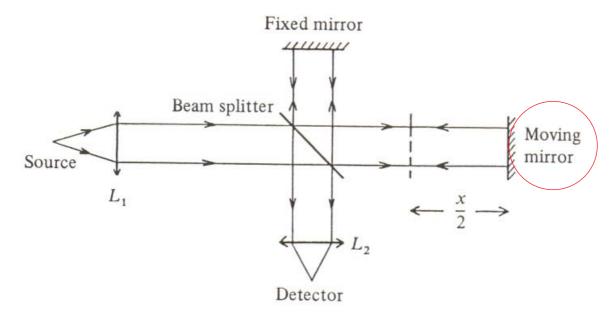
Echelle Spectrographs

Operation in high order \rightarrow pre-disperser essential

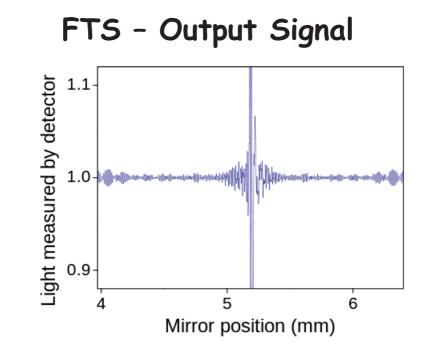
Echelle Spectrographs (2)

The ruled echelle grating of the SOFIA Facility Spectrometer AIRES. Two images of the engineer are seen reflected from the facets of the grooves that are at angles of 90 degrees from each other.

Data Products (4): Echelle Spectra



schelle spectrum of V454 Aur


The Fourier Transform Spectrometer (FTS)

FTS - Principle

First, let's assume we only have a single pixel detector

• The FTS or Michelson interferometer is a <u>two-wave</u> interferometer (as opposed to a grating with Nwaves from Ngrooves).

• For each setting (travel distance) of the arm, the intensity will be recorded.

• The signal is an interferogram. It is the Fourier transform of the spectrum of the object.

FTS - Measured Intensity

The exit intensity I(x) for a monochromatic input intensity I_0 (with wave number $k=1/\Lambda$ and path length difference x) is:

$$I(x) = \frac{I_0}{2} (1 + \cos 2\pi kx)$$

A source with a spectrum $I_0(k)$ in the range $[k_1, k_2]$ produces a signal of:

$$I(x) = \frac{1}{2} \int_{k_1}^{k_2} I_0(k) (1 + \cos 2\pi kx) dk$$

Note that for each value of x, all spectral elements of the incident spectrum contribute to the signal = spectral multiplexing

FTS - Recovered Source Spectrum

The signal contains a mean value (offset) $\langle I(x) \rangle = \frac{1}{2} \int_{k_1}^{k_2} I_0(k) dk$ which can be subtracted. We then calculate the inverse

Fourier Transform:

$$I_0'(k) = FT\{I(x) - \langle I(x) \rangle\}$$

If I(x) were known from $[-\infty, +\infty]$, I'_{O} would be I_{O} .

However, I(x) is only measured over the finite interval $[-x_m/2, +x_m/2]$, hence: $I'_0(x) = I_0(x) \cdot \prod \left(\frac{x}{x_m}\right)$

Or in frequency space: $I'_0(k) = I_0(k) * \operatorname{sinc}(x_m k)$

in other words: the resolution has been degraded

FTS - Spectral Resolution

The interferogram of a monochromatic source $I_0(k) = \delta(k - k_0)$ is the instrumental profile: $\operatorname{sinc}(x_m k) * \delta(k - k_0)$

The first zero of the instrumental profile occurs at

$$k - k_0 = \pm \frac{1}{x_m}$$

(analogous to the Rayleigh criterion) the spectral resolution of an FTS is: k

$$R = \frac{k_0}{\Delta k} = x_m k_0$$

FTS - Multiplex Advantage

Goal: get the source spectrum $I_0(k)$ within $[k_1, k_2]$ at resolution R within time T.

The number of spectral elements shall be M, and the detector read noise σ_D shall dominate.

For a sequential scanning spectrometer with a monochromator (single element (pixel) detector* the S/N is:

$$(S/N)_{spec.elem.}^{sequential} = \frac{I_0(k)(T/M)}{\sigma_D \sqrt{T/M}}$$

For a FTS the whole time T is used for each spectral element

$$(S/N)_{spec.elem.}^{FTS} = \frac{1}{2} \frac{I_0(k)T}{\sigma_D \sqrt{T}}$$

The multiplex gain is thus $G = \frac{\sqrt{M}}{2}$ (Fellgett advantage)

*mainly in the old days or at long IR wavelengths were only small detector formats are available.

FTS - Advantages and Disadvantages

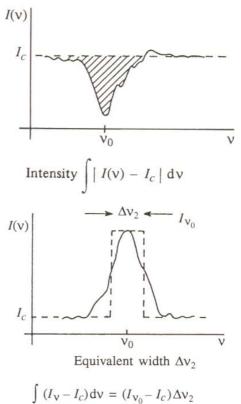
- Multiplex advantage only applies to few pixel detectors

 → at O/NIR wavelength, gratings are preferred
 → at FIR wavelength, FTS are often preferred
- Optical simplicity of FTS provides high throughput
- FTS are superior if read noise dominates, but loose their advantages if photon shot noise dominates (thermal IR from the ground)
- FTS can be combined with imaging by placing a mosaic of detectors in the focal plane.

Pros and Cons of the Different Types

Spectrometer	Advantages	Disadvantages
Long-slit	 relatively simple → high throughput easy to calibrate 	 only one object at a time inefficient use of detector space
Echelle	high spectral resolutionefficient use of detector	 challenging grating/optics limited instantaneous Δλ
Integral field	instantaneous 2D infoideal for resolved objects	 complex optics single objects only
Multi-object	 up to thousands of spectra ideal for spectral surveys 	 complex mechanisms to select fields fibre transmission limits ∆A compact objects/regions only
Fabry-Perot	 ideal for large objects high spectral resolution more compact than FTS 	 not practical for large ∆A line and continuum observed at different times → calibration needs pre-disperser
Fourier- transform (FTS)	 Fellgett advantage: G=\/M/2 good for extended emission high throughput 	 less gain with high background high resolution ⇔ wide interval difficult in cryo instruments

SPECTRAL LINE ANALYSIS


Line Intensity

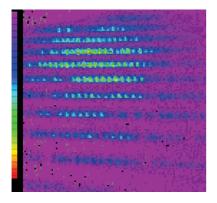
The line intensity describes the total power contained within the line and can be measured and/or characterized by either:

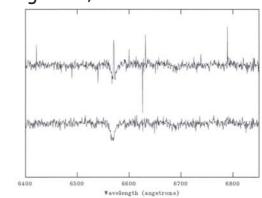
- Fitting the line with a Gauss (Doppler, instrument), Lorentzian (collisions) or Voigt (both) profile
- Numerical integration $\int_{line} [I(v) I_c] dv = f(N)$ over the continuum-subtracted total line

intensity I (= <u>absolute</u> measurement)

 Calculating the equivalent width, which expresses the integrated line flux as a rectangular window of the continuum strength at that wavelength (= <u>relative</u> measurement).

Optimal Extraction


Extracting the spectral information from the dispersed light on a real detector is non-trivial:


Usually, spectral resolution elements cover more than one pixel \rightarrow the information should be weighted according to the S/N per pixel:

$$S(\lambda) = \frac{\sum_{i} W_i(\lambda) \cdot (C_i(\lambda) - B(\lambda))}{\sum_{i} W_i(\lambda)}$$

Belative Intensity

where S is the summed signal, B is the background, and C is the detected signal per pixel *i*.

STIS spectrum of an O star (Massey et al. 2004): top: standard extraction; bottom: optimal extraction.