Herbig AeBe stars

Properties of this type of stars and a summary of modern research on magnetic fields, spectroscopy and X-Ray measurements.

Gijs Hijmans
Herbig AeBe stars

- Introduction
- Recognition
- Herbig AeBe versus T-Tauri stars
- Current research
 - Magnetic field
 - Spectroscopy
 - X-Ray research
- Conclusion
Introduction

- Star formation
 - Cloud collapse
 - Heat produced
- Types of protostars
 - Mass
 - Light mass T-Tauri
 - Medium massed Herbig AeBe star
 - Very heavy protostar
How to recognize an Ae/Be star

- Infrared
 - Strong radiation in the infrared part of the spectrum
- Spectroscopy
 - Dust
 - Gas
T-Tauri versus Herbig Ae/Be
Herbig AeBe versus T-Tauri

- **Mass**
 - Herbig AeBe stars have higher mass

- **Dust**
 - T-Tauri stars have relatively little dust

- **Development lifetime**
 - T-Tauri stars develop less fast

- **Grouping**
 - The heavier a star is, the more likely it is to have close stellar companions.
Current research

- Magnetic field research
 - Do Herbig AeBe stars have magnetic fields and what is causing them?
- Spectroscopy of dust disk
 - Understanding planet formation
- X-Ray research
 - Some Herbig AeBe stars are sending out X-Rays
 - Cause of X-Rays still unknown.
Magnetic Field research

- Magnetic field detection
 - Magnetic particles line up to magnetic field
 - Light polarizes due to magnetic particles
- Magnetic field effect
 - Magnetic fields are believed to be one of the reasons of planet formation
Spectroscopy

- Detection of Herbig AeBe stars
- Detection of Magnetic Fields
- Detection of different elements
 - Formation of different types of
 - Large amounts of H2 necessary for formation of gas giants
 - Amounts of iron and other heavier elements necessary for other type of planet formation
X-Ray research

- Some Herbig AeBe stars exhibit X-ray transmission
 - Dynamo effect
 - Stellar winds hitting gas
 - Residual magnetic field
Magnetic Fields research
 - “Accurate magnetic field measurements of Vega-like stars and Herbig AeBe stars” Hubrig, Yuding, Schoeller, Pogodin (Astronomics and Astrophysics, 2006)

X-Ray research