Brown Dwarfs

Theories and observations

Nadieh Bremer 03-11-2006

Table of contents

- Introduction; History
- Origin
 - what is a brown dwarf?
 - classification
 - how do they form?
- Observations
 - distinguishing heavy brown dwarfs from light stars
 - distinguishing light brown dwarfs from large planets
 - recent observations

• • History

- Early 1960's; there exist gaseous objects with a mass below H-burning limit
- Mass below ~ $0.08 M_{\odot}$
- Discovering brown dwarfs was fruitless for several decades, but;
 - 1988: discovery of GD 165B
 - 1995: discovery of Gliese 229B
- Since 1995, hundreds have been identified

Gliese 229B

Palomar Observatory Discovery Image October 27, 1994 Hubble Space Telescope Wide Field Planetary Camera 2 November 17, 1995

PRC95-48 · ST Scl OPO · November 29, 1995 T. Nakajima and S. Kulkarni (CalTech), S. Durrance and D. Golimowski (JHU), NASA

What is a brown dwarf?

- About the size of Jupiter
- Gravitational versus degeneracy pressure
- Never hot enough for Hfusion
- Mass lower then ~ $0.08 M_{\odot}$
- Surface temperature
 ~ 1000 K
- Mass above 13 M_J fuse ²H and above 65 M_J also Li

Evolution

 $\log(t/yrs)$

Classification

• L dwarf:

- almost no TiO and VO bands
- strong metal hydride bands (FeH, CrH, MgH, CaH) and alkali lines (Na I, K I, Cs I, Rb I)
- "Cooler" T dwarf:
 - also methane (CH₄) bands

• • What origin?

• Very low mass brown dwarfs discovered

• More like planets or like stars?

- circumstellar disk found around low-mass brown dwarfs
- extremely dim objects found in molecular clouds
- <u>Conclusion</u>: brown dwarfs most likely have a stellar origin

• • How do they form?

• Small, dense molecular cloud • Jeans mass: $M_j = \frac{c_s^3}{G^{3/2}\rho^{1/2}}$

Ejected from unstable multiple system

- circumstellar disk
 - fragments due rapid accretion
 - pulled away by stellar encounter
- molecular cloud

How do they form?

Contradictions to ejection theory

- difficult to keep their disks
- existence of wide binary dwarfs
- found in places with no dense gas

 There might be other ways to create brown dwarfs

Distinguishing heavy brown dwarfs from light stars

• Mass doesn't give enough information

Methane

- older cooler dwarfs gather methane
- stars get much to hot
- Gliese 229B

Distinguishing heavy brown dwarfs from light stars

Lithium test

- brown dwarfs below 65 $M_{\rm J}$ do not deplete their lithium
- Iow luminosity
- low-mass stars are fully convective
- not for young objects (open cluster)

⁶Li + ¹H \rightarrow ³He + ⁴He ⁷Li + ¹H \rightarrow 2⁴He $\bullet \bullet \bullet$

Distinguishing light brown dwarfs from large planets

- All dwarfs have about the same radius Density
 - mass higher then 10 M_J can't be planet
- IR spectra
 - dwarfs can "glow" in IR
 - giant planets emit more heat then they receive
- o Inside
 - planets: solid metal core
 - brown dwarfs: starlike convective interior

- CHXR 73 B
- 12 Jupiter masses
- 19.5 billion
 miles from its
 star
- 135 pc away
 from Earth

- o 2M1207
- First planet
 <u>directly</u> detected
 (around brown
 dwarf) in 2004
- 21 Jupiter
 masses
- 53 pc from Earth

The Brown Dwarf 2M1207 and its Planetary Companion (VLT/NACO)

- o DEN 0255-477
- Nearest known L dwarf
- 100 million times fainter that the sun
- o 5 pc from Earth

- Binary brown dwarf system
- Weigh and measure brown dwarfs
- \circ 0.055 and 0.035 $M_{
 m o}$
- Smaller one is hotter

• • Summary

 Stellar origin • All have about the same size • Mass can differ greatly Will eventually emit no more light • Difficult to distinguish between planet, brown dwarf and low-mass star Not known how they form

Any Questions?

