XI. Bolometers – Principle
XII. Bolometers – Response
Fundamental Types of Detectors
Two Fundamental Principles of Detection

Direct Detection
- Respond to individual photon energy

Coherent Amplification
- Respond to electrical field strength and preserve phase
Two Types of *Direct* Detection

Based on photoelectric effect (release of bound charges)

Direct Detection

Thermalize photon energy

Quantum Detection

Thermal Detection
A Brief History of Bolometers
Bolometer Beginnings

The father of astronomical bolometers is Frank Low. He invented the Ge:Ga bolometer in 1961.

Frank Low
(1933 – 2009)

The night sky has a large thermal emission at 10 microns
SOLUTION: rapid beam switching to remove the sky background
A milestone in the History of Bolometers

Many references to John C. Mather (Applied Optics 21, 1125, 1982):

PI for Far Infra Red Absolute Spectrophotometer (FIRAS) on COBE
The Nobel prize in Physics 2006 (with George Smoot)
Basic Principle
Basic Principle

The incoming photon energy $E_\gamma = \frac{hc}{\lambda}$ is **absorbed as heat** and increases the temperature of the absorber.
Steady State Operation of a Bolometer (1)

- Incoming photon power flux P_0 increases bolometer from equilibrium temperature T_0 to $T_0 + T_1$.

Detection of Light – Bernhard Brandl
Steady State Operation of a Bolometer (2)

A thermal link with thermal conductance G transfers power to a heat sink of temperature T_0.

\[G = \frac{P_0}{T_1} \]

Thermal conductance G [W / K]
Thermal heat capacity C [J / K]
A chip of doped silicon or germanium acts both as bolometer detector and thermometer.
High input impedance amplifier measures the voltage → voltage depends on resistance → resistance depends on temperature.
Bolometer Readout Circuit

Johnson noise is NOT the limiting factor for bolometers so we don’t worry about a high resistance R.
We can use this circuit to measure the bolometer resistance R (or what we actually measure is V_{out}.)

We assume that $R_L >> R$ so that the current through the bolometer is limited by R_L.

![Bolometer Readout Circuit Diagram](image-url)
Electrical Properties
From previous lectures, we know that the resistance R_d of a semiconductor is:

$$R_d = \frac{1}{\sigma \frac{l}{w d}} = \frac{1}{q n_0 \mu_n \frac{l}{w d}}$$

...where the number of charge carriers is:

$$n_0 = 2 \left(\frac{2m_n^* kT}{\hbar^2} \right)^{3/2} e^{-\left(E_c - E_F \right)/kT}$$

So, R depends on the temperature as:

$$R = R_0 T^{-3/2} e^{B/T}$$
Temperature Coefficient of Resistance

Bolometer temperature ↔ electrical resistance
→ temperature coefficient of resistance α:

$$\alpha = \alpha(T) = \frac{1}{R} \frac{dR}{dT}$$ (in units of Kelvin$^{-1}$)

The sign of α leads to very different behavior for a bolometer.

A positive/negative temperature coefficient (PTC/NTC) refers to materials that experience an increase/decrease in electrical resistance when their temperature is raised.

<table>
<thead>
<tr>
<th>Material</th>
<th>$\alpha/^{\circ}$K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon</td>
<td>-0.075</td>
</tr>
<tr>
<td>Germanium</td>
<td>-0.048</td>
</tr>
<tr>
<td>Carbon</td>
<td>-0.0005</td>
</tr>
<tr>
<td>Manganin</td>
<td>0.000002</td>
</tr>
<tr>
<td>Constantan</td>
<td>0.000008</td>
</tr>
<tr>
<td>Nichrome</td>
<td>0.0004</td>
</tr>
<tr>
<td>Mercury</td>
<td>0.0009</td>
</tr>
<tr>
<td>Copper</td>
<td>0.0039</td>
</tr>
<tr>
<td>Aluminum</td>
<td>0.0039</td>
</tr>
<tr>
<td>Tungsten</td>
<td>0.0045</td>
</tr>
<tr>
<td>Iron</td>
<td>0.005</td>
</tr>
<tr>
<td>Lithium</td>
<td>0.006</td>
</tr>
</tbody>
</table>

http://www.resistorguide.com/temperature-coefficient-of-resistance/
Low Temperatures = good Resistivity

Bolometers suffer from the same fundamental noise mechanisms as photoconductors PLUS the noise arising from thermal fluctuations.

Keep temperature of the bolometer very low: $T < 5K$

To make sure that there are good electrical properties for this very low temperature, the doping is so heavy that hopping is made to be the dominant mode.
Approximations for α

If $T << \Delta$, and the semiconductor is heavily doped, the electrical resistance for hopping can be described by:

$$R = R_0 e^{(\Delta/T)^\epsilon}$$

where $\epsilon \approx \frac{1}{2}$ and $\Delta \approx 4 - 10$ K is a characteristic temperature.

Substituting the hopping resistance into the above equation yields:

$$\alpha(T) = \frac{1}{R} \frac{dR}{dT} = \frac{1}{R_0 e^{(\Delta/T)^{1/2}}} \frac{d}{dT}(R_0 e^{(\Delta/T)^{1/2}}) \approx -\frac{1}{2} \left(\frac{\Delta}{T^3}\right)^{1/2}$$
Time Response
Response of a Bolometer

Add an astronomical source represented as a time varying component with power: \(P_V(t) \)

\[
\eta P_V(t) = \frac{dQ}{dt} = C \frac{dT_1}{dt}
\]

where \(\eta \) is the quantum efficiency, and \(Q \) is the thermal energy.

Thermal conductance \(G \) [W / K]
Thermal heat capacity \(C \) [J / K]
T-coefficient of resistance \(\alpha \) [1 / K]
The total power absorbed by the detector is:

\[P_T(t) = P_0 + \eta P_V(t) = G T_1 + C \frac{dT_1}{dt} \]

Now we turn on a signal so that:

\[P_V = 0 \quad t < 0 \]
\[P_V = P_1 \quad t > 0 \]

\[T_1(t) = \frac{P_T}{G} - \frac{\eta P_V}{G} = \begin{cases}
\frac{P_0}{G} & \text{for } t < 0 \\
\frac{P_0}{G} + \frac{\eta P_1}{G} \left(1 - e^{-t(C/G)}\right) & \text{for } t > 0
\end{cases} \]

The signal changes exponentially with time constant \(\tau_T = \frac{C}{G} \)
Bolometer Thermal Time Constant (2)

\[T_1(t) = \frac{P_T}{G} - \frac{\eta P_V}{G} = \frac{P_0}{G} + \frac{\eta P_1}{G} \left(1 - e^{-t(C/G)}\right) \]

The signal changes exponentially with time constant \(\tau_T = C/G \)

For \(t \gg \tau_T \), the temperature \(T_1 \sim (P_0 + \eta P_1) \)

If you measure the temperature then you know the power.
Two Sources of Bolometer Heating

1. **Incoming (detected) photon flux produces** $P_v(t)$:

2. **Electrical heating from the current sensing** in the thermometer P_i:

$$P_I = I^2 \times R(T)$$
Two Sources = Two Time Constants

1. Heat flowing out of the bolometer through the thermal link gives rise to \(\tau_T = \frac{C}{G} \)

2. The electrical power changes with an electrical time constant \(\tau_E = \frac{C}{G - \alpha(T)P_I} \)

Since \(\alpha(T) < 0 \), this term is always positive: \(\tau_E < \tau_T \)
Frequency Response

The frequency response of a classical RC-circuit is given by (Rieke 1.38):

$$|V_{out}(f)| = \frac{v_0}{\left[1 + (2\pi f \tau_{RC})^2\right]^{1/2}}$$

Similarly, the frequency response of a bolometer is given by:

$$S(f) = \frac{S(0)}{\left[1 + (2\pi f \tau_E)^2\right]^{1/2}}$$

where $S(0)$ is the low frequency responsivity [V / W].
Bolometer Responsivity
Electrical Responsivity

Let dR, dT and dV be the changes in resistance, temperature and voltage across the bolometer, caused by the absorbed power dP.

Let dR, dT and dV be the changes in resistance, temperature and voltage across the bolometer, caused by the absorbed power dP.

$$dV = I \, dR = I \left[\alpha(T) \, R \, dT \right] = \alpha(T) \, V \, dT = \frac{\alpha(T) \, V \, dP}{G - \alpha(T) \, P_I}$$

$$\alpha(T) = \frac{1}{G \, dT}$$

with Rieke p.244

$$dT = \frac{dP}{G - \alpha(T) \, P_I}$$

So, we get for the electrical responsivity:

$$S_E = \frac{dV}{dP} = \frac{\alpha(T) \, V}{G - \alpha(T) \, P_I}$$

S_E is completely determined by the electrical properties of the detector.
Measuring Electrical Responsivity

The detector properties G and α are not always known \rightarrow need to determine them by measurement.

Measure the “load curve” of I-V by adjusting the load resistor R_L

Note that the local slope is different from “the resistance” R because of the non-linearity of the load curve.
S_E is the electrical responsivity, but now we can derive the responsivity to incoming radiation (where only a fraction η of the incoming energy is absorbed):

$$S_R = \eta S_E = \frac{\eta}{2I} \left(\frac{Z}{R} - 1 \right)$$
Responsivity compared to Photodetectors

Photoconductor:

\[S_{\text{photoconductor}} = \frac{\eta \lambda q G}{hc} \]

Photodiode:

\[S_{\text{photodiode}} = \frac{\eta \lambda q}{hc} \]

Bolometer:

\[S_{\text{bolometer}} = \frac{\eta}{2I} \left(\frac{Z}{R} - 1 \right) \]

The bolometer responsivity is independent of the wavelength \(\lambda \) (assuming the QE \(\eta \) is independent of \(\lambda \)).
Noise and NEP
Negative electro-thermal Feedback

Johnson noise can be characterized by the noise voltage

\[V_J = \langle I^2_J \rangle^{1/2} R \]

CASE 1: if \(V_J \) is added to the bias voltage, the dissipated power \(P \) increases and \(R \) decreases (because of the negative resistance coefficient) so the voltage across the detector decreases.

CASE 2: if \(V_J \) opposes the bias voltage, the dissipated power \(P \) decreases and \(R \) increases, so the net voltage across the detector still decreases.

In both cases, the detector response opposes the ohmic voltage change resulting from Johnson noise \(\rightarrow \) negative electro-thermal feedback.

\[\langle I^2_J \rangle = \frac{4kT \Delta f}{R} \]
The total NEP

Johnson noise: \[NEP_J \approx GT^2 \text{ for } \alpha(T) \approx T^{-3/2} \]
\[GT^{3/2} \text{ for } \alpha(T) \approx T^{-1} \]

...due to fluctuations in the thermal motions of charge carriers (random currents due to Brownian motion).

Thermal noise: \[NEP_T = \frac{(4kT^2G)^{1/2}}{\eta} \]

due to fluctuations of entropy across the thermal link that connects the detector and the heat sink.

Photon noise: \[NEP_{\text{photon}} = \frac{hc}{\lambda} \left(\frac{2\varphi}{\eta} \right)^{1/2} \]

...due to fluctuations in the photon flux. (Note: Bolometers do not have G-R noise – no particle pairs created/destroyed).

Total NPE noise: \[NEP = \sqrt{(NEP_{\text{photon}}^2 + NEP_T^2 + NEP_J^2 + ...)} \]
NEP Performance of Bolometers

Performance of bolometers for sub-mm detection in terms of diameter and temperature:

(from Puget & Coron 1994 for the SAMBA mission).
State-of-the-Art Bolometers
LABOCA

LABOCA – the multi-channel bolometer array for APEX operating in the 870 μm (345 GHz) atmospheric window.

The signal photons are absorbed by a thin metal film cooled to about 280 mK.

The array consists of 295 channels in 9 concentric hexagons.
The array is under-sampled, thus special mapping techniques must be used.

http://www.apex-telescope.org/bolometer/laboca/technical/
Herschel/PACS bolometer: a cut-out of the 64x32 pixel bolometer array assembly.

4x2 monolithic matrices of 16x16 pixels are tiled together to form the short-wave focal plane array.

The 0.3 K multiplexers are bonded to the back of the sub-arrays. Ribbon cables lead to the 3K buffer electronics.
Composite Bolometers

In some cases, Si bolometers with high impurity concentrations can be very efficient absorbers. In many cases, however, the QE is too low.

Quick solution: enhance absorption with black paint – but this will increase the heat capacity.

A high QE bolometer for far-IR and sub-mm would have too much heat capacity hence composite bolometers.

The heat capacity of the blackened sapphire plate is only 2% of that of Ge.
Etched Bolometers

Etching physical designs in Si means that you can make bolometer arrays and really reduce the thermal timescales.