‘Detection of Light

' This lecture coursemivs the t‘é?tmok “Det -
Light” by George Rieke, Cambridge Univer ‘



Dark Current and
Read Noise
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Distribution of Readout Noise

Histogram of readout noise.
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Readout Noise =f{n___,}

Readout Noise for Continucus Sampling
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Readout noise versus number of non-destructive readouts (825ms each).



IR active pixels are surrounded by 4
rows and columns of reference
pixels at the edges of the array.

Reference pixels are not connected
to detector photodiodes.

Their signal is embedded in the
regular signal of 2048 x 2048 pixels.

Reference pixels can be used to
track low frequency noise pickup.

Noise map with reference pixels at the left edge.
Readout noise on active pixels: 17 e- rms.
Readout noise on reference pixels: 8 e- rms.
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‘Reference Pixels” (2)

Need for reference pixels — difference images of double correlated
reads:
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Dark Current (1)

The dark current is a strong function of temperature!
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Dark Current (2)

... and varies from pixel to pixel. Global dark current maps:
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Cosmetic Quality

The cosmetic quality (< dark current) is also a strong f {T}

b B 2 :

v oty o wtgl = O : .
40 K; integration time: 900 sec i /80 K; ihtegration‘time:'900 sec .

=» Cooling is very important!
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Detector Artefacts
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Pixel-to-Pixel Gain Variations

Not all pixels respond equally to incoming photons = uniform
illumination produces structure - take out by “flat fielding”
(=multiplication with normalized, inverse pixel response).
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signal (DN)

Examples:

HST-WFC3: The linearity correction fitted
by a 3@ order polynomial.

Non-Linearity

All photosensors respond non-linear as the photo-electric charge
approximates the pixel full well capacity.
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Thermal Glow from Pre-Ampilifiers

PROBLEM:

Electro-luminescence and §
thermal glow are problems §&
for active devices E

SOLUTION:

Switch off the amplifiers
(MOSFET transistors) whilst
integrating on your
astronomical source.
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Dead, Hot, & Rogue Plxels

Dead Pixel: a defective pixel that delivers
no signal and cannot be used.

Hot Pixel: Highly elevated signal and
noise level. It usually remains “hot”, but
may deliver limited information.

Rogue Pixel: Has very high dark current
and/or abnormal photon responsivity
(similar to a hot pixel) but may be
“healed” with annealing or other
techniques.

Mitigations:

e assignit ‘NaN’ in your data reduction
e interpolate from nearest neighbor values@
e subtract off an off-source image
e ‘reduce bias voltage




Latent Images

PROBLEM:

After strong illumination a small S 2 200e | SontaT400= | lminetion NN
fraction of the photoelectrons are §; .
trapped. The traps may release a hole | o s

or electron long after the illumination.
Residual images are typically less than
1% but still can create severe problems

SOLUTIONS:
e Wait (and wait, and wait....)

differenca signal EB—]

s
a

* Apply frequent resets (clean out the
trap)

* Annealing (heat up array to -;
thermally excite them into mobility) ., S

time (21since & dfllm ation frams

e Use ND filters or shutter during
target acquisition



Detector Fringing (in Spectrographs)

PROBLEM:

Photons reflect off the back of
the detector and interfere with

the incoming light

detector

If the phase difference between
and n-l, is an even multiple of it
constructive interference occurs.
If an odd multiple destructive
interference occurs

16
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Crosstalk

Multiple simultaneous amplifier readouts lead to “crosstalk”

PROBLEM:
The signal from a strongly A
illuminated pixel can couple mto 5 *

an adjacent amplifier readout
board and appear as a “ghost”
image.

The negative (white) images in
the upper right quadrant
correspond to the black star
images in the lower left
guadrant




Pulldown & Bleeding

PROBLEM:
Pulldown occurs due to a depression of the bias voltage in columns
containin
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sensitivity [mJy/10c/1h]

Side note: ELFN in Si:As BIBs

ELFN = excess low frequency noise, found in Aquarius detectors

from D. Ives et al. (2012, SPIE):
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Standard photon transter curve: noise versus signal.
The plot also shows the theoretical curves for a detector
with similar gain and read noise and zero read noise.



Readout Schemes
(of IR Arrays)
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Reminder: Detector Readouts

How to get it from a pixel to the computer?

The CCD approach:

e Pixel charges are shuffled across other pixels over to a readout
column, which is then itself read out through a single amplifier.

e simpler architecture: cheap to make and duplicate en masse,
established technology.

The IR Array approach:

 Having a separate multiplexer allows for direct pixel addressing

* non-destructive reads: the charge on the detector layer is not
altered by sampling it - think measuring the charge on a capacitor.

e But complex electronics: expensive!

Next, we’ll focus on IR array readouts.



Single Sampling

The simplest approach ...

Read
V.t F
Voul /
VA o -
Reset L Reset time

e Does not remove kTC noise or voltage drifts
e |t directly measures the signal level (we would notice saturation)
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Double-correlated Sampling

Reads pixel twice (before and after the reset)

Read 1
Vit
Vout
Read 2 /
Vz" ! -
!, Reset time

e Signal =Read 1-Read 2
e Voltage drifts are subtracted out

* “read-reset-read” = difference is measured for each pixel before
moving to the next = simplified, lower data rates

e Does not eliminate kTC noise since offset is subtracted from the
previous frame.

e Watch out: saturated — saturated =0



Reset-Read-Read

Read 2
v, +
Uout Read 1 /
4 : % >
Reset ! L, Reset time

e Resets the array pixel-by-pixel (or column-wise)

e Reads the array pixel-by-pixel at the start and at the end of the
integration

e Signal = Read(2) — Read(1)
e Advantage: best correlation, no reset noise
e Disadvantages: requires frame storage, reduced dynamical range
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Multiple (Fowler) Sampling

Uses multiple reads at start and end of the integration time to
reduce the read noise.

m reads
VE-—
Vv m reads
out /
v.l_ i i ¢ o
] tT -
t 2 time

e Signal = Mean(Read 2) - Mean(Read 1)

e m reads get coadded in buffer (no separate frame storage)
e Readout noise is reduced by Vm over reset-read-read
 Longer time to carry out a given integration



Sampling “up-the-ramp” (SUR)

Uses m equally spaced reads during the integration

\J’E—-
m reads
\'J
out /
V,l = : i o

t, t, time

make a fit to the slope to get flux rate

 reduces readout noise by vm until 1/f noise limit

e Disadvantage: fitting requires storage of m frames

e very useful in space when cosmic ray hits occur

Ideally, the slope does not change

and the information can still be
recovered after the proton hit.
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Vacuum &
Cryogenics
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Need for Cooling

Cooling is essential to ...:
1. Avoid thermally excited charge carriers (dark current)
2. Reduce thermal emission from the surrounding optics

System Wavelength Temp. Temp.
Optics Detector
optical A= 1pum ~300 K ~180 K
near infrared lpym<=A<=25 | ~100 K =80 K
Im
thermal infrared A= 25um ~30 K ~6 K




Cooling requires Vacuum

(or everything will freeze over)

Vacuum m Comment

Normal pressure 103 mbar 3x10'° atoms/cm3

High vacuum 103 mbar in light bulbs

Ultra-high vacuum <10°® mbar <10!° molecules/cm3
Best man-made vacuum* 1013 mbar 103 molecules/cm?3
Giant molecular cloud 10%2—- 103 molecules/cm?3
Interstellar space 1 atom/cm3
Intergalactic space 10 atoms/cm3

*at room tem peratu re
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Cryostats (Dewars)

Cryostats are vacuum tanks. Heat transport is via radiation and
conduction only.

A heat shield or radiation shield with multi-layer insulation (MLI)
is used to limit radiative transport.

After cooling, a vacuum of 1x107 mbar is typically reached.

WIndow - - - === f——— -~ O-ring
Vacuum Wall -- _- Detector
MLI -- . Cooling 2nd Stage
Heat Shield -- - Cooling 15t Stage
Cold Instrument - |

Vacuum System: "7 Sorption pump



Common Coolers — Overview (1)

Peltier cooling: based on thermoelectric cooling and does not
induce vibrations, but is limited to about 50 degrees below
ambient.

Liquid nitrogen (LN,): relatively inexpensive, does not generate
vibrations. Bath cryostats need regular refills. Temperature at 1
bar is ~77K, cooler temperatures (down to 65K) can be reached by
pumping on the bath.

Liquid helium (LHe) has a boiling point of 4.2K and can be super-
cooled under vacuum to achieve lower temperatures.

Closed cycle (CC) coolers use adiabatic expansion of helium that is
recuperated. Devices include Gifford-McMahon, pulse tube,
Stirling, Joule-Thomson and Brayton coolers. May be used down
to 2 K in several stages. Coolers vibrate.

Dilution or adiabatic demagnetization coolers reach temperatures
well below 0.1 K.



Common Coolers — Overview (2)

Cooling Temp. | Typical Power Vibr.

Peltier =230 | ~100 mW @ —40 K delta T No
K

LN =TTK | ~1W@80K No

LHe =2K | ~100 mW @ 4K No

CC =2K | ~100W@80K & ~20W@ 20K | Yes

Dil <0 1K |~02mW@0.1K Yes

Note that observatories are not physics labs (1 night @ VLT ~100 k€).

— Reliability, power consumption, and servicing are important
factors when it comes to selecting the best cooler.

7-3-2018
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LN, / LHe Cryostat

nitrogen helium

vacuum neck” ek “Simplest” solution is to use a two-
upe
5{/ stage helium dewar
&

vailve /tube
[ l U P] ﬂ S (here: model from Infrared Laboratories, Inc.)
é = / qutuid
? m/'/ niirogen
_ g7
S ol ==
D . Cooling down furtherto 1 -2 K is
e > ] : 4
: N ~~_|l/ problematic as “*He becomes
—Q| Atauid \superfluid and will flow all over the
% e R /ﬁ helium
g G inside of the dewar.
g — | Solution: The isotope 3He does not
7 | . .
7 ~— | have a superfluid state — but 3He is
V774 = [ window . .
7 rare and expensive = only in closed
comecior Z/* = e /" cycle refrigerators.

detector
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Closed-Cycle Cooler Cryostat

Cryostat for the GRAVITY beam combiner instrument at the VLTI,
using a pulse tube cooler

Calibration
Unit

Examp

Cryostat
Vessel

Cryostat
Support
Structure

le of a pulse tube cooler: __Cryomech PT410:

Cold head

Cooling capacity @ 50 and 60 Hz:
2™ stage and 1* stage combined
Lowest temperature

Cool down time

Weight

Dimensions

Compressor package
Weight

Dimensions - L x W x H
Electrical rating

Power consumption @ steady state
Cooling water flow rate

PT410 with CPA289C
PT410

1.0W @ 4.2K with 40W @ 45K

2.8K with no load
60 minutes to 4K

43 1b (19.5 kg)
See cold head line drawing

CPA289C, available as water cooled only
2951b (134 kg)

27 x19x24.5in (69 x 48 x 62 cm)
220/230 or 460VAC, 3Ph, 60Hz

200/220 or 380/420VAC, 3Ph, 50Hz

8.4 KW [/ 7.9 kKW

Minimum flow 2.3 GPM (9 LPM) @ 80°F (27°C) maximum temperature

Elexible lines
Standard length 66 ft (20.1 m)
Weight per pair 72 b (32.7 kg)
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Side note: thermal Oscillations

from D. Ives et al. (2012, SPIE):
Closed cycle coolers do not provide a constant temperature, but show

thermal oscillations of the cold head by a few tenths of a Kelvin of

typically 1

Hz.

These thermal oscillations can result in additional detector noise
because the detector output voltage is sensitive to this temperature

change.

Signal versus Time
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Here the change of output is
seen to be 250 DN which in
our system would equate to

an additional
noise of approximately 50 e-

rms added in quadrature to
the read noise.



Cryostats — Examples

Solar Panel

Spitzer

Secondary Mirror

Qutaer Shell

Primary Mirror

Instrument Packaga

« Infrarad Array Camera (IRAC)
+ Infrared Spactrograph (IRS)

+» Multiband imaging Photometer (MIP

Healium Tank

Star Trackers

Spacecraft Bus

7-3-2018
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