Detection of Light

VII. IR Arrays & Readout
VIII. CCDs & Readout
BIB Advantages

- If the IR layer is heavily doped (N_i is large) it can be relatively thin compared to extrinsic photoconductors \Rightarrow good for space (high ionizing environment)
- Longer cutoff wavelength due to the heavy doping
- Operates over a broader spectral range
- Lower impedances lead to reduced dielectric relaxation effects \Rightarrow faster response times
- The G-R noise is smaller by a factor of $\sqrt{2}$

In bulk photoconductors the recombination occurs in high resistance material and so you have both Generation and Recombination noise; In BIB detectors the recombination occurs in the low resistance material, so you only have noise from the Generation statistics.
Detector Arrays
Detector Arrays

Arrays are formed from individual photoconductors:

+ Readout Electronics

= Detector Array
Two Types of Opt/IR Arrays

IR Arrays

- directly access individual pixels
- complex and expensive

(1 \mu m – 40 \mu m)

Charge Coupled Devices (CCDs)

- monolithic structure built in Si wafer
- charge transfer inefficiencies

(0.1 nm – 1 \mu m)
Infrared Arrays
Construction
Construction of IR Arrays (1)

Why Indium? It’s a soft metal and will still be ductile at cryogenic temperatures!

Make a grid of readout amplifiers in Silicon

Make a matching image of detector pixels

Squeeze them together to make a hybrid array

Deposit Indium bumps on both sides
Construction of IR Arrays (2)

INTRINSIC or EXTRINSIC DETECTOR ARRAY

INDIUM INTERCONNECTS

MULTIPLEXED OUTPUT

SILICON READOUT ARRAY
Detailed bonding structure:
Thermal Mismatch

Thermal mismatch can be a problem when cooling a hybrid array!

Consider the differential thermal contraction between photosensitive material and silicon readout wafer:

\[
\alpha_{Si} \approx 2.6 \times 10^{-6} \\
\alpha_{HgCdTe} \approx 5 \times 10^{-6}
\]

\[
\frac{\Delta L}{L_0} = \alpha_L \Delta T
\]

\[
\Delta L_{mis} = L_0 (\alpha_{HgCdTe} - \alpha_{Si}) \Delta T = 36.9 \text{mm} \times 2.4 \times 10^{-6} \times 200K = 17\mu\text{m}
\]

...so, for a 2k × 2k array, we have a mismatch of about 1 pixel. The Indium bumps may break, and we get “dead pixels“.
Example Array
- HAWAII-2 RG
The Teledyne 2k × 2k Hawaii-2RG Array

See http://www.rsc.rockwell.com/imaging/hawaii2rg.html for more info

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detector technology</td>
<td>HgCdTe or Si PIN</td>
</tr>
<tr>
<td>Detector input circuit</td>
<td>SFD</td>
</tr>
<tr>
<td>Readout mode</td>
<td>Ripple</td>
</tr>
<tr>
<td>Pixel readout rate</td>
<td>100 kHz to 5MHz (continuously adjustable)</td>
</tr>
<tr>
<td>Total pixels</td>
<td>2048 x 2048</td>
</tr>
<tr>
<td>Pixel pitch</td>
<td>18 μm</td>
</tr>
<tr>
<td>Fill factor</td>
<td>≥ 98%</td>
</tr>
<tr>
<td>Output ports</td>
<td>Signal: 1, 4, 32 selectable guide window and reference</td>
</tr>
<tr>
<td>Spectral range</td>
<td>0.3 - 5.3μm</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>≥ 30K</td>
</tr>
<tr>
<td>Quantum efficiency (array mean)</td>
<td>≥ 65%</td>
</tr>
<tr>
<td>Charge storage capacity</td>
<td>≥ 100,000e−</td>
</tr>
<tr>
<td>Pixel operability</td>
<td>≥ 95%</td>
</tr>
<tr>
<td>Dark current (array mean)</td>
<td>≤ 0.1 e−/sec (77K, 2.5 μm)</td>
</tr>
<tr>
<td>Read noise (array mean)</td>
<td>≤ 15 e− CDS @ 100 kHz</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>≤ 4 mW @ 100 kHz</td>
</tr>
</tbody>
</table>

Can also be “butted” to a 2 × 2 mosaic
HAWAII-2 RG Detector Mount

GL Scientific HAWAII-2RG mosaic module

Molybdenum supporting structure with detector

Mosaic base plate

Fan-out board

CMOS opamps or ASIC’s

Detector mount for SPIFFI with cryogenic preamplifiers for 32 (+2) video channels
Distribution of Readout Noise

Histogram of readout noise.

From G. Finger et al. (2004) SPIE Vol. 5499, pp. 47-58
Readout Noise = f \{ n_{\text{read}} \}

Readout noise versus number of **non-destructive readouts** (825ms each).
“Reference Pixels” (1)

- IR active pixels are surrounded by 4 rows and columns of reference pixels at the edges of the array.
- Reference pixels are not connected to detector photodiodes.
- Their signal is embedded in the regular signal of 2048 x 2048 pixels.
- Reference pixels can be used to track low frequency noise pickup.

Noise map with reference pixels at the left edge.

“Reference Pixels” (2)

Need for reference pixels – difference images of double correlated reads:

Uncorrected showing 50Hz pick-up

Corrected with mean of reference pixels subtracted
Dark Current (1)

The dark current is a strong function of temperature!
Dark Current (2)

... and varies from pixel to pixel. Global dark current maps:

$T=40K; \ t_{\text{int}} = 11\text{'}$

$T=80K; \ t_{\text{int}} = 11\text{'}$
Cosmetic Quality

The cosmetic quality (≡ dark current) is also a strong $f\{T\}$

Cooling is very important!
Infrared Arrays

Readout Electronics
Ingredients of Detector Electronics

Example: The *Palomar High Angular Resolution Observer* detector electronics system:
Challenging Amplification

Typical signals per readout event are small (~ microvolt levels, ~microampere currents), from a device that has an extremely high impedance → need (expensive!) custom built electronics.
Side note: Signal Amplification (1)

A classical **transistor** allows a small current to control a much larger current:

TWO main types of components:
1. **Field effect transistors (FETs)** - the **first stage** of amplification
2. **Operational Amplifiers (Op Amps)** - **second** and subsequent stages
In both types of **Field Effect Transistors**, the current flows from the SOURCE to the DRAIN controlled by the applied electric field at the GATE.

Junction FETs (JFETs)

When depletion regions join, no current flows. Beyond that point, small changes at the gate produce large changes in the drain-source current.

Metal-Oxide Semiconductor FETs (MOSFETs)

Two n-type dopants implanted into p-type substrate, isolated from each other. If positive voltage is applied to gate, electrons gather below the insulator and current flows from source to drain.
Golden rule I: The output does whatever is necessary to make the voltage difference between the inputs zero.

Golden rule II: The inputs draw no current.
Infrared Arrays Multiplexers
A multiplexer is needed to address (read or reset) one pixel at a time. “Pixel signals on sequential output lines” is called multiplexing.

A multiplexer (MUX) has the following functions:

1. Directly address pixels by turning on their amplifiers. (Pixels in other columns with power off will not contribute)
2. Allow for sophisticated readout schemes
3. Allow for subarray reading

A detector with a multiplexer does not require moving charges across the array, and one can read out pixels in any order (“random access”)
Signal at photodiode is measured at gate T_1.

Readout uses row driver R_1 and column driver C_1 to close the switching transistors T_2, T_3, T_4.

→ Power to T_1 moves signal to the output bus.

Reset: connect V_R via T_5 and T_3.

Detection of Light – Bernhard Brandl
Example: HAWAII Multiplexer

Typical wiring diagram for the near-IR HAWAII array:
CCDs (Charge-Coupled Devices) Basic Principle
CCD Pixel Structure

metal “gate” evaporated onto SiO₂ (insulator) on silicon = MOS

p-type doping leads to the width of depletion region w:

$$w = \left(\frac{2\kappa_0\varepsilon_0}{qN_D} |V_g| + t_I^2 \right)^{1/2} - t_I$$

where t_I is the thickness of the insulator, N_D the density of ionized donors and $\kappa_0 = 11.8$ the dielectric constant of silicon.
CCD Charge Accumulation

- Photons create **free electrons** in the photoconductor.

- Electrons drift toward the electrode but cannot go through the SiO$_2$ layer, so they “accumulate” at the SiO$_2$ interface.

- Total number of electrons at interface is a measure of the number of photons in that pixel during the exposure.
Charges will collect until they balance V_G

The maximum number of electrons that the MOS capacitor can hold is called the well capacity Q_W:

$$Q_W = C_0 (V_g - V_T)$$

...where V_T is the threshold voltage for the formation of a storage well and C_0 is the pixel capacitance:

$$C_0 = \frac{A \kappa_0 \varepsilon_0}{d}$$
Front and Back Illumination

Front illuminated CCDs:
A metal electrode would block incoming photons, so it is made out of heavily doped silicon instead. This leads to problems at blue/UV wavelengths.

Back illuminated CCDs:
UV photons get absorbed near surface of silicon, so there is a lower QE since the photoelectrons need to get trapped in the depletion region.

SOLUTION: mechanically thin the detector so that the UV generated electrons have less distance to travel (but be careful when you thin...)

15-3-2015 Detection of Light – Bernhard Brandl 36
Thinned CCDs

Important considerations for thinning CCDs:

• Thickness must be ≥ one photon absorption length $1/a$ (if not, photons will be lost)

 $a = a(\lambda)$, hence the thickness depends on design wavelength
 $[1/(a_{1\mu m}) = 80 \mu m; 1/(a_{0.4\mu m}) = 0.3 \mu m!]$

• Luckily, the electron diffusion length in low-level doped Si is 10–50 μm [at 150K].

• Good compromise for visible CCDs: thinning to 15–20 μm (at the cost of QE in the red).

- Making CCDs too thin results in low QE and back reflection from the opposite site (fringing, see below)

- Making CCDs too thick results in wandering into neighbouring depletion zones (loss of spatial resolution)
CCDs at wavelengths < 0.3 microns

1. Extremely **short photon absorption lengths** mean charge collection problems

2. Many “transparent” electrode materials become **absorbing**

3. **Anti-reflection coatings** problematic (strong $f(\lambda)$, and at $\lambda<0.2 \mu m$, $n(Si)<1$)

4. Specifically developed UV/blue CCDs need a **blocking filter** for visible light

5. Photons at $\lambda<<0.3 \mu m$ generate more than one electron so for X-rays the number of free electrons generated is **a measure of the energy of the X-ray photon**.
CCDs
Readout
CCD Charge Transfer (1)

Charges are physically transferred across the array.

The collected charges are passed along the columns to the edge of the array to the output amplifier.
If a potential well is moved together with the surrounding barrier, most of the electric charge will move with it.
CCD Charge Transfer (3)

• Eventually, electrons are emptied from the last gate
• the electric field associated with the p-n junction collects electrons that move to +V,
• V_{out} will drop to a level proportional to the number of electrons (\simphotons) in that packet.

Taken from a lecture by Dr. L. Fuller, given at RIT – see http://people.rit.edu/lffeee/lec_CCD.pdf
2-Phase CCDs

Now, three sets of electrodes laid over each individual pixel. Systematic cycling of voltages between electrodes moves charges.

![Diagram of 2-Phase CCDs]
4 Phase ⇔ 2 Phase Clocking

We can use the dependency of the well depth ω on donor density N_D and insulator thickness t_I to dope in structure in each pixel

$$w = \left(\frac{2\kappa_0 \varepsilon_0}{qN_D} |V_g| + t_I^2\right) - t_I$$

\[\rightarrow\text{ we can use a 4 phase CCD as a 2 phase CCD as well}\]
CCD Architecture
Line address architecture shift contents of columns to output register which then transfers charge to the output amplifier **BUT:** array is illuminated whilst the transfers occur ⇐ **shutter!**

Interline transfer architecture charges are shifted into columns that are shaded from light (the shielded regions) **BUT:** low filling factor
Frame field (frame transfer) architecture charges are rapidly shifted to an adjacent CCD section which is protected from light.
Transfer Architectures in Comparison

Full frame CCD
- 100% fill factor
- Requires a shutter

Frame transfer CCD
- Operates w/o shutter
- Requires double size

Interline CCD
- Allows very fast R/O
- Only 25% fill factor

Charge Transfer Efficiency (1)

The CTE is a measure of what fraction of the total number of charge carriers is moved from one pixel to the next.

Problem: A large charge in one pixel will have internal electrostatic repulsion on a characteristic timescale:

![Diagram of charge transfer]

Problem: Thermal diffusion depends on electrode size L_e and diffusion constant D as: $\tau_{TH} \approx \frac{L_e^2}{D}$ (for $T=300K$, $\tau_{TH} = 0.026\mu s$)

![Diagram of thermal diffusion]
Charge Transfer Efficiency (2)

Problem: the electric fields near the corners of the electrodes round off corners of pixels ("Fringing fields").

Pixel electrodes

For 15μm pixels, \(\tau_{FF} = 0.004\mu s \)

For a properly designed CCD with partially filled wells, electrostatic repulsion and fringing fields will dominate.

Approximation for the CTE of a CCD with \(m \) phases:

\[
CTE = \left(1 - e^{-t/\tau}\right)^m
\]
Noise from Charge Transfer

Noise from charge transfer inefficiency: \(\varepsilon = (1 - CTE) \)

A total of \(\varepsilon N_0 \) charges are “left behind”, and the noise on them is \((\varepsilon N_0)^{1/2}\) in each transfer.

In \(n \) transfers the net uncertainty is \(N_{n,TL} = (2\varepsilon n N_0)^{1/2} \)

Noise from trapping of charge carriers in incomplete bonds in the Si-SiO\(_2\) interface. Traps will be occupied in equilibrium, but subject to statistical fluctuations with noise

\[
N_{n,T} = (2kTnN_{SS}A)^{1/2}
\]

\((N_{SS}\) is the density of traps, and \(A\) the interface area)
Example: the CCDs aboard GAIA

Cosmic radiation affects the CTE and the point spread function (PSF)

Output from the Gaia CCD model showing the effects of radiation damage. Left: Image of a 13-th mag G2V star before radiation damage. Right: Image of the same star after a 10^{10} proton (10 MeV equivalent) displacement damage dose.
Orthogonal Transfer CCDs (OTCCD)

OTCCDs can move charges in two dimensions.

• To move a charge to the right, `3’ is negative to act as channel stop, `1’, `2’, and `4’ are operated as a conventional CCD.

• To move a charge up, `4’ is negative to act as channel stop, `1’, `2’, and `3’ are operated as a conventional CCD.

• Moving to the opposite directions: reversing the clocking.
Example: Pan-STARRS (1)

The Panoramic Survey Telescope & Rapid Response System (Pan-STARRS) is a wide-field imaging facility that observes the entire available sky several times each month.

Pan-STARRS combines four 1.8m telescopes with the largest digital cameras ever built. Each camera has a 64×64 array of CCD devices, each containing approximately 600×600 pixels, for a total of about 1.4 Gpix.

Key-element is a Orthogonal Transfer Charge Coupled Device (OTCCD).
Example: Pan-STARRS (2)

If we can follow the motion of the star on the array, we can **compensate for atmospheric tip tilt motion**, i.e., improve resolution and sensitivity (analogous to a classical “tip-tilt” mirror system).
Charge Injection Devices (CIDs) (1)

Principle: two electrodes within one pixel “slosh” electrons from one side to the other, acting as a capacitor - apply an electric pulse to the capacitor.

- if uncharged the response will be symmetric and the integral over the current will be zero
- if charged the waveform will be asymmetric: \(\text{asymmetry} \propto \text{charge} \)
- measure integral over \(I_{SS} \)
Charge Injection Devices (CIDs) (2)

Each pixel consists of a pair of MOS capacitors. The two capacitors run perpendicularly to each other and are known as collection and sense pads.

Pros and cons of CIDs:
+ non-destructive reads possible
+ robust in low radiation environments
+ large fill factor and good pixel uniformity
– large read noise because an entire row of MOS capacitors is connected at one time.

Complementary Metal-Oxide-Semiconductors (CMOS)

Nowadays, transistors are tiny and high performance arrays can be manufactured in complementary CMOS devices = Si photodiodes + R/O circuitry on a single Si wafer (analogous to hybrid arrays but in one unit)

Pros and cons of CMOS:
+ much less sensitive to radiation damage
+ allow simplified systems design
– only 70 – 80% fill factor
– ~50 e− read noise

Fill factor may be increased with micro-lens arrays
Colour CCDs

Essentially three ways to produce color (from Wikipedia):

1. Take three exposures through three filters subsequently – standard for astronomy (only works for fixed targets).

2. Split the input beam in three channels, each with a separate and optimized CCD (very expensive cameras).

3. Use a Bayer mask over the CCD – each subset of 4 pixels has one filtered red, one blue, and two green (reduced fill factor).