
Observational Cosmology 
Using Galaxy Clusters + 

Cosmic Shear

and

Dark Energy Missions



Layout of the Course

Feb 5:  Introduction / Overview / General Concepts
Feb 12:  Age of Universe / Distance Ladder / Hubble Constant
Feb 19: Distance Ladder / Hubble Constant / Distance Measures
Feb 26:   Distance Measures / SNe science / Baryonic Content
Mar 4:  Baryon Content / Dark Matter Content of Universe 
Mar 11: Cosmic Microwave Background
Mar 18: Cosmic Microwave Background / Large Scale Structure
Mar 25:  Baryon Acoustic Oscillations / Dark Energy / Clusters
Apr 1:  No Class
Apr 8: Clusters / Cosmic Shear / Dark Energy Missions
Apr 15: Dark Energy Missions / Review for Final Exam

May 13:  Final Exam

This Week



Review Material from Last Week



So the game is to determine 
the w parameter and how it depends on redshift

There are four standard methods:

1.  Supernovae Ia
-- use of standard candles to establish distance-redshift relation
-- first established existence of dark energy 15 years ago

(Lecture 4)

2.  Baryonic Acoustic Oscillations
-- gives us a standard rod to establish distance-redshift relation 

with low systematics

(Lecture 8)

3.  Galaxy Clusters
-- provide us with sensitive probe of growth of structure
-- early evidence for low Ωm

(Lecture 8)

4.  Weak Gravitational Lensing
-- provide us with sensitive probe of growth of structure
-- powerful technique still in process of realizing full potential

(Lectures 9)



Figure 10: Acoustic oscillations in the radiation-baryon fluid imprint a pattern of har-
monics in the Fourier spectrum of both CMB and density fluctuations (e.g. Meiksin,
White & Peacock 1999). In the latter case for which the ratio of the power spectrum to
that of a model with zero baryon content is plotted in the lower panel, the effect is much
smaller, because the dominant dark matter has no intrinsic oscillations. Nevertheless,
features corresponding to the same physical effect can be picked out at low and high
redshift, opening the way to a relatively clean geometrical tool in cosmology.
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Acoustic oscillations in the baryon-photon fluid imprint 
“ringing” in the matter power spectrum

after dividing out overall shape

matter power spectrum

CMB TT power 
spectrum

note k = 2π/length (a wavenumber)

Meiksin et al. 1999

These acoustic 
peaks are frozen 
into the power 

spectrum and can 
be used as a 

standard rod to 
measure DA(z) 
and H(z) at all 

redshifts
where the 
clustering

signal can be
precisely 

measured.



The Baryon Acoustic Oscillation Method can be used to look for 
structure in the plane of the sky, but also along the line of sight

Observables of interest for constraining the 
cosmology: DA(z), H(z)

θ DA(z)

c(Δz)/H(z)

telescope

Distances along 
line of sight 

constrain H(z)

Distances in 
plane of the sky 
constrain DA(z)

Alcock-Paczynski 
constraints

both length scales 
must be the same

Recall if z~0:
D = cz/H0



Example of the impact 
BAO fluctuations have on 
the power spectrum for 

z~0.55 galaxies

Anderson+2013

Power spectrum measured 
for absorption lines from 

gas at z~2.3 in z~2.5 quasars

N.G. Busca et al.: BAO in the Lyα forest of BOSS quasars
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Fig. 9. Monopole (upper panel) and quadrupole (middle panel)
correlation functions found by method 1 (red) and method 2
(black). The bottom panel shows the combination ξ0 + 0.1ξ2
found by method 1 (red) and method 2 (black).

The average denoted by 〈 〉 is the simple average over sec-
tors, while ξ#(r) denotes the correlation function measured for
the whole BOSS sample. The Ws(r) are the summed pixel-pair
weights for the radial bin r for the sector s andW(r) is the same
sum for the whole BOSS sample.

The most important terms in the covariance matrix are the
r = r′ terms, i.e. the monopole and quadrupole variances. They
are shown in figure 10 as a function of r. In the figure, they are
multiplied by the number N of pixel pairs in the r-bin. The prod-
uct is nearly independent of r, as expected for a variance nearly
equal to the pixel variance divided by N. For the monopole, the

variances are only about 30% higher than what one would cal-
culate naively assuming uncorrelated pixels and equation (12).
Figure 10 also displays the monopole-quadrupole covariance
times number of pairs, which also is nearly independent of r.

Figure 11 displays the monopole-monopole and quadrupole-
quadrupole covariances. Nearest-neighbor covariances are of or-
der 20%. Figure 11 also shows monopole-quadrupole covari-
ance.

We used the 15 sets of mock spectra to test our method for
calculating the covariance matrix. From the 15 measurements
of ξ#(r) one can calculate the average values of ξ#(r)ξ#′ (r′) and
compare them with those expected from the covariance ma-
trix. Figures 12 shows this comparison for the monopole and
quadrupole variance, the monopole and quadrupole covariances
between neighboring r-bins and the monopole-quadrupole co-
variance. The agreement is satisfactory.

4.2. Detection significance of the BAO peak

In this section, we estimate the significance of our detection of a
BAO peak at 105 h−1Mpc. At the statistical power of the present
data, it is clear that the peak significance will depend to some
extent on how we treat the so-called “broadband” correlation
function on which the peak is superimposed. In particular, the
significance will depend strongly on the r-range over which the
correlation functions are fitted. To the extent that the BAO peak
is known to be present in the matter correlation function and that
the Lyα absorption is known to trace matter, the actual signif-
icance is of limited interest for cosmology. Of greater interest
is the uncertainty in the derived cosmological parameter con-
straints (section 5) which will be non-linear reflections of the
peak significance derived here.

A detection of the BAO peak requires comparing the quality
of a fit with no peak (the null hypothesis) to that of a fit with a
peak. Typically, this exercise would be performed by choosing
a test statistic, such as the χ2, computing the distribution of this
quality indicator from a large number of peak-less simulations
and looking at the consistency of the data with this distribution.
Since our mock data sets are quite computationally expensive
and only a handful are available, we chose a different approach.

Our detection approach uses the following expression to fit
the observed monopole and quadrupole.

ξ#(r) = B#ξBB# (r) +C#ξ
peak
#
(r) + A#ξdist# (r) (19)

where ξBB# is a broadband term to describe the LSS correlation
function in the absence of a peak, ξpeak

#
is a peak term, and ξdist

#
is

a “distortion” term used to model the effects of continuum sub-
traction. The broadband term is derived from the fiducialΛCDM
cosmology defined by the parameters in equation (A.1). It is ob-
tained by fitting the shape of the fiducial correlation function
with an 8-node spline function masking the region of the peak
(80 h−1Mpc < r < 120 h−1Mpc). The peak term is the difference
between the theoretical correlation function and the broadband
term. Finally, the distortion term is calculated from simulations,
as the difference in the monopole or quadrupole measured using
the true continuum and that measured from fitting the continuum
as described in appendix A. The three components are shown in
figure 13.

Expression (19) contains three parameters each for the
monopole and quadrupole (so six in total). We have performed
fits leaving all six parameters free and fits where we fix the ra-
tio C2/C0 to be equal to its nominal value used to generate our

9

Busca+2013



Enigma of Dark Energy

Already up to this point in the course, you have already 
seen many different pieces of evidence for some form of 

dark energy, which we have expressed as ΩΛ > 0

There is an overwhelming amount of evidence for its 
existence

→ SNe Search Experiments
Observed SNe in distant galaxies are observed to be fainter than they would 

otherwise be without dark energy

→ Late Integrated Sachs-Wolfe Effect
Dark Energy Affects the Differential Redshifting of CMB photons as they move in 

and out of gravitational potential.   By cross correlating known galaxy clusters with 
CMB, we can observe this effect.

→ First Acoustic Peak of CMB Implies Universe is Flat, while 
other evidence indicates ΩM ~ 0.3 (Large Scale Flows, Kaiser 
Effect, Ratio of Baryons and Total Matter in Galaxy Clusters, 

Large Scale Structure, Baryon Acoustic Oscillations) 

However, its nature remains an enigma



Enigma of Dark Energy

Einstein's Cosmological Constant
• ! Simplest but perhaps most troubling explanation:
! Einstein blundered into fundamental property of universe
• ! Constant energy density, hence increasing net energy as
! universe expands consistent with data
• ! Quantum mechanics allows/predicts such phenomena 
! in the form vacuum energy: empty space is alive
! with virtual particles 

• ! Naive prediction is 10120 times too big and more sophisticated
! models still 1060 off

→ Possibly more natural to explain dark energy as a scalar field that 
evolves with cosmic time...

Credit Hu



Enigma of Dark Energy

In order to ascertain the form of dark energy, we parameterize 
its effects in terms as the w parameter:

P = wρc2

Typically take c = 1

There are a few important cases:

R. Fassbender: Introduction to Observational Cosmology I – WS09/10 11

Generalized Dark Energy ModelsGeneralized Dark Energy Models

the current z=0 energy density is given by: 

the phenomenological nature of Dark Energy is classified by the
equation-of-state parameter w (L8): 

with redshift scaling (1+z)3(1+w)

(1+z)-1 for w=-4/3

(1+z)+1 for w=-2/3

Constant

redshift scaling     
of DE density

later

earlier

z<1

dynamical 
significance

w<-1Phantom Energy

1-<w<-1/3Quintessence

-1Cosmological Constant !

wType

R. Fassbender: Introduction to Observational Cosmology I – WS09/10 12

The Dark Energy Parameter Plane The Dark Energy Parameter Plane 
for flat geometriesfor flat geometries

Source: Schuecker et al. 2003
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How can we constrain the w parameter?

Generally, we constrain the w parameter in 
the same way we constrain many other 

cosmological parameters.

We constrain it by looking at the following quantities 
versus redshift (cosmic time, see earlier lecture):

Growth Factor (Rate at which structures in Universe Grow)

Volume Element
Distances

E(z) 

Geometrical 
Tests

Useful in computing distances 
along the line of sight

H(z) = H0 E(z)



Galaxy clusters also provide us with 
important constraints on cosmology!

Why?

1.  Density perturbations in universe grow in a regular, well-
defined way.

2.  Galaxy clusters are clear end result of the growth of density 
perturbations in universe

3.  One can model the build-up of galaxy clusters primarily 
through gravitation, and so it is much simpler to model than 

lower mass (i.e., galaxy) systems.

5.  Clusters are relatively straightforward to identify in 
observable surveys

4.  Mass function of clusters depends sensitively on Ωm the 
matter density and σ8 the amplitude of density fluctuations



Value of Galaxy Clusters at z~0

Rozo et al. 2010

The Abundance of Galaxy Clusters with Various Masses Provides 
Strong Constraints on the Total Mass Density in the Universe 

and Normalization of the Power Spectrum

Normalization 
of power 
spectrum

Figure 10: Left: Joint 68.3% and 95.4% confidence regions for the mean matter density and perturbation
amplitude from the abundance of clusters in the maxBCG sample (z < 0.3) compared with those fromWMAP
data (Dunkley et al. 2009) for spatially flat ΛCDM models. The shaded region indicates the combination
of the two data sets. From Rozo et al. (2010). Right: Constraints on the dark energy density and equation
of state from the abundance and growth of clusters in the 400 Square Degree sample (z < 0.9) compared
with those from WMAP, SNIa (Davis et al. 2007) and BAO (Eisenstein et al. 2005; Percival et al. 2007) for
spatially flat, constant w models. Note that, contrary to the convention followed in the other figures, the
shaded regions in the right panel indicate only 39.3% confidence. The tight contraints from WMAP compared
with Figure 11 result from the fact that a simplified analysis was used, in particular neglecting the influence
of dark energy on the Integrated Sachs-Wolfe effect (e.g. Spergel et al. 2007). From Vikhlinin et al. (2009b).

Figure 11: Joint 68.3% and 95.4% confidence regions for the dark energy equation of state and mean matter
density (left) or perturbation amplitude (right) from the abundance and growth of RASS clusters at z < 0.5
(labeled XLF; Mantz et al. 2010b) and fgas measurements at z < 1.1 (Allen et al. 2008), compared with
those from WMAP (Dunkley et al. 2009), SNIa (Kowalski et al. 2008) and BAO (Percival et al. 2010) for
spatially flat, constant w models. Combined results from RASS clusters and WMAP are shown in gray in the
right panel; gold contours in both panels show the combination of all data sets. The BAO-only constraint
differs from that in Figure 10 due to the use of different priors. Adapted from Mantz et al. (2010b, the BAO
constraints in the left panel have been updated to reflect more recent data).
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cluster survey

There’s a 
degeneracy here:

Cluster Mass 
Function 

Constrains:
σ8(ΩM)1/2

So a higher σ8,  lower ΩM and lower σ8,  
higher ΩM both match observations



New Material for This Week



What can we learn from 
galaxy clusters?

1.  Probe σ8 and Ωm through measured mass function 
of galaxy clusters (clusters probed mass function of collapsed structures)

3.  Derive Ωm based on relative mass in gas and dark 
matter in clusters

4.  Probe matter power spectrum and Ωm from the 
observed clustering of galaxy clusters

2.  Probe cosmological parameters by examining how 
the apparent volume density of clusters evolve



We also want to see how the mass 
function for clusters evolves with cosmic 

time...

Of course, we are not simply interested in 
using clusters to learn about mass function 

of z=0 universe



So, we can use searches for clusters at 
higher redshift to constrain the 

cosmological parameters

Different cosmological parameters imply 
different growth rates for clusters...



The rate at which structures grow in the universe depends 
upon the cosmological parameters:CHAPTER 2. THE COSMOLOGICAL STANDARD MODEL 13

formula

D+(a) =
5a
2
⇥m

⇤
⇥4/7

m �⇥� +
�
1 +

1
2
⇥m

⇥ �
1 +

1
70
⇥�

⇥⌅�1

,

(2.20)
where the density parameters have to be evaluated at the scale
factor a;

• a very important length scale for cosmic structure growth is set
by the horizon size at the end of the radiation-dominated phase;
structures smaller than that became causally connected while ra-
diation was still dominating; the fast expansion due to the radia-
tion density inhibited further growth of such structures until the
matter density became dominant; small structures are therefore
suppressed compared to large structures which became causally
connected only after radiation domination; the horizon size at the
end of the radiation-dominated era thus divides between larger
structures which could grow without inhibition, and smaller struc-
tures which were suppressed during radiation domination; it turns
out to be

req =
c

H0

a3/2
eq⌥

2⇥m,0
; (2.21)

2.5.2 The power spectrum

• it is physically plausible that the density contrast in the Universe
is a Gaussian random field, i.e. that the probability for finding a
value between � and � + d� is given by a Gaussian distribution;
the principal reason for this is the central limit theorem, which
holds that the distribution of a quantity which is obtained by su-
perposition of random contributions which are all drawn from the
same probability distribution (with finite variance) turns into a
Gaussian in the limit of infinitely many contribtions;

• a Gaussian random process is characterised by two numbers, the
mean and the variance; by construction, the mean of the density
contrast vanishes, such that the variance defines it completely;

• in linear approximation, density perturbations grow in place, as
eq. (2.19) shows because the density contrast at one position ⇧x
does not depend on the density contrast at another; as long as
structures evolve linearly, their scale will be preserved, which im-
plies that it is advantageous to study structure growth in Fourier
rather than in configuration space;

• the variance of the density contrast �̂(⇧k) in Fourier space is called
the power spectrum

⇧
�̂(⇧k)�̂⇥(⇧k⇧)

⌃
⌅ (2⇥)3P�(k) �D(⇧k � ⇧k⇧) , (2.22)

Depend upon the growth factor (linear regime):

where a is size of universe and Ωm, ΩΛ are all evaluated in the past

structure grow efficiently when Ω = 1 (since density is closer to 1 where slight overdensities cause collapse)

Ωm=0.3, ΩΛ=0.0

Ωm=0.3, ΩΛ=0.7

Ωm=1.0, ΩΛ=0.0

Growth 
factor



Observational Cosmology Lectures 4-6:  Cosmology with Galaxy Clusters

Growth of structures

14

Borgani & Guzzo, Nature, 2001

Example showing the role of galaxy clusters in tracing the cosmic 
evolution, in particular dark matter and dark energy contents.

Ω m
=

0.
3,

 Ω
Λ=

0.
7

Ω m
=

1.
0

Note that the two 
cluster models agree at 

redshift z=0 (the 
present day) by 
construction.

However, there are large 
differences between these 

models in the past.

z=1.4

z=1.4

z=0.6

z=0.6

Different cosmological parameters imply 
different growth rates for clusters...

z=0.0

z=0.0



Different cosmological parameters imply 
different growth rates for clusters...

Source Counts: The Effect of Cosmology
log N  (per unit area

and unit flux or mag)

! log f         or       magnitude "

Model with a lower density and/or
! > 0 has more volume and thus
more sources to count

Model with a higher density and/or
! " 0 has a smaller volume and thus
fewer sources to count

For nearby, bright sources, these effects are
small, and the counts are close to Euclidean

(with no evolution!)
Source Counts: The Effect of Evolution

log N  (per unit area

and unit flux or mag)

! log f         or       magnitude "

Luminosity evolution
moves fainter sources(more

distant and more numerous) to brighter
fluxes, thus producing excess counts, since
generally galaxies were brighter in the past

No evolution

In order to distinguish between
the two evolution mechanisms,
redshifts are necessary

(at a fixed cosmology!)

Evolution

Density evolution means that there was some galaxy
merging, so there were more fainter pieces in the past,
thus also producing excess counts at the faint end

Galaxy Counts in

Practice

The deepest galaxy

counts to date come from

HST deep and ultra-deep

observations, reaching

down to ~ 29th mag

All show excess over the

no-evolution models,

and more in the bluer

bands

The extrapolated total

count is ~ 1011 galaxies

over the entire sky

Abundance of Rich Galaxy Clusters
• Given the number density of

nearby clusters, we can calculate
how many distant clusters we
expect to see

• In a high density universe,
clusters are just forming now,
and we don’t expect to find any
distant ones

• In a low density universe, clusters
began forming long ago, and we
expect to find many distant ones

• Evolution of cluster abundances:

– Structures grow more slowly in a low density universe, so we
expect to see less evolution when we probe to large distances

– Expected number in survey grows because volume probed within
a particular spot on the sky increases rapidly with distance

The Angular Diameter Test
Angular

size

redshift

Model with a lower
density and/or ! > 0

Model with a higher
density and/or ! " 0

Requires a population on non-evolving sources

with a fixed proper size  - “standard rulers”.

Some suggested candidates:

•  Isophotal diameters of brightest cluster gal.

•  Mean separation of galaxies in clusters

•  Radio source lobe separations

•  …

The Angular Diameter Test:

Some Early Examples

Brightest cluster ellipticals #

Clusters of galaxies

$

Again,

evolution

overwhelms

the

cosmological

effects …

Simple Illustration of 
how many clusters 

one would expect to 
find in various 

cosmological models 
as a function of 

redshift 

Note that there are 
essentially no clusters 
at high redshift in the 
Ωm=1.0, ΩΛ=0.0 model



What can we learn from 
galaxy clusters?

1.  Probe σ8 and Ωm through measured mass function 
of galaxy clusters (clusters probed mass function of collapsed structures)

3.  Derive Ωm based on relative mass in gas and dark 
matter in clusters

4.  Probe matter power spectrum and Ωm from the 
observed clustering of galaxy clusters

2.  Probe cosmological parameters by examining how 
the apparent volume density of clusters evolve



Use fractional composition of cluster in 
baryons and dark matter to infer 

composition of universe

(total baryonic mass in gas + stars)

(total mass of cluster)
=

Ωb

Ωm
= fgas

Total baryonic mass in gas + stars:
-- use x-ray light profile and spectrum to infer 

mass in gas
-- use optical light to infer mass in stars

Total mass in cluster:
-- use x-ray light profile, gravitational lensing properties 



Use fractional composition of cluster in 
baryons and dark matter to infer 

composition of universe

(total baryonic mass in gas + stars)

(total mass of cluster)
=

Ωb

Ωm
= fgas

Total baryonic mass in gas + stars:
-- use x-ray light profile and spectrum to infer 

mass in gas

Total mass in cluster:
-- use x-ray light profile, gravitational lensing properties 

As we showed in the dark matter lecture, we can 
use this to demonstrate that Ωm ~ 0.3

-- use optical light to infer mass in stars



What can we learn from 
galaxy clusters?

1.  Probe σ8 and Ωm through measured mass function 
of galaxy clusters (clusters probed mass function of collapsed structures)

3.  Derive Ωm based on relative mass in gas and dark 
matter in clusters

4.  Probe matter power spectrum and Ωm from the 
observed clustering of galaxy clusters

2.  Probe cosmological parameters by examining how 
the apparent volume density of clusters evolve



R. Fassbender: Introduction to Observational Cosmology I – WS09/10 27

2) Galaxy Cluster Results I2) Galaxy Cluster Results I

(i)   Cluster Baryon Mass Fraction:
measure baryon fraction in clusters fb=Mb/Mtot~0.12-0.14 and use robust 
baryon density from nucleosynthesis !b ~0.045 to obtain
!!!!m= !!!!b / fb ~ 0.3

(ii)   Local Cluster Luminosity Function:
as proxy of the mass function (L10-L11)

• local low-z studies of galaxy clusters can provide strong constraints on
the matter density !m and "8 (more details in L10+L11) 

• cluster results have pointed towards a low matter density !!!!m~0.3
Universe for a long time

• on combination with the (almost) flat geometry from CMB measurements
Dark Energy is needed to close the energy gap

Source: H.Böhringer

R. Fassbender: Introduction to Observational Cosmology I – WS09/10 28

CCM [0.3,0.7,-1]

EdS [1.0,0,0]

non-linear 
parts 

2) Galaxy Cluster Results II2) Galaxy Cluster Results II

Model PS:

Observations:

(iii)  Power Spectrum of Clusters (and other LSS tracers) : (L4+L6)

the peak of the PS imprints the 

particle horizon scale at
matter-radiation equality

the higher !m ! the earlier tequ

!the smaller the horizon scale
!the larger keq

!PS peak shifts to right

REFLEX 
Cluster Survey

+ 
other LSS tracers

Source: Schuecker et al., 2001

REFLEX survey + 
other measures of 
the matter power 

spectrum

Schuecker et al. 2001

We can also galaxy clusters to probe 
clustering on large scales in the same 

way we use galaxies to do this



So the game is to determine 
the w parameter and how it depends on redshift

There are four standard methods:

1.  Supernovae Ia
-- use of standard candles to establish distance-redshift relation

-- first established existence of dark energy >20 years ago

(lecture 4)

2.  Baryonic Acoustic Oscillations
-- gives us a standard rod to establish distance-redshift relation 

with low systematics

(last lecture)

3.  Galaxy Clusters
-- provide us with sensitive probe of growth of structure
-- early evidence for low Ωm

(Last lecture)

4.  Weak Gravitational Lensing
-- provide us with sensitive probe of growth of structure
-- powerful technique still in process of realizing full potential

(this lecture)



Let’s start talking about what we 
can learn from cosmic shear



Gravitational lensing from collapsed masses has a 
systematic imprint on the shapes of galaxies, seen 

over large areas of sky, i.e.,  cosmic shear...

Cosmic Shear



Gravitational Lensing has come up twice 
before:

1) measuring the total mass in galaxy clusters through gravitational lensing

2) determining the Hubble constant by measuring the time delay between 
two sets of images 

yet another case where we use gravitational lensing to 
learn about the cosmological properties

Gravitational lensing from collapsed masses has a 
systematic imprint on the shapes of galaxies, seen 

over large areas of sky, i.e.,  cosmic shear...



What effect does gravitational lensing have on 
galaxies we observe?

Weak gravitational lensing!

Courtesy S. Colombi!

Without lensing Including lensing



present 

z=zs 

z=zl 

z=0 

past 

!""

!""

"

2sin

2cos

2

1

=

=

+

#
=

ba

ba

observables 

•! Arises from total matter clustering 

–! Not affected by galaxy bias uncertainty 

–! well modeled based on simulations 

(current accuracy, <10% White & Vale 

04) 

•! A % level effect; needs numerous 

(~108) galaxies for the precise 

measurements 

Credit: Takada



What effect does gravitational lensing have on 
galaxies we observe?

Weak lensing basics !

•! Convergence tells us about the magnification of images. A 
circular image stays circular!

•! A circular image that is sheared appears as an ellipse.!

•!  The shearing of images is a spin-2 field: under a rotation by 
" the field is left unchanged. Rotating the coordinate system 
counterclockwise by � changes !1+i!2 into (!1+i!2) e

-2i" !

C. Porciani! Observational Cosmology! III-8!

2.  Shear
-- expressed as γ (called the shear)

Weak lensing basics !

•! Convergence tells us about the magnification of images. A 
circular image stays circular!

•! A circular image that is sheared appears as an ellipse.!

•!  The shearing of images is a spin-2 field: under a rotation by 
" the field is left unchanged. Rotating the coordinate system 
counterclockwise by � changes !1+i!2 into (!1+i!2) e

-2i" !

C. Porciani! Observational Cosmology! III-8!

1.  Magnification
-- expressed as κ (called convergence)
-- does not affect shape



Quick illustration: let’s say you have this mass 
distribution



Quick illustration: then a grid of circles would be 
distorted as such



Here is just magnification alone:



Here is just shear alone:



Weak Lensing Basics:

If sources are small, one can remap the surface brightness from a source 
fS (without lensing) to fobs (with lensing) as follows:

(weak lensing is when the distortion of sources and background sources are not 
multiply lensed)Weak lensing basics !

•! If the source is small the effect is a re-mapping of the source’s surface 
brightness distribution!

•! To leading order, the distortion matrix A is conventionally decomposed as!

•! The convergence �<< 1 describes isotropic distortions of images 
(contractions or dilations)!

•! The shear �=(�1,�2)<< 1 and the reduced shear (g1,g2) describe anisotropic 
distortions!
C. Porciani! Observational Cosmology! III-7!
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Weak lensing basics !

•! If the source is small the effect is a re-mapping of the source’s surface 
brightness distribution !

•! To leading order, the distortion matrix A is conventionally decomposed as!

•! The convergence �<< 1 describes isotropic distortions of images 
(contractions or dilations)!

•! The shear �=(�1,�2)<< 1 and the reduced shear (g1,g2) describe anisotropic 
distortions!
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To first order,  Aij is typically expressed as follows:

The convergence κ describe the magnifications or contractions of sources 
(κ << 1)

The shear γ (and reduced shear g) describe the distortion of the shapes of 
the sources (γ << 1)

where θi is position within a source or lensed image



•! The shearing of images is a spin-2 field 

•! Shear has two degrees of freedom (amplitude and its position angle) 

•! Rotating the coordinate system by % changes: the shear depends on the 

coordinate system 

•! Under a rotation by & the field is left unchanged 

•! A rotation by &/4 changes $1 to $2 and $2 to -$1  

#1>0, #2=0 #1<0, #2=0 #2>0, #1=0 #2<0, #1=0 
1 

2 

Lensing basics�

! 

"1 + i"2 # "1 + i"2( )e$2i%

Shear is Classified as a Spin-2 Field

Credit: Takada

•! The shearing of images is a spin-2 field 

•! Shear has two degrees of freedom (amplitude and its position angle) 

•! Rotating the coordinate system by % changes: the shear depends on the 

coordinate system 

•! Under a rotation by & the field is left unchanged 

•! A rotation by &/4 changes $1 to $2 and $2 to -$1  

#1>0, #2=0 #1<0, #2=0 #2>0, #1=0 #2<0, #1=0 
1 

2 

Lensing basics�

! 

"1 + i"2 # "1 + i"2( )e$2i%

Essential property of Spin-2 field is that it remains unchanged after rotation by 180 
degrees



Measuring Shear

Since we do not know where sources are on the sky, we cannot directly 
measure the deflection of sources on the sky

w(θ) is a window function that weights light from the source and gives 
less weight to the noisy exterior of the image

However it is possible to measure the shape of galaxies.

Measuring shear!

•! Since we do not know a priori the positions of galaxies, the 
deflection (as for the eclipse of 1919) is not measurable. However 
the shearing of shapes is.!

•! The simplest information about galaxy shapes is the (weighted) 
second moment of the galaxy surface brightness!

•! The window function w is centred on the galaxy and suppresses the 
noise from other parts of the sky!

•! An observed ellipticity is then measured as!

C. Porciani! Observational Cosmology! III-12 !
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Simplest approach is to measure the weighted second moment of 
the surface brightness distribution I(θ):

Measuring shear!

•! Since we do not know a priori the positions of galaxies, the 
deflection (as for the eclipse of 1919) is not measurable. However 
the shearing of shapes is.!

•! The simplest information about galaxy shapes is the (weighted) 
second moment of the galaxy surface brightness!

•! The window function w is centred on the galaxy and suppresses the 
noise from other parts of the sky!

•! An observed ellipticity is then measured as!
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one can then derive the ellipticity from these second moments:



Measuring Shear

But galaxies are not perfect circles and have intrinsic orientations and 
ellipticities (typical ellipticities ~10-30%)

When we observe a galaxy, the shear we observe is the intrinsic 
value + the shear induced by gravitational lensing

One complication in deriving the shear is that light from the 
galaxy is blurred by the earth’s atmosphere or due to the intrinsic 

diffraction limit of a telescope



•! Various groups have developed their own methods of lensing 

shape measurement 

–! Kaiser, Squires & Broadhurst 95 

–! Kuijken 99 

–! Bernstein & Jarvis 02; Nakajima & Bernstein 04  

–! ….. 

•! There are efforts being made to test the methods using 

simulated images in order to assess the accuracy performance 

•! This is very important to refine/improve the methods, in 

preparation for future massive lensing surveys 

•! For the details, see 

–! STEP (Shear TEsting Programme): Heymans et al. 06; Massey et al. 07 

–! GREAT08: Bridle et al. 09 

–! Next is GREAT10?  �

We are also working on 

this method�

Procedure for Optimally Measuring Shear from 
Images of Galaxies is a Huge Industry!

Credit: Takada



Here is just shear alone:



The idea is to make a shear map from this distortion:



Large Numbers of Sources Needed

Since galaxies have approximately random orientations on the sky, we 
need measurements of a large number of sources per unit area to 

average over these effects and establish the overall effect of 
gravitational lensing.

We can reduce the error caused by the intrinsic ellipticity of the 
sources as the square root of the number of sources we examine.

Assuming that typical intrinsic ellipticity is 10% and the ellipticity 
caused by gravitational lensing is 1%, we need 100 sources to measure 

the shear with a S/N of 1.   Therefore we need large numbers of 
sources to measure the cosmic shear accurately!



Large Numbers of Sources Needed

Since galaxies have approximately random orientations on the sky, we 
need measurements of a large number of sources per unit area to 

average over these effects and establish the overall effect of 
gravitational lensing.

Shot noise!

C. Porciani! Observational Cosmology! III-16!

A high surface density of sources for which we can measure !
ellipticities is desired!!

A simulated convergence map and its reconstruction from mock 
data (courtesy of M. White)!



Mean shear in cells

" Average |γ| in circles of radius θ
" Move circles over image, find variance

θ

~1% shear
correlation in
WHT fields

Shear power spectrum Skewness

" Quantifies non
Gaussianity of 
mass dist.

" blue > variance
" green > skewness

Averaging over the ellipticity in many sources, we can 
derive a mean shear at different positions on sky

 (but signal is very weak)



PSF Anisotropies

In order to measure the shear on an image, we need to understand 
how the PSF (point spread function) varies as a function of position 

on a detector or from the optics.
An example!

C. Porciani! Observational Cosmology! III-19 !

x (pixels)

y (pixels)

To the left is one example of 
the apparent shear that is 

present in the shapes of stars 
(which are effectively point sources)



PSF Anisotropies

In order to measure the shear on an image, we need to understand 
how the PSF (point spread function) varies as a function of position 

on a detector or from the optics.
An example!

C. Porciani! Observational Cosmology! III-19 !

x (pixels)

y (pixels)

The PSF anisotropies are usually 
measured by observing a large 

number of stars with a detector 
and quantifying the apparent shear

One uses this shear map to apply a 
correction to the shear measured 

for galaxies on real images



PSF Anisotropies

In order to measure the shear on an image, we need to understand 
how the PSF (point spread function) varies as a function of position 

on a detector or from the optics.
An example!

C. Porciani! Observational Cosmology! III-19 !

x (pixels)

y (pixels)

(after correction)(before correction)



After measuring shear for a bunch of galaxies, how 
do we be sure that we have removed most of the 

systematics?

And how do we go about computing power 
spectrum for large numbers of sources?



•! Correlated images of 

distant galaxies over all 

angular scales 

•! Use images of all 

distant galaxies 

•! Correlation function 

method to measure the 

cosmic shear signals 

•! The lowest one is 2pt 

function  �

!�

Determine correlation of shear measurement on 
different angular scales θ

Credit: Takada



Determine correlation of shear measurement on 
different angular scales θ
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•! Can obtain useful formula to relate the shear to the 

projected mass (in the weak lensing limit)�

Hold for any mass distribution 
! 

"+ (#) = $ (#) %$ (< #)

! 

" (< #) $
1

%#2
d#'

0

#
& d'"(#',')&The averaged # 

inside the circle�

! 

"# ($) = 0 # a monitor of systematics 

•! The polar coordinate picks up a specific pattern of the 

shear wrt the coordinate origin (e.g. cluster center) 

•! The tangential shear defined by azimuthally averaging 

shear along the circle (or the annulus) of a given 

radius 

similar to measures of the clustering or correlation 
function, determine the extent to which the shear 

of sources at a given separation θ is tangential
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•! Can obtain useful formula to relate the shear to the 

projected mass (in the weak lensing limit)�

Hold for any mass distribution 
! 

"+ (#) = $ (#) %$ (< #)

! 

" (< #) $
1

%#2
d#'

0

#
& d'"(#',')&The averaged # 

inside the circle�

! 

"# ($) = 0 # a monitor of systematics 

•! The polar coordinate picks up a specific pattern of the 

shear wrt the coordinate origin (e.g. cluster center) 

•! The tangential shear defined by azimuthally averaging 

shear along the circle (or the annulus) of a given 

radius 

the diagram to right shows just one origin over 
which we can perform this averaging.

Can also measure in a similar way γx
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•! Can obtain useful formula to relate the shear to the 

projected mass (in the weak lensing limit)�

Hold for any mass distribution 
! 

"+ (#) = $ (#) %$ (< #)

! 

" (< #) $
1

%#2
d#'

0

#
& d'"(#',')&The averaged # 

inside the circle�

! 

"# ($) = 0 # a monitor of systematics 

•! The polar coordinate picks up a specific pattern of the 

shear wrt the coordinate origin (e.g. cluster center) 

•! The tangential shear defined by azimuthally averaging 

shear along the circle (or the annulus) of a given 

radius 

E-mode

B-mode
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• While it is generally di⇥cult or impossible to observe the di�er-
ential magnification ⇤µ or the convergence ⇧, image distortions
can in principle be measured. With a brief excursion through
Fourier space, it can easily be shown that the power spectrum
of the shear is exactly identical to that of the convergence,

P⇥(l) = P⇧(l) . (10.21)

Thus, the statistics of the image distortions caused by cosmologi-
cal weak lensing contains integral information on the power spec-
trum of the matter fluctuations.

The power spectrum of the weak-
lensing convergence ⇧ for three dif-
ferent source redshifts.

• Since the shear is defined on the two-dimensional sphere (the ob-
server’s sky), its power spectrum is related to its correlation func-
tion �⇥ through the two-dimensional Fourier transform

�⇥(⌦) =
⇤

d2l
(2 )2 P⇥(l)ei�⌦�l =

⇤ ⌅

0

ldl
2 

P⇥(l)J0(l⌦) , (10.22)

where J⌥ is the ordinary Bessel function of order ⌥.

10.1.3 Correlation functions

• In principle, shear correlation functions are measured by com-
paring the ellipticity of one galaxy with the ellipticity of other
galaxies at an angular distance ⌦ from the first.

• Ellipticities are oriented, of course, and one has to specify against
what other direction the direction of, say, the major axis of a given
ellipse is to be compared to. Since correlation functions are mea-
sured by counting pairs, a preferred direction is defined by the
line connecting the two galaxies of the pair under consideration.

• Let � be the angle between this direction and the major axis of
the ellipse, then the tangential and cross components of the shear
are defined by

⇥+ ⇤ ⇥ cos 2� , ⇥� ⇤ ⇥ sin 2� . (10.23)

The factor two is important because it accounts for the fact that
an ellipse is mapped onto itself when rotated by an angle  . This
illustrates that the shear is a spin-2 field: It returns into its original
orientation when rotated by  rather than 2 .

• The correlation functions of the tangential and cross components
of the shear are

�++(⌦) = ⇧⇥+(⌅)⇥+(⌅ + ⌦)⌃ = 1
2

⇤ ⌅

0

ldl
2 

P⇧(l)
�
J0(l⌦) + J4(l⌦)

⇥

(10.24)
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•! Can obtain useful formula to relate the shear to the 

projected mass (in the weak lensing limit)�

Hold for any mass distribution 
! 

"+ (#) = $ (#) %$ (< #)
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#
& d'"(#',')&The averaged # 

inside the circle�

! 

"# ($) = 0 # a monitor of systematics 

•! The polar coordinate picks up a specific pattern of the 

shear wrt the coordinate origin (e.g. cluster center) 

•! The tangential shear defined by azimuthally averaging 

shear along the circle (or the annulus) of a given 

radius 
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•! Can obtain useful formula to relate the shear to the 

projected mass (in the weak lensing limit)�

Hold for any mass distribution 
! 

"+ (#) = $ (#) %$ (< #)

! 

" (< #) $
1

%#2
d#'

0

#
& d'"(#',')&The averaged # 

inside the circle�

! 

"# ($) = 0 # a monitor of systematics 

•! The polar coordinate picks up a specific pattern of the 

shear wrt the coordinate origin (e.g. cluster center) 

•! The tangential shear defined by azimuthally averaging 

shear along the circle (or the annulus) of a given 

radius 

Also frequent to use ξ to represent this:



Recall E-mode and B-mode type fields from 
discussion of CMB polarization

One tends to break down the polarization
map into two modes 

(Helmholtz-Hodge theorem)

E-modes

B-modes

E-modes are curl free and 
can be written as the 
gradient of a potential 

B-modes have no 
divergence. 

The terms E and B modes simply reflect the general 
form of the polarization fields and are in analogy with 
similar fields in electromagnetism.  However, they have 

no direct relation with electric or magnetic fields

• We can break down the polarization 
field into two components which 
we call E and B modes. This is the 
spin-2 analog of the gradient/curl 
decomposition of a vector field.

• E modes are generated by density 
(scalar) perturbations via Thomson 
scattering.

• B modes are generated by gravity 
waves (tensor perturbations) at last 
scattering or by gravitational 
lensing (which transforms E modes 
into B modes along the line of sight 
to us) later on. 

Observational Cosmology Lecture 3 (K. Basu):  CMB spectrum and anisotropies

E and B modes

27

E-mode

B-mode

Two flavors of CMB polarization:

Density perturbations: curl-free, “E-mode”
Gravity waves: curl, “B-mode”

∇⋅B = 0

∇ × E = 0

CMB lecture



E/B modes of spin-2 field �

Lensing basics�

E mode B mode 
 distinct different pattern�

Credit: Takada

Examples of E-mode type and B-mode type fields



How do we check to see if we have removed the 
anisotropies properly?

E-mode (curl-free)

B-mode (curl)

Similar to the situation with polarization in the cosmic 
microwave background, we divide the field into an E-

mode and B-mode 

We expect only E-mode shear signal and no B-mode 
shear signal



The current state of the art!

C. Porciani! Observational Cosmology! III-23!

An example of such a check
E-mode 

shear gives a 
signal

B-mode 
shear gives 
no signal as 
expected



And how do we go about computing power 
spectrum for large numbers of sources?



Convert from to angular power spectrum using 
Fourier transform again:
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• While it is generally di⇥cult or impossible to observe the di�er-
ential magnification ⇤µ or the convergence ⇧, image distortions
can in principle be measured. With a brief excursion through
Fourier space, it can easily be shown that the power spectrum
of the shear is exactly identical to that of the convergence,

P⇥(l) = P⇧(l) . (10.21)

Thus, the statistics of the image distortions caused by cosmologi-
cal weak lensing contains integral information on the power spec-
trum of the matter fluctuations.

The power spectrum of the weak-
lensing convergence ⇧ for three dif-
ferent source redshifts.

• Since the shear is defined on the two-dimensional sphere (the ob-
server’s sky), its power spectrum is related to its correlation func-
tion �⇥ through the two-dimensional Fourier transform

�⇥(⌦) =
⇤

d2l
(2 )2 P⇥(l)ei�⌦�l =

⇤ ⌅

0

ldl
2 

P⇥(l)J0(l⌦) , (10.22)

where J⌥ is the ordinary Bessel function of order ⌥.

10.1.3 Correlation functions

• In principle, shear correlation functions are measured by com-
paring the ellipticity of one galaxy with the ellipticity of other
galaxies at an angular distance ⌦ from the first.

• Ellipticities are oriented, of course, and one has to specify against
what other direction the direction of, say, the major axis of a given
ellipse is to be compared to. Since correlation functions are mea-
sured by counting pairs, a preferred direction is defined by the
line connecting the two galaxies of the pair under consideration.

• Let � be the angle between this direction and the major axis of
the ellipse, then the tangential and cross components of the shear
are defined by

⇥+ ⇤ ⇥ cos 2� , ⇥� ⇤ ⇥ sin 2� . (10.23)

The factor two is important because it accounts for the fact that
an ellipse is mapped onto itself when rotated by an angle  . This
illustrates that the shear is a spin-2 field: It returns into its original
orientation when rotated by  rather than 2 .

• The correlation functions of the tangential and cross components
of the shear are

�++(⌦) = ⇧⇥+(⌅)⇥+(⌅ + ⌦)⌃ = 1
2

⇤ ⌅

0

ldl
2 

P⇧(l)
�
J0(l⌦) + J4(l⌦)

⇥

(10.24)
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• While it is generally di⇥cult or impossible to observe the di�er-
ential magnification ⇤µ or the convergence ⇧, image distortions
can in principle be measured. With a brief excursion through
Fourier space, it can easily be shown that the power spectrum
of the shear is exactly identical to that of the convergence,

P⇥(l) = P⇧(l) . (10.21)

Thus, the statistics of the image distortions caused by cosmologi-
cal weak lensing contains integral information on the power spec-
trum of the matter fluctuations.

The power spectrum of the weak-
lensing convergence ⇧ for three dif-
ferent source redshifts.

• Since the shear is defined on the two-dimensional sphere (the ob-
server’s sky), its power spectrum is related to its correlation func-
tion �⇥ through the two-dimensional Fourier transform

�⇥(⌦) =
⇤

d2l
(2 )2 P⇥(l)ei�⌦�l =

⇤ ⌅

0

ldl
2 

P⇥(l)J0(l⌦) , (10.22)

where J⌥ is the ordinary Bessel function of order ⌥.

10.1.3 Correlation functions

• In principle, shear correlation functions are measured by com-
paring the ellipticity of one galaxy with the ellipticity of other
galaxies at an angular distance ⌦ from the first.

• Ellipticities are oriented, of course, and one has to specify against
what other direction the direction of, say, the major axis of a given
ellipse is to be compared to. Since correlation functions are mea-
sured by counting pairs, a preferred direction is defined by the
line connecting the two galaxies of the pair under consideration.

• Let � be the angle between this direction and the major axis of
the ellipse, then the tangential and cross components of the shear
are defined by

⇥+ ⇤ ⇥ cos 2� , ⇥� ⇤ ⇥ sin 2� . (10.23)

The factor two is important because it accounts for the fact that
an ellipse is mapped onto itself when rotated by an angle  . This
illustrates that the shear is a spin-2 field: It returns into its original
orientation when rotated by  rather than 2 .

• The correlation functions of the tangential and cross components
of the shear are

�++(⌦) = ⇧⇥+(⌅)⇥+(⌅ + ⌦)⌃ = 1
2

⇤ ⌅

0

ldl
2 

P⇧(l)
�
J0(l⌦) + J4(l⌦)

⇥

(10.24)

Correlation Function
Type Parameters
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• While it is generally di⇥cult or impossible to observe the di�er-
ential magnification ⇤µ or the convergence ⇧, image distortions
can in principle be measured. With a brief excursion through
Fourier space, it can easily be shown that the power spectrum
of the shear is exactly identical to that of the convergence,

P⇥(l) = P⇧(l) . (10.21)

Thus, the statistics of the image distortions caused by cosmologi-
cal weak lensing contains integral information on the power spec-
trum of the matter fluctuations.

The power spectrum of the weak-
lensing convergence ⇧ for three dif-
ferent source redshifts.

• Since the shear is defined on the two-dimensional sphere (the ob-
server’s sky), its power spectrum is related to its correlation func-
tion �⇥ through the two-dimensional Fourier transform

�⇥(⌦) =
⇤

d2l
(2 )2 P⇥(l)ei�⌦�l =

⇤ ⌅

0

ldl
2 

P⇥(l)J0(l⌦) , (10.22)

where J⌥ is the ordinary Bessel function of order ⌥.

10.1.3 Correlation functions

• In principle, shear correlation functions are measured by com-
paring the ellipticity of one galaxy with the ellipticity of other
galaxies at an angular distance ⌦ from the first.

• Ellipticities are oriented, of course, and one has to specify against
what other direction the direction of, say, the major axis of a given
ellipse is to be compared to. Since correlation functions are mea-
sured by counting pairs, a preferred direction is defined by the
line connecting the two galaxies of the pair under consideration.

• Let � be the angle between this direction and the major axis of
the ellipse, then the tangential and cross components of the shear
are defined by

⇥+ ⇤ ⇥ cos 2� , ⇥� ⇤ ⇥ sin 2� . (10.23)

The factor two is important because it accounts for the fact that
an ellipse is mapped onto itself when rotated by an angle  . This
illustrates that the shear is a spin-2 field: It returns into its original
orientation when rotated by  rather than 2 .

• The correlation functions of the tangential and cross components
of the shear are

�++(⌦) = ⇧⇥+(⌅)⇥+(⌅ + ⌦)⌃ = 1
2

⇤ ⌅

0

ldl
2 

P⇧(l)
�
J0(l⌦) + J4(l⌦)

⇥

(10.24)
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•! Can obtain useful formula to relate the shear to the 

projected mass (in the weak lensing limit)�

Hold for any mass distribution 
! 
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inside the circle�

! 

"# ($) = 0 # a monitor of systematics 

•! The polar coordinate picks up a specific pattern of the 

shear wrt the coordinate origin (e.g. cluster center) 

•! The tangential shear defined by azimuthally averaging 

shear along the circle (or the annulus) of a given 

radius 

Power Spectrum
Type Parameters

Fourier Transform

WL power spectra !

C. Porciani! Observational Cosmology! III-15!

These power spectra encode information regarding the total mass !
distribution (DM+baryons) and cosmology (H(z) and the growth factor !
of perturbations)!!



What can we compare these angular power 
spectrum measurements against?

! 
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 for a source galaxy at zs 

•! Lensing efficiency function: Wgl 

–! Overall amplitude is propotional to !m, i.e. !de if combined 

with CMB or a flat universe is a prior assumed 

–! Sensitive to Hubble expansion through dA, i.e. DE 

–! Depends on source redshift – main uncertainty in cosmic shear 

measurements if redshift info is not available 

•! Mass clustering part: " 

–! Sensitive to primordial power spectrum (amplitude and shape) 

–! Redshift history of the growth rate is sensitive to DE, and 

neutrino mass if combined with CMB information 

(what are the essential elements?)

Here’s the equation:
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 for a source galaxy at zs 

•! Lensing efficiency function: Wgl 

–! Overall amplitude is propotional to !m, i.e. !de if combined 

with CMB or a flat universe is a prior assumed 

–! Sensitive to Hubble expansion through dA, i.e. DE 

–! Depends on source redshift – main uncertainty in cosmic shear 

measurements if redshift info is not available 

•! Mass clustering part: " 

–! Sensitive to primordial power spectrum (amplitude and shape) 

–! Redshift history of the growth rate is sensitive to DE, and 

neutrino mass if combined with CMB information 

lensing efficiency
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 for a source galaxy at zs 

•! Lensing efficiency function: Wgl 

–! Overall amplitude is propotional to !m, i.e. !de if combined 

with CMB or a flat universe is a prior assumed 

–! Sensitive to Hubble expansion through dA, i.e. DE 

–! Depends on source redshift – main uncertainty in cosmic shear 

measurements if redshift info is not available 

•! Mass clustering part: " 

–! Sensitive to primordial power spectrum (amplitude and shape) 

–! Redshift history of the growth rate is sensitive to DE, and 

neutrino mass if combined with CMB information 

growth of mass 
perturbations



How do we weight different sources in computing 
power spectrum from weak lensing? 

Masses “half way” in between the background source and us (the 
observers) have the biggest effect on the gravitational shear of the 

observed background sources.

The lensing weight g!

•! Lensing is more efficient for structure mid-way between the 
observer and the source!

C. Porciani! Observational Cosmology! III-10 !

Because of this dependence, very important to be able to quantify 
the redshift distribution of the background sources



Recall how perturbations (and collapsed 
structures) grow at different rates depending on 

the cosmology



R. Fassbender: Introduction to Observational Cosmology I – WS09/10 19

ComovingComoving VolumesVolumes

Vcom(<z): total enclosed 
volume within redshift z 
per deg2

dV/dz: volume per redshift 
shell dz=0.1 per deg2

dzd
zE

d
zD
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• for measuring the evolution of the number density of an object class, 
the comoving volume element dVcom is needed

• the larger the distance, the larger the comoving volume element per redshift slice  

spherical surface area x thickness

comoving volumes
for CCM model

R. Fassbender: Introduction to Observational Cosmology I – WS09/10 20

Linear Structure Growth FunctionLinear Structure Growth Function

• flat cosmologies with a dark energy component exhibit structure growth in between 
the Einstein-de Sitter (EdS) case of D+=(1+z)-1 and the slow structure growth of a 
low density open Universe (OCDM)

EdS
[1.0,0,0]

OCDM
[0.3,0,0]

QUINT
[0.3,0.7,-0.5]

HIGH
[0.4,0.6,-1]

CCM
[0.3,0.7,-1]

PHANTOM
[0.3,0.7,-1.3]

LOW
[0.2,0.8,-1]

[!!!!m,!!!!DE,w]

• the linear structure growth function D+(z) is a solution to the density perturbation 
growth equation for the linear regime (L3)

0.1
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0.0 1.0 2.0 3.0 4.0 5.0

z

D
+

(z
)

CCM LOW HIGH QUINT PHANTOM OCDM EdS

more structures at high-z

structure grow efficiently when Ω = 1 (since density is closer to 1 
where slight overdensities cause collapse)

The rate at which structures grow in the universe depends 
upon the cosmological parameters:CHAPTER 2. THE COSMOLOGICAL STANDARD MODEL 13

formula

D+(a) =
5a
2
⇥m

⇤
⇥4/7

m �⇥� +
�
1 +

1
2
⇥m

⇥ �
1 +

1
70
⇥�

⇥⌅�1

,

(2.20)
where the density parameters have to be evaluated at the scale
factor a;

• a very important length scale for cosmic structure growth is set
by the horizon size at the end of the radiation-dominated phase;
structures smaller than that became causally connected while ra-
diation was still dominating; the fast expansion due to the radia-
tion density inhibited further growth of such structures until the
matter density became dominant; small structures are therefore
suppressed compared to large structures which became causally
connected only after radiation domination; the horizon size at the
end of the radiation-dominated era thus divides between larger
structures which could grow without inhibition, and smaller struc-
tures which were suppressed during radiation domination; it turns
out to be

req =
c

H0

a3/2
eq⌥

2⇥m,0
; (2.21)

2.5.2 The power spectrum

• it is physically plausible that the density contrast in the Universe
is a Gaussian random field, i.e. that the probability for finding a
value between � and � + d� is given by a Gaussian distribution;
the principal reason for this is the central limit theorem, which
holds that the distribution of a quantity which is obtained by su-
perposition of random contributions which are all drawn from the
same probability distribution (with finite variance) turns into a
Gaussian in the limit of infinitely many contribtions;

• a Gaussian random process is characterised by two numbers, the
mean and the variance; by construction, the mean of the density
contrast vanishes, such that the variance defines it completely;

• in linear approximation, density perturbations grow in place, as
eq. (2.19) shows because the density contrast at one position ⇧x
does not depend on the density contrast at another; as long as
structures evolve linearly, their scale will be preserved, which im-
plies that it is advantageous to study structure growth in Fourier
rather than in configuration space;

• the variance of the density contrast �̂(⇧k) in Fourier space is called
the power spectrum

⇧
�̂(⇧k)�̂⇥(⇧k⇧)

⌃
⌅ (2⇥)3P�(k) �D(⇧k � ⇧k⇧) , (2.22)

Depend upon the growth factor (linear regime):

where a is size of universe and Ωm, ΩΛ are all evaluated in the past

Growth 
Factor



Refregier et al.

What does a typical angular power spectrum 
look like?



Springel etal05 

~100Mpc/h &~5deg 

Cosmic shear: '~O(0.01) 

~10Mpc/h@z~0.5&~0.5deg 

Cluster: '~0.1-0.01 

HSC 

SC 

Other 8m Tels 

To measure a weak lensing signal, we need a very 
wide-area survey -- to probe the density 

fluctuations from many lines of sight



•! Ongoing survey 

–! CFHT Legacy Survey: )s~200 deg^2, n_g~20 arcmin^-2 

•! Stage-III surveys (5-year time scale) 

–! KIDS (2010?-): )s~1500 deg^2, n_g~10 arcmin^-2 

–! Pan-STARRS (2010?-): )s~30000 deg^2, n_g~4 arcmin^-2 

–! DES (2011-): )s~5000 deg^2, n_g~10 arcmin^-2 

–! Subaru (2011-): )s~2000 deg^2, n_g~30 arcmin^-2 

•! Stage-IV surveys (10-year time scale): ultimate surveys 

–! LSST (2016?-): )s~20000 deg^2, n_g~50 arcmin^-2 

–! SNAP/JEDM (20??-): )s~4000 deg^2, n_g~100 arcmin^-2, +NIR 

–! EUCLID (20??-): )s~20000 deg^2, n_g~100 arcmin^-2, +NIR  

   �

What are the typical characteristics of current wide-
field weak-lensing surveys to measure cosmic shear?

Here are a few examples:



Fu et al. 08  

statistical errors > systematics� •! ~60 sq deg^2 

(effective area: ~30 

sq. deg^2) 

•! i’_AB~24.5, 

<z>~0.9 

•! Calibrate source 

redshift with the 

CFHT deep survey 

and the VVSD 

•! ~20( detection, 

over a range of few 

arcminutes to a few 

degrees 

•! 170 deg^2 results 

will be released this 

year? 

Here is an example of state of the art work from 
late 2000s: CFHT  WL survey

Correlation in 
the shear signal 

E-mode

B-mode



What does these teach us about various 
cosmological parameters?

These are similar types of constraints as we derive looking at 
the mass function of galaxy clusters (from last lecture)



What does these teach us about various 
cosmological parameters?

DEEP LENS 
SURVEY

(7 independent
4 deg2 fields)

Constructed from 
2001-2005

DLS Cosmic Shear Tomography 11

Figure 5. “DLS-ONLY” constraints on ⌦m and �8 for ⇤CDM.
The inner and outer contours represent 68% and 95% confidence
regions, resp. Flat priors are used. For the “regular” prior set-
ting, we marginalize over the 0.6 < h < 0.8, 0.92 < ns < 1.02,
and 0.03 < ⌦b < 0.06 intervals, which bracket the 3� ranges con-
strained by previous CMB or SNIa+Cepheid studies. The “wide”
prior setting refers to the intervals: 0.4 < h < 1.2, 0.7 < ns < 1.2,
and 0 < ⌦b < 0.1, which are adopted in the CFHTLenS studies.

Table 2
BAO measurements used in the current joint constraint.

z DV (z)/rs Survey Reference

0.1 2.98± 0.27 6dFGS Beutler et al. (2011)
0.35 8.88± 0.17 SDSS-DR7 Padmanabhan et al. (2012)
0.57 13.67± 0.22 SDSS-DR9 Anderson et al. (2012)
0.44 10.92± 3.67 WiggleZ Blake et al. (2012)
0.60 13.77± 5.94 WiggleZ Blake et al. (2012)
0.73 16.89± 9.15 WiggleZ Blake et al. (2012)

sure at z defined as:

DV (z) =


(1 + z)2D2

A(z)
cz

H(z)

�1/3
. (22)

In equation 22, DA(z) is an angular diameter distance to
the redshift z. We use the covariances between the last
three measurements in Table 2 published in Blake et al.
(2012).
For the cosmic microwave background, we use the

Wilkinson Microwave Anisotropy Map 9-year result
(Hinshaw et al. 2013; hereafter WMAP9)13. WMAP9
update their previous results based on the final 9-year
data with some revised calibrations, improving the av-
erage parameter uncertainty by ⇠10% compared to their
7-year results (Komatsu et al. 2011).
For supernova data, we utilize the Union2.1 cata-

log14 provided by Suzuki et al. (2012). The compila-
tion contains 580 supernovae distance moduli within the
0.015 < z < 1.41 range. The supernova �

2 function is

13 Although we do not directly use the Planck2015-CMB result,
we will present the comparisons of our joint probe results with
those from Planck2015-CMB in §6.3

14 available at http://supernova.lbl.gov/Union

given by

�
2
SNIa =

X

i

[µB(↵,�,MB)� µ(z,⌦m,⌦⇤, w)]
2

�
2
total

, (23)

where the summation is performed over 580 supernovae.
The distance modulus µB is a function of the rest-frame
B-band magnitudemB , the universal absolute SNIa mag-
nitude, MB , the shape of stretch parameter s, and the
color c:

µB = mB �MB + ↵(s� 1)� �c (24)

where the linear response parameters ↵ = 0.1219 and
� = 2.4657 are determined globally by fitting all 580 su-
pernovae in Suzuki et al. (2012). The best-fit parameter
MB is MB = �19.3082 at H0 = 70 km s�1 Mpc�1 when
the known systematics are included15. We refer readers
to Suzuki et al. (2012) for the evaluation of the term
�total in the denominator of Equation 23. In our analy-
sis, we use the version that includes the systematics, the
propagated errors in light curve fitting, and the exter-
nal errors such as those arising from Galactic extinction
correction and gravitational lensing.
For the DLS+BAO joint probe, we use the COS-

MOPMC package (Kilbinger 2009), which explores pa-
rameter space e�ciently through importance sampling.
However, whenever the WMAP9 results are needed, we
directly employ the WMAP9 chains16 provided by the
team and importance-sample our DLS likelihood func-
tion with them. A joint likelihood is evaluated by sim-
ply multiplying the likelihoods of di↵erent probes. In
principle, the likelihoods for individual probes are not
statistically independent because of shared cosmic struc-
tures. However, the potential volumes of overlap of our
current surveys are small enough that we expect a joint
likelihood constructed from a product of individual probe
likelihoods to be an excellent approximation.

5.4.1. Matter Density ⌦m and Normalization �8

The degeneracy between ⌦m and �8 is lifted when cos-
mic shear tomography is combined with other probes
(Figure 7). Particularly, in the flat ⇤CDM model, the
degeneracy of the two parameters in CMB constraints
is nearly orthogonal to that in cosmic shear. Compared
to the case where WMAP9 alone is used, the addition
of the current DLS tomography yields ⌦m = 0.293+0.014

�0.012

and �8 = 0.833+0.018
�0.011, shrinking their 1-� uncertainties

by ⇠48% and ⇠39%, respectively. Adding the BAO dis-
tance prior further reduces their uncertainties by ⇠23%
and ⇠28%, respectively.
If we relax the flatness constraint ⌦k ⌘ 0, the WMAP9

CMB alone no longer constrain the value of ⌦m tightly
(0.19 < ⌦m < 0.95 for 95% confidence). The roles
of both the DLS cosmic shear and BAO become criti-
cal in this case. When we use the DLS+WMAP9 joint
probe, we obtain ⌦m = 0.315+0.038

�0.024 and �8 = 0.805+0.025
�0.025.

In terms of the areas enclosed by 1-� contours in the
⌦m-�8 plane, the reduction is more than ⇠85%. When
BAO is added, the results become ⌦m = 0.297+0.011

�0.012 and

15 For each set of the cosmological parameters, one must adjust
the value by 5 log(h/0.7). Omitting this is equivalent to imposing
a H0 prior centered at h = 0.7.

16 http://lambda.gsfc.nasa.gov

One example

Jee+2016



What constraints can we set on w with this 
experiment?

Jee+2016

16 Jee et al.

Figure 11. Constraint on w0.

Table 2
Summary of cosmological parameter constraints from joint probes.

Parameter Joint probe ⇤CDM (⌦k ⌘ 0) ⇤CDM (⌦k 6= 0) wCDM (⌦k ⌘ 0) wCDM (⌦k 6= 0)

⌦m DLS+BAO 0.291+0.039
�0.035 0.291+0.039

�0.033 0.286+0.043
�0.037 0.259+0.052

�0.047

DLS+WMAP9 0.293+0.012
�0.014 0.315+0.038

�0.024 0.191+0.085
�0.051 -

DLS+BAO+WMAP9 0.297+0.010
�0.012 0.297+0.011

�0.012 0.290+0.020
�0.017 0.269+0.029

�0.024

DLS+BAO+WMAP9+SN 0.283+0.007
�0.005 0.286+0.009

�0.011 0.286+0.008
�0.011 0.279+0.012

�0.009

�8 DLS+BAO 0.827+0.064
�0.058 0.827+0.059

�0.068 0.831+0.060
�0.061 0.908+0.092

�0.108

DLS+WMAP9 0.833+0.011
�0.018 0.805+0.025

�0.025 0.922+0.129
�0.091 -

DLS+BAO+WMAP9 0.833+0.011
�0.018 0.837+0.022

�0.013 0.845+0.025
�0.039 0.853+0.051

�0.033

DLS+BAO+WMAP9+SN 0.837+0.013
�0.015 0.841+0.010

�0.016 0.841+0.022
�0.011 0.849+0.026

�0.017

ns DLS+WMAP9 0.966+0.010
�0.013 0.968+0.012

�0.013 0.962+0.014
�0.011 0.968+0.012

�0.013

DLS+BAO+WMAP9 0.965+0.008
�0.012 0.967+0.014

�0.010 0.961+0.012
�0.012 0.967+0.015

�0.011

DLS+BAO+WMAP9+SN 0.978+0.006
�0.010 0.974+0.011

�0.016 0.961+0.013
�0.009 0.962+0.018

�0.009

⌦b DLS+WMAP9 0.0475+0.0013
�0.0012 0.0518+0.0049

�0.0044 0.0330+0.0138
�0.0030 0.0366+0.0086

�0.0063

DLS+BAO+WMAP9 0.0478+0.0009
�0.0010 0.0487+0.0018

�0.0016 0.0469+0.0036
�0.0033 0.0437+0.0056

�0.0026

DLS+BAO+WMAP9+SN 0.0469+0.0008
�0.0007 0.0467+0.0011

�0.0012 0.0455+0.0014
�0.0012 0.0461+0.0015

�0.0017

h DLS+WMAP9 0.686+0.014
�0.012 0.680+0.040

�0.052 - -

DLS+BAO+WMAP9 0.685+0.006
�0.011 0.683+0.006

�0.014 0.678+0.033
�0.009 0.701+0.041

�0.023

DLS+BAO+WMAP9+SN 0.697+0.003
�0.004 0.697+0.004

�0.004 0.701+0.006
�0.006 0.697+0.009

�0.004

⌦k DLS+WMAP9 0 �0.010+0.013
�0.015 0 -

DLS+BAO+WMAP9 0 �0.004+0.005
�0.006 0 �0.006+0.011

�0.011

DLS+BAO+WMAP9+SN 0 �0.001+0.006
�0.005 0 �0.001+0.009

�0.009

w DLS+BAO -1 -1 �1.06+0.17
�0.15 -

DLS+WMAP9 -1 -1 �1.54+0.09
�0.18 -

DLS+BAO+WMAP9 -1 -1 �1.02+0.10
�0.09 �1.13+0.13

�0.21

DLS+BAO+WMAP9+SN -1 -1 �1.03+0.03
�0.03 �1.09+0.09

�0.07

DEEP LENS 
SURVEY

(7 independent
4 deg2 fields)

Constructed from 
2001-2005
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m⌫ � ⇤CDM Ne↵ �m⌫ � ⇤CDM Ne↵ �msterile
e↵ � ⇤CDM

Planck +WP Planck +WP+highL Planck +WP+highL+lensing Planck+WP Planck +WP+highL
m⌫ < 1.31 eV m⌫ < 0.66 eV m⌫ < 0.85 eV m⌫ < 0.85 eV m⌫ < 0.59 eV

+f0.43�8|z=0.57 +f0.43�8|z=0.57 +f0.43�8|z=0.57 +f0.43�8|z=0.57 +f0.43�8|z=0.57

conserv. m⌫ < 0.68 eV m⌫ < 0.49 eV m⌫ < 0.67 eV m⌫ < 0.63, eV m⌫ < 0.51 eV
optim. m⌫ < 0.46 eV m⌫ < 0.38 eV m⌫ < 0.50 eV m⌫ < 0.46 eV m⌫ < 0.42 eV

Table 1. Constraints (95% limits) on the sum of neutrino masses for several models and data set combinations. The m⌫ �⇤CDM model

is a spatially flat power law ⇤CDM model where the sum of neutrino masses is an extra parameter. The Ne↵ � m⌫ � ⇤CDM model

is a spatially flat power law ⇤CDM model where both the e↵ective number of neutrino species and the total neutrino mass are extra

parameters. The Ne↵ �msterile
e↵ � ⇤CDM model is similar to Ne↵ �m⌫ � ⇤CDM, but where the massive neutrinos are only the sterile

ones. To calculate the constraints we have imposed a physical thermal mass for the sterile neutrino < 10 eV, which defines the region

(for the CMB) where the particles are distinct from cold or warm dark matter.

Figure 4. Constraints obtained from Planck+WP in combination with the f0.43�8|z=0.57 measurement for the following models. In the

left panel constraints in the ⌦k-w plane for a non-flat Universe where the dark energy equation of state is constant but not necessarily

�1; in the middle panel constraints in the w-wa plane for a flat model where the dark energy equation of state parameter changes with

the scale factor a as w(a) = w+wa(1� a). The right panel is the same as the middle panel but where the spatial flatness assumption is

relaxed. In this case �0.076 < ⌦k < 0.009 (95% confidence), respectively. The contour lines represent the 68% and the 95% confidence

regions. The saturation of the colour is proportional to the posterior likelihood.

3.2 Dark energy equation of state constraints

In the case of a non-flat model where the dark energy equa-
tion of state parameter w is constant, but not necessarily
equal to �1 –owCDM–, the combination of Planck+WP and
f0.43�8|z=0.57 measurements constrain w to be �2.10 < w <
�0.33 (�1.94 < w < �0.62) at 95% confidence and the
curvature to be �0.093 < ⌦k < +0.008 (�0.076 < ⌦k <
+0.007), also at 95% confidence. The joint constraints in
the ⌦k–w plane are displayed in the left panel of Fig. 4.

Conversely, if we assume flat geometry, but allow the
dark energy equation of state to change with the scale-
factor a (according to Chevallier & Polarski 2001 and Lin-
der 2003) as w(a) = w + wa(1 � a) –wwaCDM–, we ob-
tain the constraints presented in the middle panel of Fig. 4.
The single parameter constraints are: �2.03 < w < �0.06
(�1.80 < w < �0.16) and wa < 1.27(1.08) (at 95% confi-
dence). These constraints do not degrade significantly if flat-
ness is relaxed –owwaCDM–, as shown in the right panel of
Fig. 4. In this case the constraint on the geometry becomes
�0.083 < ⌦k < 0.007(�0.074 < ⌦k < 0.007) at 95% confi-
dence and for the dark energy parameters �2.38 < w < 0.39
(�2.20 < w < �0.01) and wa < 1.64(1.60) (95% confi-

dence). For all these cases, we ran new Markov Chains rather
than importance sampling existing ones. We conclude that
a dark energy component is needed and is dominant even
in non-flat models where the dark energy equation of state
parameter is not necessarily constant. The density of dark
energy in units of the critical density ⌦dark energy at 68% con-
fidence is 0.61± 0.13 (0.637± 0.090) in the owCDM model,
0.742 ± 0.071 (0.728 ± 0.055) in the wwaCDM model and
0.62± 0.12 (0.639± 0.086) in the owwaCDM model. These
constraints are obtained using only data at z > 0.57 (i.e.,
f0.43�8|z=0.57 and CMB). Any more “local” explanation for
dark energy is therefore disfavoured.

3.3 Modifications of GR

In modern cosmology the rationale behind introducing mod-
ifications of GR is to explain the late-time cosmological ac-
celeration. Therefore, the most popular modifications of GR
mimic the e↵ects of the cosmological constant on the expan-
sion history and become important only at low redshifts. If
we allow gravity to deviate from GR, the CMB o↵ers only
weak constrains on the late-time growth of structures, via
the Integrated Sachs-Wolfe (ISW) e↵ect and lensing. A pop-

c� 0000 RAS, MNRAS 000, 000–000

Value of the 
w-parameter at z=0

“Curvature”
wa

Using state of the art BAO (z~0.55) from BOSS and Planck constraints

How do these constraints compare with constraints 
from other experiments on w?

Derivative of w relative 
to scale factor a 

From Gil-Marin+2015



Intrinsic Alignments

In order to measure the effect that gravitational lensing has on 
background galaxies, we assume that the relative orientation 

of galaxies is random

Any alignment between the orientation of galaxies is assumed 
to result from gravitational lensing by intervening masses

But what if the relative orientation of galaxies is not random?

Such alignment could result from tidal interactions of galaxies 
on each other (if galaxies are nearby)

Seems clear that shallower surveys would be more affected 
than deeper surveys



Intrinsic Alignments

In fact, galaxies have been shown to exhibit some intrinsic 
alignments, but to first order it is not a huge concern

Good technique for ensuring that Intrinsic Alignment do not 
bias one’s results is to exclude sources from the analysis that 

have similar redshifts



Other Challenges / Possible Systematic Errors

The shear signal one derives from observations is very 
sensitive to knowledge of the intrinsic redshift distribution of 
the sources (originally just used redshifts from HDF North)

In comparing with the predictions from cosmological models, 
the shear signal dependences on the clustering of sources at 
very small scales -- where the power spectrum is non-linear 
and baryonic physics may be important.  Deficiencies in our 

knowledge of the latter two processes may affect weak lensing 
results.



Cosmic Shear: Lots of Potential For Setting the 
Best Future Constraints

From the Dark Energy Task Force report !

C. Porciani! Observational Cosmology! III-30!

From the Dark Energy Task Force Report:



Cosmic Shear: Lots of Potential For Setting the 
Best Future Constraints
Tomography

• Divide sample by photometric redshifts

• Cross correlate samples

• Order of magnitude increase in precision even after CMB breaks 
 degeneracies

Hu (1999)
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One can take advantage of the redshifts one can estimate for background 
sources to measure the growth of structures as a function of redshift.   More 

distant sources will pass by much more structure along the line of sight

Notice that there is much more power in the shear signal cross-correlating 
sources in the more distant redshift sample (#2) than the closer one (#1)

Comparing shear of sources 
in redshift bin #2 with 

sources in bin #2

Comparing shear of sources 
in redshift bin #1 with 

sources in bin #2

Comparing shear of sources 
in redshift bin #1 with 

sources in bin #1



New Material for This Week

Dark Energy Experiments



So the game is to determine 
the w parameter and how it depends on redshift

There are four standard methods:

1.  Supernovae Ia
-- use of standard candles to establish distance-redshift relation
-- first established existence of dark energy 10 years ago

2.  Baryonic Acoustic Oscillations
-- gives us a standard rod to establish distance-redshift relation 
and Hubble parameter-redshift relation with low systematics

3.  Galaxy Clusters
-- provide us with sensitive probe of growth of structure
-- early evidence for low Ωm

4.  Weak Gravitational Lensing
-- provide us with sensitive probe of growth of structure
-- powerful technique still in process of realizing full potential



Power of the techniques in constraining dark 
energy are quantified in terms of the “Figure of 

Merit”
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III. Goals and Methodology for Studying Dark Energy 
 
 

1. The goal is to determine the very nature of the dark energy that causes the 
Universe to accelerate and seems to comprise most of the mass-energy of the 
Universe.   

 
2. Toward this goal, our observational program must 

a. Determine as well as possible whether the accelerating expansion is 
consistent with being due to a cosmological constant. 

b. If the acceleration is not due to a cosmological constant, probe the 
underlying dynamics by measuring as well as possible the time evolution 
of the dark energy by determining the function w(a).   

c. Search for a possible failure of general relativity through comparison of 
the effect of dark energy on cosmic expansion with the effect of dark 
energy on the growth of cosmological structures like galaxies or galaxy 
clusters. 

 
3. Since w(a) is a continuous function with an infinite number of values at 

infinitesimally separated points, w(a) must be modeled using just a few 
parameters whose values are determined by fitting to observations.  No single 
parameterization can represent all possibilities for w(a).  We choose to 
parameterize the equation of state as w(a) = w��+ (��a)wa, where w� is the present 
value of w and where wa parameterizes the evolution of w�a). This simple 
parameterization is most useful if dark energy is important at late times and 
insignificant at early times.  

 
4. The goals of a dark energy observational program may be reached through 

measurement of the expansion history of the Universe [traditionally measured by 
luminosity distance vs. redshift, angular-diameter distance vs. redshift, expansion 
rate vs. redshift, and volume element vs. redshift], and through measurement of 
the growth rate of structure, which is suppressed during epochs when the dark 
energy dominates. All these measurements of dark energy properties can be 
expressed in terms of the value of the dark energy density today, w�, and its 
evolution, wa.  If the accelerating expansion is due instead to a failure of general 
relativity, this could be revealed by finding discrepancies between the values of 
w(a) inferred from these two types of data. 

 
5. In order to quantify progress in measuring the properties of dark energy we define 

a dark-energy Qfigure of meritR formed from a combination of the uncertainties in 
w� and wa.    

 
The DETF figure of merit is the reciprocal of the area of the error 
ellipse enclosing the 95% confidence limit in the w�–wa plane.  Larger 
figure of merit indicates greater accuracy. 
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Contour enclosing
95% confidence

 
The DETF figure of merit is defined as the reciprocal of the area of the error ellipse in 
the w0–wa plane that encloses the 95% C.L. contour.  (We show in the Technical 
Appendix that the area enclosed in the w0–wa plane is the same as the area enclosed in 
the wp–wa plane.) 
 
Note that if dark-energy uncertainties are dominated by a noise source that scales as Q-0.5

 
for some quantity Q, such as survey area or source counts, then the figure of merit will 
scale as Q.  
 
Recall that a goal of a dark energy program is to test whether dark energy arises from a 
simple cosmological constant, (w��	�����wa 	��).  A given data model may do a better job 
excluding w0 	��� and wa = 0 than is apparent from simply quoting � (w�) and � (wa).  
This is because the effect of dark energy is generally not best constrained at the present 
epoch (z 	��; a 	��).  For each data model the constraint on w(a) 	�w� �����a)wa varies 
with a.  However there is some pivot value of a, denoted as ap, where the uncertainty in 
w(a) is minimized for a given data model.  The idea is illustrated in the figure below. 

 
 
Each data model results in values for ��w0

2� 	�
��w0)]2, ��wa
2� 	 
��wa)]2, and the 

correlation ��wa�w0�, which determine the error ellipse.  With wp  	 w0 � (��ap)wa, the 

w

z
��

��wp) w 	������w���

zp
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Combination

Technique #2

Technique #1

 
Illustration of the power of combining techniques.  Technique #1 and Technique #2 have roughly 
equal DETF figure of merit.  When results are combined, the DETF figure of merit is 
substantially improved. 
 

7. Results on structure growth, obtainable from weak lensing or cluster observations, 
provide additional information not obtainable from other techniques.  In 
particular, they allow for a consistency test of the basic paradigm: spatially 
constant dark energy plus general relativity. 

 
8. In our modeling we assume constraints on H� from current data and constraints on 

other cosmological parameters expected to come from further measurement of 
CMB temperature and polarization anisotropies.   

a. These data, though insensitive to w(a) on their own, contribute to our 
knowledge of w(a) when combined with any of the dark energy techniques 
we have considered. 

b. Increased precision in a particular cosmological parameter may improve 
dark-energy constraints from a single technique.  Increased precision is 
valuable for the important task of comparing dark energy results from 
different techniques. 

 
9. Increased precision in cosmological parameters tends not to improve significantly 

the overall DETF figure of merit obtained from a multi-technique program.  
Indeed, a multi-technique program would itself provide powerful new constraints 
on cosmological parameters within the context of our parametric dark-energy 
model. 

 

By combining multiple techniques, one can make huge gains in 
terms of the “Figure of Merit,” i.e., constraining both w and

wa.



These four methods exploit the following measurable-redshift 
relationships and have the following strengths and weaknesses:

Baryon Acoustic Oscillations
Dark Energy Observables: DA(z), H(z)
Strengths: Least Affected by Systematics

Weaknesses: Most Leverage at z>1 where changes in 
dark energy model have smallest effect

Sensitive to Errors in the Redshifts of 
the Sources Probed

Potential in Large Area Survey:  Uncertainties in 
the redshift estimates for individual sources can largely 

be overcome by covering large areas of sky

Extra Power in Matter Power Spectrum at 
Distance of First Acoustic Oscillation



By measuring the correlation function for 
a galaxy survey we can look for this bump 

(from baryon acoustic oscillations)

C. Porciani! Observational Cosmology! III-120!

Measuring BAO from LSS!
THE BAO IN THE GALAXY DISTRIBUTION AT Z~0 WERE FIRST DETECTED 
IN THE 2DFGRS AND SDSS GALAXY REDSHIFT SURVEYS...!

SDSS!

GALAXY!
CORRELATION !

FUNCTION!

2DFGRS!

GALAXY!
POWER !

SPECTRUM!

2DFGRS: COLE ET AL. (2005)!SDSS: EISENSTEIN ET AL. (2005)!

First Measurements



These four methods exploit the following measurable-redshift 
relationships and have the following strengths and weaknesses:

Baryon Acoustic Oscillations:
Dark Energy Observables: DA(z), H(z)

θ DA(z)

c(Δz)/H(z)

telescope

Distances along 
line of sight 

constrain H(z)

Distances in 
plane of the sky 
constrain DA(z)

Alcock-Paczynski 
constraints

both length scales 
must be the same



These four methods exploit the following measurable-redshift 
relationships and have the following strengths and weaknesses:

Galaxy Cluster Counting:

Dark Energy Observables:  Volume(z), Growth 
Factor (z)

Strengths:  Very sensitive to Growth Factor,
Many Different Techniques to Find Clusters

Weaknesses: Substantial Uncertainties in Baryonic 
Physics Needed to Predict x-ray, SZ, or optical signature of 

clusters

Potential in Large Area Survey:  Useful in 
further calibrating cosmic shear signal



These four methods exploit the following measurable-redshift 
relationships and have the following strengths and weaknesses:

Supernovae (SN):
Dark Energy Observables:  DL (z)

Strengths:  Most Established Technique, Very 
Powerful if SN are in fact a standard candle

Weaknesses: Systematic Uncertainties, Possible 
Evolution in SNe, Light Curve Fitting Uncertainties

Potential in Large Area Survey:  Large Number 
of SNe found in large area surveys should allow further 

calibration of systematics



These four methods exploit the following measurable-redshift 
relationships and have the following strengths and weaknesses:

Weak Lensing:

Dark Energy Observables:  DA (z), Growth Factor (z)

Strengths:  Technique with Most Power, 
Allows Constraints on Both Expansion and 

Growth Rate for Matter Perturbations

Weaknesses: Sensitive to Uncertainties in the Redshifts 
of the Lensed Galaxies

Potential in Large Area Survey:  Large Area 
Observations Should Allow One to Calibrate Out Any 

Systematics

Need Full Knowledge of the Diversity of Spectra at 
Intermediate Redshift
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a) The Dark Energy Survey (DES)a) The Dark Energy Survey (DES)

• ground based imaging survey at 
CTIO 4m telescope of Southern 
region (SZE-survey overlap)

• camera: 520Mpix, 2.2deg2 FoV

• start: next year

• 5,000deg2 in 4bands: g r i z

• DE probes: GC, BAOs, WL, SNIa

• objects: galaxies, galaxy clusters 
(with photometric redshifts)

• redshift range: 0<z<1.3

• DE constraints: !w~5-15%

Source: http://www.darkenergysurvey.org/

R. Fassbender: Introduction to Observational Cosmology I – WS09/10 38

b) Deep halfb) Deep half--sky sky multibandmultiband imaging surveysimaging surveys

Source: http://pan-starrs.ifa.hawaii.edu/public/; http://www.lsst.org/lsst

• start: >2014

• 20000-30,000deg2 in 6 bands

• DE constraints: !w~ few %

PanSTARRS4: The Panoramic Survey Telescope and PanSTARRS4: The Panoramic Survey Telescope and 
Rapid Response SystemRapid Response System

LSST: The Large Synoptic Survey TelescopeLSST: The Large Synoptic Survey Telescope

Overall of Some Important Dark Energy Experiments

Executed from 2013 to 2019

Dark Energy Survey (DES) 
— KIDS (led here by Koen Kuijken) is similar
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a) The Dark Energy Survey (DES)a) The Dark Energy Survey (DES)

• ground based imaging survey at 
CTIO 4m telescope of Southern 
region (SZE-survey overlap)

• camera: 520Mpix, 2.2deg2 FoV

• start: next year

• 5,000deg2 in 4bands: g r i z

• DE probes: GC, BAOs, WL, SNIa

• objects: galaxies, galaxy clusters 
(with photometric redshifts)

• redshift range: 0<z<1.3

• DE constraints: !w~5-15%

Source: http://www.darkenergysurvey.org/
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b) Deep halfb) Deep half--sky sky multibandmultiband imaging surveysimaging surveys

Source: http://pan-starrs.ifa.hawaii.edu/public/; http://www.lsst.org/lsst

• start: >2014

• 20000-30,000deg2 in 6 bands

• DE constraints: !w~ few %

PanSTARRS4: The Panoramic Survey Telescope and PanSTARRS4: The Panoramic Survey Telescope and 
Rapid Response SystemRapid Response System

LSST: The Large Synoptic Survey TelescopeLSST: The Large Synoptic Survey Telescope

Few examples of more well known DE missions

2025



LSST in a Nutshell 

•  The LSST is an integrated survey system designed to conduct a decade-long, 
deep, wide, fast time-domain survey of the optical sky. It consists of an 8-meter 
class wide-field ground based telescope, a 3.2 Gpix camera, and an automated 
data processing system. 

•  Over a decade of operations the LSST survey will acquire, process, and make 
available a collection of over 5 million images and catalogs with more than 37 
billion objects and 7 trillion sources. Tens of billions of time-domain events will 
be detect and alerted on in real-time. 

•  The LSST will enable a wide variety of complementary scientific investigations, 
utilizing a common database and alert stream. These range from searches for 
small bodies in the Solar System to precision astrometry of the outer regions of 
the Galaxy to systematic monitoring for transient phenomena in the optical sky.  
LSST will also provide crucial constraints on our understanding of the nature 
of dark energy and dark matter. 

Vera Rubin Telescope



Summary of High Level Requirements 

Survey Property Performance 

Main Survey Area 18000 sq. deg. 

Total visits per sky patch 825 

Filter set 6 filters (ugrizy) from 320 to 1050nm 

Single visit 2 x 15 second exposures 

Single Visit Limiting 
Magnitude 

u = 23.5; g = 24.8; r = 24.4; I = 23.9; z = 23.3;          
y = 22.1 

Photometric calibration  2% absolute,  0.5% repeatability & colors 

Median delivered image 
quality ~ 0.7 arcsec. FWHM 

Transient processing latency  60 sec after last visit exposure 

Data release Full reprocessing of survey data annually 



The LSST Science Book 

•  Contents: 
–  Introduction 
–  LSST System Design 
–  System Performance 
–  Education and Public Outreach 
–  The Solar System 
–  Stellar Populations 
–  Milky Way and Local Volume 

Structure 
–  The Transient and Variable Universe 
–  Galaxies 
–  Active Galactic Nuclei 
–  Supernovae 
–  Strong Lenses 
–  Large-Scale Structure 
–  Weak Lensing 
–  Cosmological Physics 

D
ark E

nergy 



Integrated Project Schedule 

Updated: First Light
January 2025

Begin of Full Science 
Operations
August 2025



LSST Will be Sited in Central Chile 

LSST 
Base Facility 

50 km paved highway 

AURA 
property 
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Central Chile 
Location Map 

La 
Serena 



Dome and Facility Design 

Site has been leveled! 



Archive Site 
Archive Center 

Alert Production 
Data Release Production 

Calibration Products Production 
EPO Infrastructure 

 Long-term Storage (copy 2) 
Data Access Center 

Data Access and User Services 

HQ Site 
Science Operations 
Observatory Management 
Education and Public Outreach 

Summit and Base 
Sites 

Telescope and Camera 
Data Acquisition 

Crosstalk Correction 
Long-term storage (copy 1) 
Chilean Data Access Center 

Dedicated Long Haul 
Networks 

 
Two redundant 40 Gbit links from La 

Serena to Champaign, IL (existing fiber) 



Ultimate LSST Deliverable: Reduced Data 
Products 

A petascale 
supercomputing system 
at the LSST Archive (at 
NCSA) will process the 

raw data, generating 
reduced image products, 

time-domain alerts, and 
catalogs.  

Data Access Centers in the U.S. 
and Chile will provide end-user 
analysis capabilities and serve 

the data products to LSST users. 



LSST From the User’s Perspective 

•  A stream of ~10 million time-domain events per night, 
detected and transmitted to event distribution networks 
within 60 seconds of observation. 

•  A catalog of orbits for ~6 million bodies in the Solar System. 

•  A catalog of ~37 billion objects (20B galaxies, 17B stars), ~7 
trillion observations (“sources”), and ~30 trillion 
measurements (“forced sources”), produced annually, 
accessible through online databases. 

•  Deep co-added images. 

•  Services and computing resources at the Data Access 
Centers to enable user-specified custom processing and 
analysis. 

•  Software and APIs enabling development of analysis codes. 

Level 3 
Level 1 

Level 2 
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Galaxies 

•  LSST will be a unique tool for studies of galaxy formation and 
galaxy properties. 

•  The database will include photometry for 1010 galaxies from the 
Local Group to z > 6. 

•  We will have 6-band photometry for 4 x 109 galaxies. 

•  Key diagnostic tools will include: 
–  Luminosity functions 
–  Color-luminosity relations 
–  Size-luminosity relations 
–  Quantitative morphological classifications 
–  Dependence on environment 
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Supernovae 

•  Roughly 103 supernovae have been discovered throughout the history of all 
astronomy. 

•  LSST will find > 107 over its ten-year duration, spanning a broad redshift range, 
with precise, uniform calibration. 

•  This will undoubtedly revolutionize the field, allowing large samples for studies 
of systematic effects and additional parametric dependences. 

•  ~ 105 SNe Ia will be found in the �deep drilling fields� with well-measured 
lightcurves in all six colors.  This will be an excellent sample for precision 
cosmology. 

•  The large sample size will also allow us (for the first time) to conduct SN Ia 
cosmology experiments as a function of direction in the sky, providing 
stringent tests of the fundamental cosmological assumptions of homogeneity 
and isotropy.  
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Sample Size Estimates:  Lensed SNe 
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Precision Cosmology:  Constraints on 
Dark Energy 

•  LSST will probe the nature of Dark Energy via a distinct set of 
complementary probes: 
–  SNe Ia�s as �standard candles� 
–  Baryon acoustic oscillations as a �standard rulers� 
–  Studies of growth of structure via weak gravitational lensing 
–  Studies of growth of structure via clusters of galaxies 

•  In conjunction with one another, this rich spectrum of tests is 
crucial for reduction of systematics and dependence on 
nuisance parameters. 

•  These tests also provide interesting constraints on other topics 
in fundamental physics:  the nature of inflation, modifications 
to GR, the masses of neutrinos. 
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Shear Power Spectra as a Function of 
Redshift 
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Separate and Joint Constraints on the 
Dark Energy Equation of State 



26 Oct 2007 Gary J. Hill 2

ROE/JSPS WORKSHOP 

Overview

• Two observational approaches 
to make progress on DE
– Get the tightest possible 

constraints at low redshift 
where effect of DE is stronger

– Go to higher redshift where we 
can measure the evolution or 
verify that w(z) = -1 

– Both approaches are needed

• Almost all projects are focused 
at z<1.5
– Due to obvious observational 

constraints

• Spectroscopic BAO at high 
redshift
– One method to measure H(z) 

directly as well as DA(z)
– Only method that can be 

applied at z>2
– Method with smallest 

systematic worries 
(particularly at z>1.5)

• Aims of HETDEX
– Measure the expansion rate to 

percent accuracy at z>2
– Provide a direct constraint on 

the density of DE at z>2
– Provide the best measure of 

curvature

26 Oct 2007 Gary J. Hill 1

ROE/JSPS WORKSHOP 

The Hobby-Eberly Telescope 
Dark Energy Experiment

26 Oct 2007 Gary J. Hill 8

ROE/JSPS WORKSHOP 

HET
Mt. Fowlkes west Texas

VIRUS consists 
of 145 units 
mounted on HET

VIRUS Mounted on the HET

Executed from 2021 to 2024



26 Oct 2007 Gary J. Hill 4

ROE/JSPS WORKSHOP 

HETDEX Approach
• Survey duration 3 calendar years
• 1 million tracers in 8 cubic Gpc

volume
– Total survey area 400 sq. degrees 

with redshift range 1.9 < z < 3.8
– goal 1.5 million in 650 sq. deg

• Constraints (3 year)
– H to 1.5-2%, DA to 1-1.5%
– Depending on tracer bias

• Ly-α emitting galaxies
– Numerous
– Easily detected with integral field 

spectrograph

• 145 integral field spectrographs, 
known as VIRUS

– 42,000 spectra per exposure

Realization of HETDEX

Baryon Acoustic Oscillations
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ROE/JSPS WORKSHOP 

Measuring Dark Energy Evolution
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• With priors on ΩMh2 from Planck and 3% on Ho we can achieve
– σH/H ~ 1% at z~3 to directly detect w=-1 constant DE at 3-σ

• DA(z=1089) will be constrained to sub-% accuracy by Planck
– σDA/DA ~ 1% at z~3 to measure curvature to 0.2% (e.g. Knox 2006)

Dark energy, or its equation of state w(z), is mathematically 
well defined. It enters into the cosmological equations as: 

Expansion rate Matter term Dark Energy term and 
w represents history

+ Ωk(1 + z)2

Curvature term
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c) c) eROSITAeROSITA: the next X: the next X--ray survey telescoperay survey telescope

• space-based X-ray cluster survey

• currently build at MPE in Garching

• start: 2012

• all sky coverage

• DE probes: GC, BAOs

• objects: 100,000 galaxy clusters

• redshift range: 0<z<1.5

• DE constraints: !w~5%

• requires large ground-based follow-
up program for identification and 
redshifts

R. Fassbender: Introduction to Observational Cosmology I – WS09/10 40

d) EUCLID: the European DE Space Missiond) EUCLID: the European DE Space Mission

Source: M. Schweitzer (MPE)

• space-based optical/NIR imaging 
and spectroscopy survey

• 20,000deg2 extragalactic survey

• start: >2016

• DE probes: WL, BAOs, GC

• !w~2%

similar mission plans in US for JDEM,
(Joint Dark Energy Mission) likely with
a stronger focus on SN Ia

Few examples of more well known DE missions

2019

Note: E-ROSITA ceased 
operations after the beginning of 
the Ukraine invasion in Feb 2022.  

It had completed 4 of 8 all sky 
surveys.  Analysis is ongoing.

Collaboration between Germany / Russia



The (Near) Future: 

eROSITA ~105 X‐Ray Clusters 

Zenit‐2SB rocket 

Fregat booster 

Spektr‐RG mission 

Navigator plaTorm 

ART‐XC / eROSITA 

eROSITA 

From Baikonur to L2 orbit 

1.5 million km 

from Earth 

Talks P. Predehl, A. Merloni 
4 



Projected Cosmological Constraints 

•  eROSITA‐specific forecasts, taking into account photons 
registered at detector; assume that clusters get 
detected if at least 50 source photons received. 

•  Include cluster physics; sca>er in LX−M rela/on 
accounted for, fit scaling rela/on parameters 
simultaneously with cosmology (“self‐cal”). 

•  Take into account expected redshib uncertainty. 

•  Apply two cosmological tests simultaneously; evolu/on 
of (i) cluster mass func/on and (ii) angular clustering. 

•  Several assump/ons, e.g., hardware works, flat 
Universe, fiducial cosmology and LX−M rela/on, 
redshibs, one sky for all, …. 

5 



Pillepich, Mohammed, Porciani, Reiprich (in prep.) 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(in 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w = w0+(1‐a)wa = w0+waz/(1+z) 

Pillepich, Mohammed, Porciani, Reiprich (in prep.) 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eROSITA Compared to DES and Euclid 

Stage III 

Stage IV 

Stage IV 

Pillepich, Mohammed, Porciani, Reiprich (in prep.); Merloni et al. (arXiv:1209.3114). 

DES and Euclid from Giannantonio et al. (2012). 

<1%, <3% 

>300 for fNL=0 

10 



Summary of Sta/s/cs/Precision 

•  eROSITA will increase sta/s/cs by 1‐2 ord. of mag. 

•  It will discover 100k clusters, among them all   

massive ones in the observable Universe and, 

hopefully, many more bullet‐like clusters. 

•  It will likely be the first “Stage IV” dark energy     

probe world‐wide. 

•  It will yield compe//ve and complementary 

constraints on dark ma>er, e.g., ΔΩM<1%, dark 

energy, e.g., ΔwDE<3%, but also on modified      

gravity, neutrino masses, primordial                        

non‐Gaussianity, …. 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eROSITA:  Some Results Based on Early Data

eFEDS = e-ROSITA Final Equatorial Deep Survey
Equatorial Survey has Weak-Lensing Information Available to Calibrate 

Masses of Galaxy Clusters, so this is reason to focus first on them

Significant Sample of Clusters Available Focusing on the Equatorial Fields

Cluster
Mass

Chiu+2023
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eROSITA

eROSITA

Chiu+2023


