3. Structure of disc galaxies

This is the typical image of a spiral

Now analyze in detail

3.1 How to get spiral arms?
The strength of the spiral structure can be parametrized by the amplitude of its Fourier components, defined by expressing the surface brightness as a Fourier series (eq. B.66),

$$I(R, \phi) = 1 + \sum_{m=1}^{\infty} A_m(R) \cos m[\phi - \phi_m(R)] \quad (A_m(R) > 0). \quad (6.1)$$

Here $I(R) \equiv (2\pi)^{-1} \int_0^{2\pi} I(R, \phi) \, d\phi$ is the azimuthally averaged surface brightness at radius R, and A_m and ϕ_m are the amplitude and phase of the mth Fourier component.

If a single Fourier component m dominates the spiral structure, the strength can also be parametrized by the arm-interarm surface-brightness ratio K, which is related to A_m by

$$K = \frac{1 + A_m}{1 - A_m} \quad (6.2)$$

Most grand-design spiral galaxies have two arms and approximate two-fold rotational symmetry. In near-infrared light, which traces the surface density, the amplitude of the arms lies in the range $0.15 \lesssim A_2 \lesssim 0.6$ (Rix & Zaritsky 1995), corresponding to arm-interarm ratios of $1.4 \lesssim K \lesssim 4$. Grand-design spirals with $m \neq 2$ are rare, although a significant fraction of disk galaxies exhibit lopsided distortions ($A_4 \gtrsim 0.2$) in their outer parts, and careful Fourier decomposition occasionally reveals three-armed spiral patterns (Rix & Zaritsky 1995). The dominance of two-armed patterns in grand-design spirals is a striking observational fact that demands explanation in a successful theory of spiral structure.

(b) Leading and trailing arms Spiral arms can be classified by their orientation relative to the direction of rotation of the galaxy. A trailing arm is one whose outer tip points in the direction opposite to galactic rotation, while the outer tip of a leading arm points in the direction of rotation (see Figure 6.4).

It is not easy to determine observationally whether the arms of a given galaxy are leading or trailing. In face-on galaxies we cannot determine the leading arms (Pasha 1986; Buta, Byrd, & Freeman 2003), and transitory one-armed leading spirals can be produced by plausible dynamical processes, for example encounters with companion galaxies on retrograde orbits. Nevertheless, in the vast majority of cases spiral arms are trailing.

(e) The pitch angle and the winding problem The pitch angle α at any radius R is the angle between the tangent to the arm and the circle $R = \text{constant}$ (see Figure 6.6); by definition $0 < \alpha < 90^\circ$.

It is useful to think of the center of each arm as a mathematical curve in the plane of the galaxy, which we write in the form $\phi + g(R, t) = \text{constant}$ where t is the time. Suppose that the galaxy has m-fold rotational symmetry, that is, the arm pattern is unchanged if we rotate the galaxy by $2\pi/m$ radians ($m > 0$). Then a more convenient expression, which defines the locations of all m arms, is

$$m\phi + f(R, t) = \text{constant} \pmod{2\pi}, \quad (6.3)$$

where $f(R, t) = mg(R, t)$ is the shape function. It is also useful to introduce the radial wavenumber

$$k(R, t) = \frac{\partial f(R, t)}{\partial R}. \quad (6.4)$$

The sign of k determines whether the arms are leading or trailing. If, as we shall always assume, $m > 0$ and the galaxy rotates in the direction of increasing ϕ, then

$$\text{leading arms} \iff k < 0; \quad \text{trailing arms} \iff k > 0. \quad (6.5)$$

The pitch angle is given by

$$\cot \alpha = \left| \frac{R \partial \phi}{\partial R} \right|. \quad (6.6)$$
We now conduct a simple thought experiment. At some initial time $t = 0$ we paint a narrow stripe or arm radially outward across the disk of a galaxy. The initial equation of the stripe is $\phi = \phi_0$, where ϕ is the azimuthal angle (Figure 6.8). The disk rotates with an angular speed $\Omega(R)$, where R is the distance from the center of the disk. The disk is said to be in differential rotation if $\Omega(R)$ is not independent of R. When the disk is in differential rotation the arm does not remain radial as the disk rotates. The location of the arm $\phi(R, t)$ is described by the equation

$$\phi(R, t) = \phi_0 + \Omega(R)t.$$
(6.8)

The pitch angle is given by equation (6.6),

$$\cot \alpha = R t \left| \frac{d \Omega}{d R} \right|.$$
(6.9)

For a galaxy with a flat circular-speed curve, $R \Omega(R) = v_0 = 200 \text{ km s}^{-1}$, $R = 5 \text{ kpc}$, and $t = 10 \text{ Gyr}$, the pitch angle would now be $\alpha = 0.14^\circ$, far smaller than observed pitch angles. This discrepancy is called the winding problem: if the material originally making up a spiral arm remains in the arm, the differential rotation of the galaxy winds up the arm in a time short compared with the age of the galaxy. A remarkably clear statement of the winding problem was given over a century ago by Wiczyński (1896).

3.2.3 Nearly circular orbits: epicycles and the velocity ellipsoid

In disk galaxies many stars are on nearly circular orbits, so it is useful to derive approximate solutions to equations (3.68a) that are valid for such orbits. We define

$$x = R - R_0,$$
(3.75)

where $R_0(L_z)$ is the guiding-center radius for an orbit of angular momentum L_z (eq. 3.72). Thus $(x, z) = (0, 0)$ are the coordinates in the meridional plane of the minimum in Φ_{eff}. When we expand Φ_{eff} in a Taylor series about this point, we obtain

$$\Phi_{\text{eff}} = \Phi_{\text{eff}}(R_0, 0) + \frac{1}{2} \left(\frac{\partial^2 \Phi_{\text{eff}}}{\partial R^2} \right)_{(R_0, 0)} x^2 + \frac{1}{2} \left(\frac{\partial^2 \Phi_{\text{eff}}}{\partial z^2} \right)_{(R_0, 0)} z^2 + O(xz^2).$$
(3.76)

Note that the term that is proportional to xz vanishes because Φ_{eff} is assumed to be symmetric about $z = 0$. The equations of motion (3.68a) become very simple in the epicycle approximation in which we neglect all terms in Φ_{eff} of order xz^2 or higher powers of x and z. We define two new quantities by

$$k^2(R_0) \equiv \left(\frac{\partial^2 \Phi_{\text{eff}}}{\partial R^2} \right)_{(R_0, 0)}; \quad \nu^2(R_0) \equiv \left(\frac{\partial^2 \Phi_{\text{eff}}}{\partial z^2} \right)_{(R_0, 0)},$$
(3.77)
for then equations (3.68a) become

\[\ddot{x} = -\kappa^2 x, \]
\[\ddot{z} = -\nu^2 z, \]

(3.78a) \hspace{1cm} (3.78b)

According to these equations, \(x \) and \(z \) evolve like the displacements of two harmonic oscillators, with frequencies \(\kappa \) and \(\nu \), respectively. The two frequencies \(\kappa \) and \(\nu \) are called the epicycle or radial frequency and the vertical frequency. If we substitute from equation (3.68b) for \(\Phi_{0w} \) we obtain\(^3\)

\[\kappa^2(R_0) = \left(\frac{\partial^2 \Phi}{\partial R^2} \right)_{(R_0,0)} + \frac{3L_z}{R_0^2} = \left(\frac{\partial^2 \Phi}{\partial R^2} \right)_{(R_0,0)} + \frac{3}{R_0} \left(\frac{\partial \Phi}{\partial R} \right)_{(R_0,0)}, \]

(3.79a)

\[\nu^2(R_0) = \left(\frac{\partial^2 \Phi}{\partial R^2} \right)_{(R_0,0)}. \]

(3.79b)

Since the circular frequency is given by

\[\Omega^2(R) = \frac{1}{R} \left(\frac{\partial \Phi}{\partial R} \right)_{(R,0)} = \frac{L_z}{R^2}, \]

(3.79c)

equation (3.79a) may be written

\[\kappa^2(R_0) = \left(\frac{R^4\Omega^2}{dR} + 4\Omega^2 \right)_{R_0}. \]

(3.80)

Note that the radial and azimuthal periods (eqs. 3.17 and 3.19) are simply

\[T_r = \frac{2\pi}{\kappa}, \quad T_\psi = \frac{2\pi}{\Omega}. \]

(3.81)

Very near the center of a galaxy, where the circular speed rises approximately linearly with radius, \(\Omega \) is nearly constant and \(\kappa \approx 2\Omega \). Elsewhere \(\Omega \) declines with radius, though rarely faster than the Kepler falloff, \(\Omega \propto R^{-3/2} \), which yields \(\kappa = \Omega \). Thus, in general,

\[\Omega \lesssim \kappa \lesssim 2\Omega. \]

(3.82)

Using equations (3.19) and (3.81), it is easy to show that this range is consistent with the range of \(\Delta \psi \) given by equation (3.41) for the isochrone potential.

\(^3\) The formula for the ratio \(\kappa^2/\nu^2 \) from equations (3.79) was already known to Newton; see Proposition 45 of his Principia.

6.2 Wave mechanics of differentially rotating disks

6.2.1 Preliminaries

(a) Kinematic density waves The galactocentric distance of a particle that orbits in the equatorial plane of an axisymmetric galaxy is a periodic function of time with period \(T_r \) (see eq. 3.17). During the interval \(T_r \), the azimuthal angle increases by an amount \(\Delta \phi \) (eq. 3.18b). These quantities are related to the radial and azimuthal oscillation frequencies \(\Omega_r = 2\pi/T_r \) and \(\Omega_\phi = \Delta \phi/T_r \). In general, \(\Delta \phi/(2\pi) \) is irrational, so the orbit forms a rosette figure such as the one shown in Figure 3.1.

Now suppose that we view the orbit from a frame that rotates at angular speed \(\Omega_\phi \). In this frame, the azimuthal angle is \(\phi_\theta = \phi - \Omega_\phi t \), which increases in one radial period by \(\Delta \phi_\theta = \Delta \phi - \Omega_\phi T_r \). Therefore we can choose \(\Omega_\phi \) so that the orbit is closed; in particular, if \(\Delta \phi_\theta = 2\pi n/m \), where \(m \) and \(n \) are integers, the orbit closes after \(m \) radial oscillations. In this case

\[\Omega_\phi = \Omega_\theta - \frac{n\Omega_r}{m} \approx \Omega - \frac{n\kappa}{m}, \]

(6.24)

where in the last equality we have approximated \(\Omega_\phi \) and \(\Omega_r \) by their values for nearly circular orbits, the circular frequency \(\Omega \) and the epicycle frequency \(\kappa \) (see eqs. 3.79). The appearance of the closed orbits in the rotating frame is shown in Figure 6.10.

In general \(\Omega(R) - n\kappa(R)/m \) will be a function of radius, so no single choice for \(\Omega_\phi \) can ensure that orbits at all radii are closed. In Figure 6.11 we show the behavior of \(\Omega - n\kappa/m \) for several values of \(m \) and \(n \). The curves are
The strength of the spiral structure can be parametrized by the amplitude of its Fourier components, defined by expressing the surface brightness as a Fourier series (eq. B.66),

$$I(R, \phi) = \frac{1}{I(R)} = 1 + \sum_{m=1}^{\infty} A_m(R) \cos m[\phi - \phi_m(R)] \quad (A_m(R) > 0). \quad (6.1)$$

Here $T(R) \equiv (2\pi)^{-1} \int_0^{2\pi} d\phi I(R, \phi)$ is the azimuthally averaged surface brightness at radius R, and A_m and ϕ_m are the amplitude and phase of the mth Fourier component.

If a single Fourier component m dominates the spiral structure, the strength can also be parametrized by the arm-interarm surface-brightness ratio K, which is related to A_m by

$$K = \frac{1 + A_m}{1 - A_m} \quad (6.2)$$

Most grand-design spiral galaxies have two arms and approximate two-fold rotational symmetry. In near-infrared light, which traces the surface density, the amplitude of the arms lies in the range $0.15 \lesssim A_2 \lesssim 0.6$ (Rix & Zaritsky 1995), corresponding to arm-interarm ratios of $1.4 \lesssim K \lesssim 4$. Grand-design spirals with $m \neq 2$ are rare, although a significant fraction of disk galaxies exhibit lopsided distortions ($A_1 \gtrapprox 0.2$) in their outer parts, and careful Fourier decomposition occasionally reveals three-armed spiral patterns (Rix & Zaritsky 1995). The dominance of two-armed patterns in grand-design spirals is a striking observational fact that demands explanation in a successful theory of spiral structure.

(b) Leading and trailing arms. Spiral arms can be classified by their orientation relative to the direction of rotation of the galaxy. A trailing arm is one whose outer tip points in the direction opposite to galactic rotation, while the outer tip of a leading arm points in the direction of rotation (see Figure 6.4).

It is not easy to determine observationally whether the arms of a given galaxy are leading or trailing. In face-on galaxies we cannot determine the leading arms (Pasha 1986; Buta, Byrd, & Freeman 2003), and transitory one-armed leading spirals can be produced by plausible dynamical processes, for example encounters with companion galaxies on retrograde orbits. Nevertheless, in the vast majority of cases spiral arms are trailing.

(c) The pitch angle and the winding problem. The pitch angle α at any radius R is the angle between the tangent to the arm and the circle $R = constant$ (see Figure 6.6); by definition $0 < \alpha < 90^\circ$.

It is useful to think of the center of each arm as a mathematical curve in the plane of the galaxy, which we write in the form $g(R, t) = constant$ where t is the time. Suppose that the galaxy has m-fold rotational symmetry, that is, the arm pattern is unchanged if we rotate the galaxy by $2\pi/m$ radians ($m > 0$). Then a more convenient expression, which defines the locations of all m arms, is

$$m\phi + f(R, t) = constant \pmod{2\pi}, \quad (6.3)$$

where $f(R, t) \equiv mg(R, t)$ is the shape function. It is also useful to introduce the radial wavenumber

$$k(R, t) = \frac{\partial f(R, t)}{\partial R}. \quad (6.4)$$

The sign of k determines whether the arms are leading or trailing. If, as we shall always assume, $m > 0$ and the galaxy rotates in the direction of increasing ϕ, then

leading arms $\leftrightarrow k < 0$; trailing arms $\leftrightarrow k > 0. \quad (6.5)$

The pitch angle is given by

$$\cot \alpha = \left| \frac{R \partial \phi}{\partial R} \right|. \quad (6.6)$$
We now conduct a simple thought experiment. At some initial time \(t = 0 \) we paint a narrow stripe or arm radially outward across the disk of a galaxy. The initial equation of the stripe is \(\phi = \phi_0 \), where \(\phi \) is the azimuthal angle (Figure 6.8). The disk rotates with an angular speed \(\Omega(R) \), where \(R \) is the distance from the center of the disk. The disk is said to be in differential rotation if \(\Omega(R) \) is not independent of \(R \). When the disk is in differential rotation the arm does not remain radial as the disk rotates. The location of the arm \(\phi(R, t) \) is described by the equation

\[
\phi(R, t) = \phi_0 + \Omega(R)t. \tag{6.8}
\]

The pitch angle is given by equation (6.6),

\[
\cot \alpha = R \frac{d\Omega}{dR}. \tag{6.9}
\]

For a galaxy with a flat circular-speed curve, \(R\Omega(R) = v_c = 200 \text{ km s}^{-1} \), \(R = 5 \text{ kpc} \), and \(t = 10 \text{ Gyr} \), the pitch angle would now be \(\alpha = 0.14^\circ \), far smaller than observed pitch angles. This discrepancy is called the winding problem. If the material originally making up a spiral arm remains in the arm, the differential rotation of the galaxy winds up the arm in a time short compared with the age of the galaxy. A remarkably clear statement of the winding problem was given over a century ago by Wilcynski (1893).

3.2.3 Nearly circular orbits: epicycles and the velocity ellipsoid

In disk galaxies many stars are on nearly circular orbits, so it is useful to derive approximate solutions to equations (3.68a) that are valid for such orbits. We define

\[x \equiv R - R_g, \tag{3.75} \]

where \(R_g (L_z) \) is the guiding-center radius for an orbit of angular momentum \(L_z \) (eq. 3.72). Thus \((x, z) = (0, 0) \) are the coordinates in the meridional plane of the minimum in \(\Phi_{\text{eff}} \). When we expand \(\Phi_{\text{eff}} \) in a Taylor series about this point, we obtain

\[
\Phi_{\text{eff}} = \Phi_{\text{eff}}(R_g, 0) + \frac{1}{2} \left(\frac{\partial^2 \Phi_{\text{eff}}}{\partial R^2} \right)_{(R_g, 0)} x^2 + \frac{1}{2} \left(\frac{\partial^2 \Phi_{\text{eff}}}{\partial z^2} \right)_{(R_g, 0)} z^2 + O(xz^2). \tag{3.76}
\]

Note that the term that is proportional to \(xz \) vanishes because \(\Phi_{\text{eff}} \) is assumed to be symmetric about \(z = 0 \). The equations of motion (3.68a) become very simple in the epicycle approximation in which we neglect all terms in \(\Phi_{\text{eff}} \) of order \(x^2 \) or higher powers of \(x \) and \(z \). We define two new quantities by

\[
k^2(R_g) \equiv \left(\frac{\partial^2 \Phi_{\text{eff}}}{\partial R^2} \right)_{(R_g, 0)}; \quad \nu^2(R_g) \equiv \left(\frac{\partial^2 \Phi_{\text{eff}}}{\partial z^2} \right)_{(R_g, 0)}, \tag{3.77}
\]
for then equations (3.68a) become

\[\ddot{x} = -\kappa^2 x, \]
(3.78a)

\[\ddot{z} = -\nu^2 z. \]
(3.78b)

According to these equations, \(x \) and \(z \) evolve like the displacements of two harmonic oscillators, with frequencies \(\kappa \) and \(\nu \), respectively. The two frequencies \(\kappa \) and \(\nu \) are called the epicycle or radial frequency and the vertical frequency. If we substitute from equation (3.68b) for \(\Phi \), we obtain²

\[\kappa^2(R_0) = \left(\frac{\partial^2 \Phi}{\partial R^2} \right)_{(R_0,0)} + \frac{3L_2^2}{R_0^4} = \frac{\partial^2 \Phi}{\partial R^2} \bigg|_{(R_0,0)} + \frac{3}{R_0^2} \frac{\partial \Phi}{\partial R} \bigg|_{(R_0,0)}, \]
(3.79a)

\[\nu^2(R_0) = \left(\frac{\partial^2 \Phi}{\partial z^2} \right)_{(R_0,0)}. \]
(3.79b)

Since the circular frequency is given by

\[\Omega^2(R) = \frac{1}{R} \frac{\partial \Phi}{\partial R} \bigg|_{(R,0)} = \frac{L_2^2}{R^3}, \]
(3.79c)

equation (3.79a) may be written

\[\kappa^2(R_0) = \left(R \frac{\partial \Omega^2}{\partial R} + 4\Omega^2 \right)_{R_0}. \]
(3.80)

Note that the radial and azimuthal periods (eqs. 3.17 and 3.19) are simply

\[T_r = \frac{2\pi}{\kappa}; \quad T_\psi = \frac{2\pi}{\Omega}. \]
(3.81)

Very near the center of a galaxy, where the circular speed rises approximately linearly with radius, \(\Omega \) is nearly constant and \(\kappa \approx 2\Omega \). Elsewhere \(\Omega \) declines with radius, though rarely faster than the Kepler falloff, \(\Omega \propto R^{-3/2} \), which yields \(\kappa = \Omega \). Thus, in general,

\[\Omega \lesssim \kappa \lesssim 2\Omega. \]
(3.82)

Using equations (3.19) and (3.81), it is easy to show that this range is consistent with the range of \(\Delta \psi \) given by equation (3.41) for the isochrone potential.

² The formula for the ratio \(\kappa^2/\Omega^2 \) from equations (3.79) was already known to Newton; see Proposition 45 of his Principia.

6.2 Wave mechanics of differentially rotating disks

6.2.1 Preliminaries

(a) Kinematic density waves The galactocentric distance of a particle that orbits in the equatorial plane of an axisymmetric galaxy is a periodic function of time with period \(T_r \) (see eq. 3.17). During the interval \(T_r \), the azimuthal angle increases by an amount \(\Delta \phi \) (eq. 3.18b). These quantities are related to the radial and azimuthal oscillation frequencies \(\Omega_r = 2\pi/T_r \) and \(\Omega_\psi = \Delta \phi /T_r \). In general, \(\Delta \phi / (2\pi) \) is irrational, so the orbit forms a rosette figure such as the one shown in Figure 3.1.

Now suppose that we view the orbit from a frame that rotates at angular speed \(\Omega_p \). In this frame, the azimuthal angle is \(\phi_p = \phi - \Omega_p t \), which increases in one radial period by \(\Delta \phi_p = \Delta \phi - \Omega_p T_r \). Therefore we can choose \(\Omega_p \) so that the orbit is closed; in particular, if \(\Delta \phi_p = 2\pi n/m \), where \(m \) and \(n \) are integers, the orbit closes after \(m \) radial oscillations. In this case

\[\Omega_p = \Omega_\psi - \frac{n\Omega_r}{m} \simeq \Omega - \frac{n\kappa}{m}, \]
(6.24)

where in the last equality we have approximated \(\Omega_\psi \) and \(\Omega_r \) by their values for nearby circular orbits, the circular frequency \(\Omega \) and the epicycle frequency \(\kappa \) (see eqs. 3.79). The appearance of the closed orbits in the rotating frame is shown in Figure 6.10.

In general \(\Omega(R) - n\kappa(R)/m \) will be a function of radius, so no single choice for \(\Omega_p \) can ensure that orbits at all radii are closed. In Figure 6.11 we show the behavior of \(\Omega - n\kappa/m \) for several values of \(m \) and \(n \). The curves are...
Figure 6.11 Behavior of $\Omega - \kappa/n$ in: (top) the isochrone potential (eq. 2.47); (bottom) Model I for our Galaxy, as described in §2.7.

plotted for two representative galactic circular-speed curves, the isochrone potential (eq. 2.47) and Model I for our Galaxy, as described in Table 2.3.

This diagram exhibits an intriguing fact noticed by Lindblad many decades ago: while most of the $\Omega - \kappa/n$ curves vary rapidly with radius, the curve for $n = 1, m = 2$ (or $n = 2, m = 4$, etc.) is relatively constant across much of the galaxy. To understand the significance of Lindblad’s result, let us suppose for the moment that $\Omega - \kappa/n$ were exactly constant, and equal to some number Ω_p. Then in a frame rotating at Ω_p, the orbits of the type shown as a dotted line in the left panel of Figure 6.10a would be exactly closed at every radius. Hence we could set up a nested, aligned set of orbits covering a range of radii, as shown in Figure 6.12a. If we fill up these orbits with stars we create a bar-like pattern, which is stationary in the rotating frame and appears as a density wave rotating at the pattern speed Ω_p in the inertial frame. By rotating the axes of the ellipses we can create leading or trailing spiral density waves as in Figure 6.12b and c.

In a real galaxy $\Omega - \kappa/n$ is not exactly constant. Hence, no matter what the value of Ω_p, most orbits are not exactly closed. The orientations of different orbits drift at slightly different speeds, so the pattern tends to twist or wind up. This is a modified version of the winding problem which we have already discussed—but now applied to density waves rather than material arms—and the rate of winding can be calculated in a similar way. Let $\phi_p(R, t)$ be the angle of the major axis of the pattern, as viewed in the frame rotating at the pattern speed. Let us suppose that the major axes are aligned at $t = 0$; thus $\phi_p(R, 0) = \phi_0$. The drift rate is $d\phi_p/dt = \Omega - \kappa/n - \Omega_p$; thus

$$\phi_p(R, t) = \phi_0 + [\Omega(R) - \kappa/n(R) - \Omega_p] t$$

(cf. eq. 6.8). Equation (6.6) now gives the pitch angle as

$$\cot \alpha = R \frac{d(\Omega - \frac{1}{2} \kappa)}{dR}.$$

In Model I for the Galactic potential of §2.7, the average of $R d(\Omega - \frac{1}{2} \kappa)/dR$ is about 7 km s$^{-1}$ kpc$^{-1}$ between 5 and 10 kpc, and after $t = 10$ Gyr the pitch angle in this region is about $\alpha = 0.8^\circ$. For comparison we computed after equation (6.9) that a material arm would have $\alpha < 0.2^\circ$ in a galaxy with a similar circular-speed curve. Thus, the wave pattern winds up much more slowly than the material arm by a factor of five or so. Although the pitch angle is still too small by a factor 10-20, we have come some way towards resolving the winding problem. We conclude that in galaxies with circular-speed curves similar to our own, $n = 1, m = 2$ density waves can resist the winding process much better than material arms. This result suggests a natural explanation for the prevalence of two-armed spirals, providing we can find a way to adjust the slow drift rates of all the orbits to a common standard.

Density waves of the type described above are called kinematic density waves because they involve only the kinematics of orbits in an axisymmetric potential, whereas the orbits will deviate from the paths we have assumed...
In reality, the orbits will not be exactly closed in the corotating frame. Gravity can help: can drive an instability.

The simplest type of instability is the Jeans instability for a spherical distribution. Jeans found that systems with a mass larger than the Jeans mass are unstable.