
Formation of Disk Galaxies
(Part II)

February 12

Layout of the Course

Feb 2:  Course Introduction, Overview, and Galaxy Formation Basics
Feb 9:  Disk Galaxies (I)
Feb 12:  Disk Galaxies (II)
Feb 16:  Disk Galaxies (III) / Collisionless Stellar Dynamics
Feb 23:  Collisionless Stellar Dynamics + Vlasov/Jeans Equations
Feb 26:  Vlasov/Jeans Equations / Elliptical Galaxies (I)
Mar 9:  Elliptical Galaxies (II)
Mar 23:  Elliptical Galaxies (III)
Mar 30:  Dark Matter Halos
Apr 13:  Large Scale Structure
Apr 20: Galaxy Stellar Populations
Apr 23: Lessons from Large Galaxy Samples at z<0.2
May 4: Evolution of Galaxies with Redshift
May 11: Galaxy Evolution at z>1.5 / Review for Final Exam

Lectures 

Problem Set 1
(Distributed last week, due on Feb 23)

Galaxies: Structure, Dynamics, and Evolution

Problem Set 1

Instructor: Dr. Bouwens

Here is problem set #1. The entire problem set will be due before class on

Monday, February 23 (email them to Wout and hand them before class).

Be sure to pay extra attention to problem 3, as your solution to that prob-

lem will be checked carefully and used in determining your homework grade.

1. Derive the potential from the density for a point-source mass M , uniform

density ⇢ sphere, and a singular isothermal sphere ⇢0/r
2
(where ⇢0 is the

density at radius 1 and r is the radius) using the following equation presented

in class:
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Show your work. As the potential for a singular isothermal sphere blows

up at radius 0, please derive an expression for the potential such that the

potential equals zero at r0.

2. The model given by ⇢ = 1/(1 + r
2
)
2.5

is a Plummer model. Derive the

potential of this model. What is the total mass?

3. Assume that the age of the universe is 13 Gyr and ⌦ = 1 and ⇠100% of

the mass-energy density of the universe is in the form of matter.

(a) Using the equation
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where r is the scale factor of the universe and ⇢ = ⇢0/r
3
, show that r in-

creases with time as t
2/3

. What does const equal for a universe where ⌦ = 1?

(b) What is the Hubble constant H0 = (ṙ/r)0 that would yield a universe

with an age of 13 Gyr?

(c) Calculate the age of the universe at redshifts z of 1, 5, and 10. Note

that for redshifts z of 1, 5, and 10, the scale factor r for the universe was

(1 + z) smaller than it is today (i.e., r = r0/(1 + z) where r0 is the scale

factor today).

(d) How long has the light travelled which was emitted at z = 1?

4. (a) Consider that there was some overdense region in the universe which

had a density ⇢ which was 2⇢crit (the critical density) which otherwise had

1
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spherical symmetry. What was the density of that sphere relative to ⇢crit

when that sphere was 10 times smaller?

(b) Imagine that the universe as a whole had an average density ⇢ equal

to 2⇢crit at the present time. How overdense was the universe when the

universe was 10 times smaller?

5. In lecture, we examined an arbitrary dynamical system and determined

how that dynamical system can be scaled in position, mass, and velocity

and still maintain the same qualitative form.

(a) Show explicitly that the virial theorem produces the same result for the

scaling relations.

(b) Derive Kepler’s Third Law using the scaling relations found in class.

(c) Do the same sort of scaling relations exist for stars? Is it possible to

scale the position, velocity, and mass for particles in a star in the same way

– and have a system with the same qualitative form? Which equilibrium is

retained and which is lost?

6. Prove that M / T
3/2

/n
1/2

. Use the fact that �
2 / T and n / M/R

3
.

Comment on the importance of this scaling relative to the T vs. n diagram

used to understand for which mass sources Tcool < Tdyn (i.e., where galaxy

formation is e�cient).

7. If you assume that the rotational speed of the Milky Way is constant as

a function of radius and has a value of 220 km/sec, what is the epicyclic

frequency at the sun (distance from the center = 8 kpc) ? How does this

compare to the orbital frequency ⌦?
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Why attend?

To prepare for final exam!   Exam will include ~1-2 homework problems!

20% of Homework Grade is from Attendance in Practical Classes
(5% of your final grade)

Helpful for learning the material!  Learn from your peers!

Problems 5 and 6 (to be discussed)

Note that there will be 6 more practical sessions.

Review of Material from Last 
Week

Galaxy Formation:  Major Steps

Virialized 
Overdensity

Gravitational 
Collapse

Overdense 
Region
In Early

Universe

Disk Galaxy 
(Supported by Angular 

Momentum)

Gas 
Cooling

Spheroid Galaxy 
(Random Motion 

Supported)

Merger
Violent 

Relaxation

Let’s consider a collapsed object with both dark matter 
(does not cool) + Baryons (can cool)

How extended is the baryonic mass at the 
center of collapsed sources?

Disk Galaxy

Dark Matter



Global Properties of Disk Galaxies

The Size of Disk Galaxies is likely determined by the angular momentum of the halo

spinning slow spinning moderate speed spinning fast

after cooling after cooling after cooling

intermediate size,
more dense disk galaxy

large, 
lower density galaxy disk

(small enough, may not be 
stable as disk galaxy)

higher surface brightness lower surface brightness

What is the reason for their disk-like, flat geometry?

A rotating disk is minimum energy configuration which preserves angular momentum

The other important variable is their mass which sets their luminosity and rotation 

And so other variables like their circular velocity appear to closely trace what we 
observe based on their luminosity and mass

luminosity

Outline

Tully-Fisher relation

Rotation curves and mass distribution

In the I-band Giovanelli
et al.a find from 555
galaxies in 24 clusters a
slope of 7.68 ± 0.13 (in
magnitudes, which
corresponds to 3.07 ±
0.05).

aR. Giovanelli & 6 other
authors, Ap.J. 477, L1
(1997)

Piet van der Kruit, Kapteyn Astronomical Institute Rotation curves and dark matter

~2 x circular velocity

Tully Fisher Relationship

Luminosity ∝ vc4

Global Properties of Disk Galaxies

Two variables (mass + angular momentum) of collapsed halos appear to 
determine most of the physical properties of a spiral galaxy.

Disk Galaxy with Dark 
Matter

Dark Matter Halo

Disk Galaxy Disk Galaxy

Disk Galaxy (if no Dark 
Matter)

(Most of mass would
Concentrate in center)

The halo out here would likely 
contain much less mass

(Rotation curves would be 
Keplarian)

What is the evidence for significant mass in galaxies from dark matter?

Mass of Galaxy Clusters:

Inferences from Velocity Dispersion of Cluster Galaxies

M ~ v2 R / G 

Inferences assuming Hydrostatic Equilibrium of X-ray gas

29-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c7-25

7.4 X-ray gas in halos of Ellipticals BT
10.1-7(c)

Many luminous ellipticals have huge X-ray halos

Example: NGC 720

29-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c7-26

What is equilibrium of gas ?

Balance pressure with gravity
For spherical systems, gravity balances the pressure
gradient if

dp

dr
= −ρ

GM(r)

r2

Use the ideal gas law

p =
ρkBT

m

Since p = ρ v2
x , this implies v2

x = 1
3

v2 =
kBT

m
Now we find
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Note how comparable this equation is to the isotropic
spherical formula for stellar systems.

Observations: example NGC 720

from analysis of the spectrum (continuum and lines)
for NGC 720: T = 7 × 106K

Pressure Gradient Gravitational Force
Determine temperature, density of gas to derive pressure

rotating
(receding)

rotating
(approaching)

29-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c7-15

model looks like:

We can now model the galaxy. Take the surface bright-
ness profile, and calculate the rotation curve if the
mass-to-light ratio were constant:

29-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c7-16

Obviously, an additional mass component is necessary
to explain the rotation curve.

Fit rotation curves:

Constant M/L for starlight
add halo, with ρ = ρ0/(1 + (r/a)2)

Example for NGC 3198

Problems: The fit is never unique. Different M/L’s
for the disk, and different values of a, ρ0 for the

(rotation curve from stars alone)

(observed rotation curve)

R
ot
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n 
Ve
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ty

Vc2 (observed) = G(Mstars(R)+Mhalo(R))/R = GMstars(R)/R + 
GMhalo(R)/R

Mass of Galaxies:
Inferences from the Rotation Curve

Use inferred deflection to infer mass of cluster

Inferences from Gravitational Lensing

Inferences from Cluster Collisions

-- ionized gas from the colliding clusters 
“run into each other” forming a shock

-- dark matter from the colliding 
clusters pass right through each 

other

this presents us with a situation where the light (from baryons) and 
mass (from dark matter) are in different places



Brief Context: Structure of Disk Galaxy
Four Basic Components:

1.  Thin Disk
2.  Thick Disk
3.  Halo
4.  Bulge

13

Credit: ESA/Gaia/DPAC, Milky Way impression by Stefan Payne-Wardenaar (source)

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c03b-5

above that. Both the thin and the thick disk sepa-
rately go like ρ ∝ exp−(z/zh), where zh is the scale
height.

This is illustrated in the figure below

The thick disk is also apparent when the relation be-
tween age and metallicity is plotted.

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c03b-6

Thick disk stars are more metal poor and older. Caused
by a merger ? Or “initial conditions ? ”

Existence of Both Thin and Thick Disk

Density Thin Disk 
dominates

Thick Disk 
Dominates

Of course, with recent 
Gaia data, it is clear that 
even these distinctions 

are too simple.

Properties of Components

Age of StarsYoung Old

Thin Disk Thick Disk

Stellar Halo

Bulge

Lower 
Metallicity

Higher 
Metallicity

Low 
Rotation 
Speed

Higher 
Rotation 
Speed



Ages & Metal Abundances of Different 
Components

54 Bland-Hawthorn1 & Freeman

components give a rough indication of the number of SN II enrichments which
preceded their formation, although we note that as time passes, an increas-
ing fraction of Fe is produced by SN Ia events. For a given parcel of gas in a
closed system, only a few SN II events are required to reach [Fe/H] ⇡ -3, 30
to 100 events to get to [Fe/H] ⇡ -1.5, and maybe a thousand events to reach
solar metallicities. We wish to stress that [Fe/H] is not a clock: rather it is
a measure of supernova occurrences and the depth of the di↵erent potential
wells that a given parcel of gas has explored.

Fig. 1.16 The age-metallicity relation of the Galaxy for the di↵erent components (see
text): TDS � thin disk stars; TDO � thin disk open clusters; ThDS � thick disk stars;
ThDG � thick disk globulars; B � bulge; YHG � young halo globulars; OHG � old halo
globulars.

During the latter stages of the Golden Age, most of the baryons began to
settle to a disk for the first time. Two key observations emphasize what we
consider to be the mystery of the main epoch of baryon dissipation. First,
there are no stars with [Fe/H] < -2.2 which rotate with the disk. Secondly,
despite all the activity associated with the Golden Age, at least 80% of the
baryons appear to have settled gradually to the disk over many Gyr; this
fraction could be as high as 95% if the bulge formed after the disk.

About 10% of the baryons reside in a ‘thick disk’ which has [Fe/H] ⇡ -2.2
to -0.5, compared to the younger thin disk with [Fe/H] ⇡ -0.5 to +0.3. It is
striking how the globular clusters and the thick disk have similar abundance
ranges, although the detailed abundance distributions are di↵erent. There
is also a similarity in age: globular clusters show an age range of 12 to 14
Gyr, and the thick disk appears to be at least 12 Gyr old. Both the thick disk

Thin Disk

Old Halo

Young Halo

Bulge

Characteristics of Stars in the Stellar Halo of Milky 
Way very different than the Disk

Stellar Halo
Low Metallicity

Old Ages
Little Rotation

Older, lower metallicity star 
clusters

Thin Disk
High Metallicity

High Rotation
Young Ages

Younger, higher metallicity star 
clusters

This motivated deriving a model to explain the halo.

Two Competing Models for Formation of Stellar Halo in Milky Way

ELS Monolithic Collapse
Halo formed in first GyrANNUAL EDITIONS

7

halo follow elliptical orbits that cut across the plane of the
Milky Way.

These distinctions could be explained, said ELS, by the
way in which the Galaxy formed (Figure 6). According to
ELS, the Milky Way began as a spherical cloud of gas—a
protogalaxy—that was born collapsing toward its center.
The original gas was poor in metals, and so stars formed
as the cloud was collapsing would also be metal poor.
These newly made stars maintained the kinematic prop-
erties of the gas in the collapsing cloud, and so followed
eccentric orbits around the center of the Galaxy, forming
the population II stars of the halo and the globular clus-
ters. As the cloud contracted, some of its energy would
have been lost to heat in a dissipative collapse. The rota-
tional speed of the collapsing cloud would also increase
due to the conservation of angular momentum (which is
a function of rotational velocity and radius). Such
changes would induce the cloud to collapse preferentially
along its rotational axis, so that it would become progres-
sively flatter—and thus form a disk. The gas in the flat-
tened disk would be enriched in metals produced by
supernovae from the first generation of stars. Like their
counterparts in the halo, stars formed in the flattened disk

would preserve the metallicity and kinematics of the gas
at the time of their birth, and so form the population I
stars. All of this took place within 300 million years ac-
cording to ELS.

In the decades that followed, a number of observations
indicated that the Galaxy could not have formed in such
a rapid collapse. The ELS model, as originally proposed,
could not be right. One notable alternative was suggested
by the American astronomers Leonard Searle and Robert
Zinn in 1978. Searle and Zinn had been studying the glob-
ular dusters in the galactic halo and noticed a wide dis-
crepancy in the metallicity of these objects. According to
their metallicities, some globular clusters appeared to be
significantly older than others. The spread in the globular
clusters’ ages meant that they could not have been
formed in the relatively brief timescale proposed by ELS.

Instead of a single-cloud collapse, Searle and Zinn pro-
posed that the halo of the Milky Way formed by the ag-
gregation of many cloud fragments, each of which may
have already formed stars and globular clusters (Figure
7). Since the fragments had independent evolutionary
histories, they could form objects of varying ages. In some
sense the Searle and Zinn model has been confirmed by

Figure 6. The "ELS" model holds that the Milky Way formed from the rapid collapse of a single cloud of gas. Stars formed early
in the collapse maintained the dynamics of the metal-poor gas and so now travel around the Galaxy in elliptical orbits within
the halo. As the cloud collapsed (red arrows) preferentially along its rotational axis, it formed a disk that had been enriched with
the metals produced by the early generations of halo stars.

Searle & Zinn Hierarchical Model
Halo built up from mergersArticle 10. The Formation and Evolution of the Milky Way

8

observations that show that small, or “dwarf,” galaxies
continue to collide with the Milky Way to this day. These
dwarf galaxies may have evolved from the cloud frag-
ments that failed to become part of the Milky Way early
in its evolution. The Sagittarius dwarf galaxy, which
was discovered in 1996, appears to be just such a frag-
ment. Over the course of billions of years it oscillates
back and forth through the galactic plane, and with each
pass it loses some of its mass. In time it will be com-
pletely consumed.

Other authors have proposed various serial and parallel
models of the Galaxy’s formation. In a serial model, the
Galaxy forms as a continuous process during a single in-
fall event. The halo represents the early phases of the pro-
cess, and the disk forms only after the halo is completed.
The ELS model is sequential in this manner, except that
everything is formed very quickly. In contrast, parallel
models assume that the various galactic components
started forming at the same time from the same gas, but
then evolved at different rates according to their respec-
tive star-formation histories.

A Halo-Disk Discontinuity?
New observations suggest that none of the early models
holds a complete explanation of how the Milky Way was
made. In particular, models such as ELS suggest that the
formation of the disk involved a smooth dissipational col-
lapse of the halo. Such models also assume a continuous
evolutionary transition in the formation of the thick disk
and the thin disk. It appears, however, that our galaxy’s
formation was neither smooth nor continuous.

According to Rosemary Wyse of Johns Hopkins Uni-
versity and Gerard Gilmore of the Institute of Astronomy
in the United Kingdom, the halo and the thin disk are dis-
tinct entities that could not have formed from a single
cloud of gas. They base their distinctions on the angular
momenta of the Galaxy’s stellar populations. They show
that the halo and the bulge tend to consist of low-angular-
momentum stars, whereas the thick disk and the thin disk
typically contain stars with a high angular momentum.
Since angular momentum is conserved, these distinctions
reflect the intrinsic characteristics of the parent gas from
which the stars evolved. So these galactic components
must have originated from separate clouds of material
with different angular momenta.

There is also evidence that the rate of star formation
has not been continuous in the Galaxy’s history. Observa-
tions by Raffaele Gratton, of the Astronomical Observa-
tory of Padova, Italy, and his colleagues, suggest that the
rate of star formation decreased suddenly in the solar
neighborhood fairly early in the Galaxy’s evolution. Grat-
ton and his colleagues studied the relative chemical abun-
dances of iron compared with two alpha (a) elements
(oxygen and magnesium) for stars in the halo, the thick
disk and the thin disk. At a certain point in the Galaxy’s
history, as measured along an [a/H] timeline, there ap-
pears to be a “gap” during which almost no alpha ele-
ments were produced (Figure 8). This is evident as a
sudden increase in [Fe/a] while [a/H] remains constant.
The identity of the stars on either side of the gap suggest
that star formation effectively stopped after the formation
of the halo / thick disk (which are both very old) but be-
fore the thin disk formed.

The duration of this gap can also be deduced. Since the
alpha elements are produced by the type II supernovae,
which are the explosions of short-lived stars, their rate of
production is effectively a measure of the star-formation
rate. On the other hand, the quantity of iron actually in-
creased during this time because the binary systems that
produced the type Ia supernovae were created long be-
fore the gap in star formation. Given the typical matura-
tion period of type Ia supernovae, the data suggest that
the gap lasted no more than a billion years.

By studying the kinematics of these same stars, Grat-
ton’s team identified three distinct populations. One pop-
ulation made up the halo, part of the thick disk and
perhaps the bulge stars (which originated from the dissi-
pative collapse of part of the halo). Another population of
stars made up the thin disk, which resulted from an ex-
treme dissipative collapse of the disk. And the third pop-
ulation consisted of a relatively small number of stars in
the thick disk that had a unique origin. This third popula-
tion of metal-poor stars (with [Fe/H] less than -1.0) prob-
ably formed in satellite galaxies and was then added to
the Milky Way during the gap in star formation. In this
view the thick disk actually has two components.

Other scientists have also found that the thick disk and
the thin disk are kinematically distinct. Timothy Beers of

Figure 7. The Searle and Zinn model proposes that the Milky
Way formed from an aggregation of several cloud fragments.
This model helps to explain the observed differences in the
metallicity of globular clusters in the galactic halo. Since
each of the cloud fragments had independent histories, some
may have evolved more than others, and so have produced
objects of greater metallicity.

Gaia-Enceladus: 2) Halo kinematics

1- Still a prominent thick disk

2- Small clumps
(predicted for haloes built via mergers)

3- Large, slightly retrograde feature

(Koppelman et al. 2018)

Web-Seminar OAAb – November 18, 2021 – Teramo (Italy)

Angular Momenta of Halo 
Stars from GAIA

Gaia-
Enceladus Appears to Be 

Largely Correct 
(Using new GAIA 

data)
✔︎

1.  the velocity dispersion of a population of stars depends on the age.  The older the population 
of stars, the higher the velocity dispersion.

Heating is thought to be driven by mergers (important) and also the impact of the spiral 
arms and molecular clouds.

2.  There is a relation between the metallicity of stars and their age
Old stars have a lower metallicity than your stars.  This suggests that the metallicity 

of the gas (from which the stars formed) increased gradually with time.

Properties of Stars in Disk Galaxy:

3.  Abundance ratio of elements are also a function of the metallicity.

This can be due to the fact that different enrichment mechanisms (i.e., 
supernovae) produce metals in different ratios.

time

SN II (fast time scale) SN Ia (slow time scale)

produce alpha elements produce Fe



How the Scale Height of Stars in Disk Galaxies 
Changes with Time

cooling causes gas to settle in a very thin 
disk (i.e., the minimum energy 

configuration that preserves angular 
momentum)

stars form from the cool gas and begin 
their lives in the plane of the disk

as time goes on, due to some heating 
mechanism (e.g., mergers with small 

galaxies), stars are given small kicks out of 
the plane (and oscillate in and out of plane)

the scale height of the stars increases as 
time goes on (due to more collisions)

while old stars have large scale heights, 
newly formed stars have small scale heights 

(formed in the gas disk)

Gas Composition of Spiral Galaxies

Obviously, spiral galaxies have gas (neutral hydrogen, molecular hydrogen, ionized 
hydrogen).   Most of the gas resides in the disk.   Most of the molecular gas content is 

in the center of the galaxy, while most of the neutral gas content is on the outer 
parts of galaxies.

New Material

What else has been learned about the Milky Way 
from GAIA?

Milky Way is a Barred Spiral The Disk of the Milky Way is 
Significantly Warped



What else has been learned about the Milky Way 
from GAIA?

How can we understand spiral structure 
in disk galaxies?

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-1

3. Structure of disc galaxies

This is the typical image of a spiral

Now analyze in detail

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-2

3.1 How to get spiral arms ?

NGC 6814

Whirlpool Galaxy
Messier 51

Well-defined spiral structure is present in many galaxies.

In many cases, the spiral structure is so well organized that
the galaxies are called “grand-design” spirals

Other times the spiral structure is less well organized

Flocculent Spiral Galaxy: NGC 2841



How is such spiral structure put in place?

How does it evolve?

Grand design spiral 

Multiple arm spiral 

NGC 6946 

Flocculent spiral Most spiral arms are trailing 

As disk galaxies rotate, do spiral arms lead or trail the 
rotation? 

How can we settle this observationally?

Impossible to tell for face-on spiral galaxies or edge on galaxies

Use galaxies that are mildly inclined

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-3 3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-4

How can we distinguish the above from
this?

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-3 3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-4

As disk galaxies rotate, do spiral arms lead or trail the 
rotation? 

How can we settle this observationally?

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-3 3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-4

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-3 3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-4

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-3 3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-4

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-3 3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-4

globular clusters / 
novae behind disk 
will be reddened

Globular clusters / novae behind disk will be highly reddened

Look at globular clusters / novae in spiral galaxies

As disk galaxies rotate, do spiral arms lead or trail the 
rotation? 



Grand design spiral 

Multiple arm spiral 

NGC 6946 

Flocculent spiral Most spiral arms are trailing 

As disk galaxies rotate, do spiral arms lead or trail the 
rotation? 

Most spiral arms are 
found to be trailing. 

How do the arms in spiral galaxies evolve with 
time?

Now let us consider the time evolution of azimuthal position of 
each spiral arm:

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-5 3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-6

which is also a function of radius R (because of differential rotation)

φ Ω(R) = angular rotation speed

Implies angular rotation speed is 
smaller at large radii 

Ω(R) = vcircular / R

~ constant

Winding Problem

Winding problem

12

The revolution time for stars is smaller for stars on 
smaller radial orbits.

If the spiral arms rotate in the same way as the particles located in 
the spiral arms, differential rotation would cause the spiral arms to 

wind up.

Winding ProblemWinding problem

The problem: most spiral galaxies would be tightly wound by
now, which is inconsistent with observations.

Spiral arms cannot be a static structure (i.e. at di↵erent times,
arms must be made of di↵erent stars)

13

Assuming that the spiral arms rotate in the same way as the particles 
in these arms, one would predict that the spiral arms in a galaxy 

would wind up very quickly.

This is in contrast to what is observed!



Winding Problem: How big is the discrepancy?

Consider the pitch angle.

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-3 3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-4

We define the pitch angle α for spiral arms as follows:

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-5 3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-6

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-1

3. Structure of disc galaxies

This is the typical image of a spiral

Now analyze in detail

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-2

3.1 How to get spiral arms ?

NGC 6814

Fitting 2D light profiles of Spiral Galaxies

We can try to fit the two dimension 
surface brightness profile of spiral 

galaxies with the function:

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-3 3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-4

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-1

3. Structure of disc galaxies

This is the typical image of a spiral

Now analyze in detail

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-2

3.1 How to get spiral arms ?

NGC 7156

We can try to fit the two dimension 
surface brightness profile of spiral 

galaxies with the function:

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-3 3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-4

Fitting 2D light profiles of Spiral Galaxies What range of pitch angles are observed?



How do we predict the pitch angle will change?

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-3 3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-4

For galaxies with a flat rotational curve vc = RΩ = 200 km/s, 
R = 5 kpc, and t = 10 Gyr,  then α ~ 0.15 degrees (much 

smaller than observed)

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-5 3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-6

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-5 3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-6

cot α = Rt (vc / R2) = vct/R 

Observed pitch angles of ~10-20 degrees differs dramatically from 
expectation of 0.15 degrees from this simple baseline model.

Note Ω(R) = vcircular / R

Density Wave Theory

The spiral arms in disk galaxies are not fixed structures that rotate 
around the center of disk galaxies, but rather density waves.

Lin & Shu (1964-1966)

These density waves can move at a different speed than the stars 
within the galaxy itself.

The speed at which the spiral density waves propagate around the 
disk of a spiral galaxy is called the pattern speed Ωp.

We will investigate this in more detail, but first let us look at epicyclic 
motion by stars in galaxies!

How can we solve the winding problem?

G ~ 6.67 x 10−8  cm3 g-1 s-2

1 pc ~ 3.09 x 1018  cm
1 solar mass ~ 2 x 1033 g=> velocities ~ 164 km/s,   

radius ~ 5 kpc / mass ~ 3 x 1010 solar masses
Assume for galaxy:

REVIEW POINT from Bachelor Course — The dynamical time scale 
of galaxies is much shorter than the age of the universe - implying 

that galaxies are largely in a state of equilibrium.

v2 = ɸ(R) = GM/R (virial relation)

v = (GM/R)1/2

=> tdyn = 2 (radius) / velocity 
tdyn = 2 (5 kpc) / (164 km/s) ~ 6 x 107 years

tdyn ~ 6 x 107 years << tuniv = 1.3 x 1010 years

Density Wave Theory

The spiral arms in disk galaxies are not fixed structures that rotate 
around the center of disk galaxies, but rather density waves.

Lin & Shu (1964-1966)

These density waves can move at a different speed than the stars 
within the galaxy itself.

The speed at which the spiral density waves propagate around the 
disk of a spiral galaxy is called the pattern speed Ωp.

We will investigate this in more detail, but first let us look at epicyclic 
motion by stars in galaxies!

How can we solve the winding problem?



Epicyclic orbits

Epicycle Approximation IV
An important question is: “When is the epicycle approximation valid?”

First consider the z-motion: The equation of motion, z̈ = −ν2z implies a
constant density in the z-direction. Hence, the epicycle approximation is
valid as long as ρ(z) is roughly constant. This is only approximately true
very close to equatorial plane. In general, however, epicycle approx. is poor
for motion in z-direction.

In the radial direction, we have to realize that the Taylor expansion is only
accurate sufficiently close to R = Rg . Hence, the epicycle approximation is
only valid for small librations around the guiding center; i.e., for orbits with
an angular momentum that is close to that of the corresponding circular
orbit.

Epicyclic Motion

Stars that rotate around the center of disk galaxies are on epicyclic 
orbits:

This may not seem intuitive to you, but it is actually expected and you 
encountered this concept already in your study of the rotation of 

planets around the sun in the solar system.

Epicyclic orbits

Let us analyze the orbit of a star in some axisymmetric potential 
φ(R)

Assume that the star has angular momentum Lz

The energy of a star in this potential is as follows:

Orbits in Axisymmetric Potentials II
As for the spherical case, we can reduce the equations of motion to

R̈ = −∂Φeff

∂R z̈ = −∂Φeff

∂z

withΦeff (R, z) = Φ(R, z) + L2
z

2R2 the effective potential. The
L2

z/R2-term serves as a centrifugal barrier, only allowing orbits with
Lz = 0 near the symmetry-axis.

This allows us to reduce the 3D motion to 2D motion in Meridional Plane
(R, z), which rotates non-uniformly around the symmetry axis according to
θ̇ = Lz/R2.

In addition to simplifying the problem, it also allows the use of
surfaces-of-section to investigate the orbital properties.

For the energy we can write

E = 1
2

[
Ṙ2 + (Rθ̇)2 + ż2

]
+ Φ = 1

2

(
Ṙ2 + ż2

)
+ Φeff

so that the orbit is restricted to the area in the meridional plane satisfying
E ≥ Φeff . The curve bounding this area is called the zero-velocity curve
(ZVC) (since for a point on it v⃗ = 0).

where

Orbits in Axisymmetric Potentials II
As for the spherical case, we can reduce the equations of motion to

R̈ = −∂Φeff

∂R z̈ = −∂Φeff

∂z

withΦeff (R, z) = Φ(R, z) + L2
z

2R2 the effective potential. The
L2

z/R2-term serves as a centrifugal barrier, only allowing orbits with
Lz = 0 near the symmetry-axis.

This allows us to reduce the 3D motion to 2D motion in Meridional Plane
(R, z), which rotates non-uniformly around the symmetry axis according to
θ̇ = Lz/R2.

In addition to simplifying the problem, it also allows the use of
surfaces-of-section to investigate the orbital properties.

For the energy we can write

E = 1
2

[
Ṙ2 + (Rθ̇)2 + ż2

]
+ Φ = 1

2

(
Ṙ2 + ż2

)
+ Φeff

so that the orbit is restricted to the area in the meridional plane satisfying
E ≥ Φeff . The curve bounding this area is called the zero-velocity curve
(ZVC) (since for a point on it v⃗ = 0).

Centrifugal barrierGravitational 
Potential

Epicyclic orbits

How does Φeff (R) behave?

Orbits in Axisymmetric Potentials II
As for the spherical case, we can reduce the equations of motion to

R̈ = −∂Φeff

∂R z̈ = −∂Φeff

∂z

withΦeff (R, z) = Φ(R, z) + L2
z

2R2 the effective potential. The
L2

z/R2-term serves as a centrifugal barrier, only allowing orbits with
Lz = 0 near the symmetry-axis.

This allows us to reduce the 3D motion to 2D motion in Meridional Plane
(R, z), which rotates non-uniformly around the symmetry axis according to
θ̇ = Lz/R2.

In addition to simplifying the problem, it also allows the use of
surfaces-of-section to investigate the orbital properties.

For the energy we can write

E = 1
2

[
Ṙ2 + (Rθ̇)2 + ż2

]
+ Φ = 1

2

(
Ṙ2 + ż2

)
+ Φeff

so that the orbit is restricted to the area in the meridional plane satisfying
E ≥ Φeff . The curve bounding this area is called the zero-velocity curve
(ZVC) (since for a point on it v⃗ = 0).

Different Cases:

Point Mass: Φ (R) ~ 1/R
Isothermal Sphere: Φ (R) ~ log R
Homogeneous Density Φ (R) ~ R2

As R → 0,  Lz2/2R2 centrifugal term always dominates.

As R →∞,  Φ(R) term dominates.

φeff (R) has a minimum at some radius Rg.   Stars orbiting 
around a galaxy at that radius will be on a circular orbit.

What happens to Φeff(R) at large and small radii?

12-10-07 see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c4-1

4 Orbits in stationary Potentials (BT 3 to
page 107)

Now we have seen how to calculate forces and po-
tentials from the smoothed density ρ. We can now
analyse how stars move in this potential. Because two
body interactions can be ignored, we can analyse each
star by itself. We therefore speak of “orbits”

4.1 Orbits in spherical potentials

Potential function of r = |r⃗|: Φ = Φ(r)
equation of motion for star with unit mass

d2r⃗

dt2
= F (r)e⃗r

recall that r⃗ × r⃗ = 0 for any r⃗

d

dt

(

r ×
dr⃗

dt

)

=
dr⃗

dt
×

dr⃗

dt
+ r⃗ ×

d2r⃗

dt2
= F (r)r⃗ × e⃗r = 0

Hence L⃗ = r⃗ × ˙⃗r is constant with time. L⃗ = angu-
lar momentum/unit mass . L⃗ is always perpendicular
to the plane in which r⃗ and v⃗ lie. Since it is constant
with time, these vectors always lie in the same plane.
Hence the orbit is constrained to this plane.

Use polar coordinates (r, ψ) in orbital plane:

12-10-07 see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c4-2

rewrite equations of motion in polar coordinates
r̈ − rψ̇2 = F (r)
2ṙψ̇ + rψ̈ = Fψ

Because of the circular symmetry, we have Fψ = 0.
Hence:

2ṙψ̇ + rψ̈ =
1

r

dr2ψ̇

dt
= 0 ⇒ r2ψ̇ = rv⊥ = L = cst

r̈ − rψ̇2 = r̈ −
L2

r3
= −

dΦ

dr

where Φ is the potential.

Multiply the last equation by ṙ, and integrate w.r.t. t:

1

2
ṙ2 = E − Φ −

L2

2r2
= E − Φeff(r)

with E the energy.
This
equation governs
radial motion
in effective poten-
tial Φeff(r)

Motion possible
only when ṙ2 ≥ 0

rmin ≤ r ≤ rmax

pericenter apocenter
Typical form for

 Φeff (R)

Epicyclic orbits

Expand the potential φeff (R) about the radial position Rg and the vertical 
position z=0 as a Taylor series:

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-5 3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-6

The first order terms in this expansion dΦeff (R)/dx, dΦeff (R)/dz and the 
second order term d2Φeff (R)/dxdz are zero given that we are expanding 

the potential about a local minimum.

Represent the second derivatives of Φeff (R) with respect to R and z as κ 
and ν:

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-5 3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-6

where x = R - Rg.



Epicyclic orbits

Then the time evolution of x and z are as follows:

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-7 3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-8

and since Φeff = Φ + Lz2 / 2R2, we can also rewrite κ as

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-7 3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-8

Since dΦeff/dR = 0 at R = Rg

Epicycle Approximation I
We have defined the effective potentialΦeff = Φ + L2

z

2R2 . This has a
minimum at (R, z) = (Rg, 0), where

∂Φeff

∂R
= ∂Φ

∂R
− L2

z

R3 = 0

The radius R = Rg corresponds to the radius of a circular orbit with energy

E = Φ(Rg, 0) + 1
2
v2

c = Φ(Rg, 0) + L2
z

2R2
g

= Φeff .

If we define x = R − Rg and expandΦeff around the point
(x, y) = (0, 0) in a Taylor series we obtain

Φeff = Φeff (Rg, 0) + (Φx)x + (Φy)y + (Φxy)xy + 1
2(Φxx)x2+

1
2(Φyy)y2 + O(xz2) + O(x2z) + etc

where

Φx =
(

∂Φeff

∂x

)
(Rg,0)

Φxx =
(

∂2Φeff

∂x2

)

(Rg,0)
Φxy =

(
∂2Φeff

∂x∂y

)

(Rg,0)

By definition of Rg , and by symmetry considerations, we have that

Φx = Φy = Φxy = 0

Epicyclic orbits

Since we can write the orbital frequency Ω(R) as follows:

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-7 3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-8

We then rewrite κ as follows:

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-7 3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-8

For a point mass (Ω ∝ R-3/2), κ = Ω
For an isothermal sphere (Ω ∝ R-1), κ = Ω (2)1/2

For solid body rotation (Ω = constant), κ = 2Ω

In general, Ω < κ < 2 Ω
Therefore, a star can only undergo 2 revolutions in its epicyclic orbit in the 

time it finishes an entire orbit around the center of the galaxy.

Epicyclic orbits

For the case of a point mass (Ω ∝ R-3/2), e.g., solar system, the epicyclical 
time perfectly matches the rotation time around the central body so 

that orbits close on each other.

In general, this is not true, however.   Orbits regress and one finds a 
planar rosette.

Here are some examples of orbits where the phase space is only 
incompletely filled:

12-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c4-17

A general 3-dimensional potential

Stäckel potential( ρ = 1/(1 + m2)2)

12-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c4-18

A Simple recipe to build galaxies
Schwarzschild’s method:

• Define density ρ
• Calculate potential, forces
• Integrate orbits, find orbital densities ρi

• Calculate weights wi > 0 such that

ρ =
∑

ρiwi

Examples: build a 2D galaxy in a logarithmic potential
Φ = ln(1 + x2 + y2/a).

• As we saw, box orbits void the outer x-axis
• As we saw, loop orbits void the inner x-axis

→ both box and loop orbits are needed.

Suppose we have constructed a model.
• What kind of rotation can we expect ?

box orbits: no net rotation
loop orbits: can rotate either way: positive, nega-
tive, or “neutral”.

Hence: a maximum rotation is defined if all loop
orbits rotate the same way. The rotation can vary
between zero, and this maximum rotation

BT 3.4: page 155

12-10-07 see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c4-3

Typical orbit in a spherical potential is a planar rosette

Angle ∆ψ between successive apocenter passages de-
pends on mass distribution:

π < ∆ψ < 2π

homogeneous sphere point mass

Special cases

rmin = rmax circular orbit
v2
⊥

r
=

dΦ

dr
=

GM(r)

r2

L = 0 ⇒ radial orbit 1

2
ṙ2 = E − Φ(R)

Homogeneous sphere

Φ(r) = 1

2
Ω2r2 + Constant

In radial coordinates

12-10-07 see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c4-4

¨⃗r = −Ω2r⃗

or in cartesian coordinates x, y

ẍ = −Ω2x ÿ = −Ω2y

Hence solutions are

x = X cos(Ωt + cx) y = Y cos(Ωt + cy)

where X, Y, cx and cy are arbitracy constants. Hence,
even though energy and angular momentum restrict
orbit to a “rosetta”, these orbits are even more special:
they do not fill the area between the minimum and
maximum radius, but are always closed !
The same holds for Kepler potential. But beware, for
the homogeneous sphere the particle does two radial
excursions per cycle around the center, for the Kepler
potential, it does one radial excursion per angular cy-
cle.
We now wish to “classify” orbits and their density dis-
tribution in a systematic way. For that we use Integrals
of motion.

typical orbit in spherical potential forms a 
planar rosette

in most general case, the orbit is not closed 
and will fill entire area between rmin and rmax

BT 3.1: page 106

There can be no more than 6 integrals of motion.   Typically there is 
at least one integral of motion (energy).

Stacker potential: triaxial potential 
that admits three integrals of motion

Epicyclic orbits

κ = 1.3 Ω 

Using the measured values for κ and Ω at the radial position of 
the sun in our galaxy is as follows:

similar to the case for an isothermal sphere...

Period for orbit around galaxy = 2π/Ω

Period for epicyclic orbit = 2π/κ



Which resonances drive spiral density wave growth? 

Now let us now consider a possible spiral density wave in the disk of 
a galaxy:

In these illustrations, let’s adopt the most common type of “grand 
design” spiral galaxy where we just have 2 arms (rotational symmetry 

= 180 degrees)

Rotational Frequency of 
Spiral Density Wave = 

Ωp

We might expect such if a star completes one period of 
epicyclic motion every time it encounters the spiral density 

wave in its orbit around the galaxy.

Rotational Frequency of 
Spiral Density Wave = 

Ωp

When might we expect growth of a spiral density wave?

Which resonances drive spiral density wave growth? 

Let us consider a few examples of the orbit of stars that would finish 
a complete epicyclic orbit in the spiral density wave itself:

Example #1: The star is moving at the same speed as the spiral 
density in orbiting around the center of  a galaxy.

star

spiral arm

spiral 
arm

one epicyclic orbit
time = 2π/κ

spiral pattern ~ 250 deg
star orbitted ~ 250 deg

spiral 
arm

two epicyclic orbits
time = 4π/κ

spiral pattern ~ 500 deg
star orbitted ~ 500 deg

three epicyclic orbits
time = 6π/κ

spiral pattern ~ 750 deg
star orbitted ~ 750 deg

spiral 
arm

Let’s consider snapshots in time where the star completes an entire 
epicyclic orbit.  Typically a star must complete 70% of a revolution 

around a galaxy before this happens.

Which resonances drive spiral density wave growth? 

Let us consider a few examples of the orbit of stars that would finish 
a complete epicyclic orbit in the spiral density wave itself:

Example #2: The star is traveling much faster than the speed of the 
spiral density wave.

spiral arm

time = 0

spiral 
arm

one epicyclic orbit
time = 2π/κ

spiral pattern ~ 70 deg
star orbitted ~ 250 deg

spiral 
arm

two epicyclic orbits
time = 4π/κ

spiral pattern ~ 140 deg
star orbitted ~ 500 deg

three epicyclic orbits
time = 6π/κ

spiral pattern ~ 210 deg
star orbitted ~ 750 deg

spiral 
arm

Let’s consider snapshots in time where the star completes an entire 
epicyclic orbit.  In this case, the star again completes 70% of an orbit, 

but the spiral arm orbits 0.2 times

Which resonances drive spiral density wave growth? 



Let us consider a few examples of the orbit of stars that would finish 
a complete epicyclic orbit in the spiral density wave itself:

Example #3: The star is traveling much slower than the speed of the 
spiral density wave.

Let’s consider snapshots in time where the star completes an entire 
epicyclic orbit.  In this case, the star again completes 70% of an orbit, 

but the spiral arm orbits 1.2 times (instead of just 0.2 times)

spiral arm

time = 0

spiral 
arm

one epicyclic orbit
time = 2π/κ

spiral pattern ~ 430 deg
star orbitted ~ 250 deg

spiral 
arm

two epicyclic orbits
time = 4π/κ

spiral pattern ~ 860 deg
star orbitted ~ 500 deg

spiral 
arm

three epicyclic orbits
time = 6π/κ

spiral pattern ~ 1290 deg
star orbitted ~ 750 deg

Which resonances drive spiral density wave growth? 

Let us look at a few movies that illustrate these concepts rather 
directly:

Credit: Jo Bovy

Corotation

http://cosmo.nyu.edu/~jb2777/resonance.html

Which resonances drive spiral density wave growth? 

Let us look at a few movies that illustrate these concepts rather 
directly:

Credit: Jo Bovy

Inner Lindblad 
Resonance

Which resonances drive spiral density wave growth? 

Credit: Jo Bovy

Let us look at a few movies that illustrate these concepts rather 
directly:

Outer Lindblad 
Resonance

Which resonances drive spiral density wave growth? 

http://cosmo.nyu.edu/~jb2777/resonance.html


To ensure that some arbitrary star can complete an epicyclic orbit 
in the same time it takes to move from one region in the spiral arm 

to another, the following condition must be satisfied:

m(Ωp - Ω) = nκ

# of Spiral Arms

Orbital 
Frequency of 
Spiral Arms

Epicyclic (or radial) 
Frequency

Orbital (or Azimuthal) 
Frequency of Stars on 

Circular Orbits

some integer

The only integers n for this relation that are interesting are 0, +1, -1.

Which resonances drive spiral density wave growth? 
This results in a number of well known resonances:

Ωp  = Ω − κ/m

In most cases, the only relevant case is that of two spiral arms, i.e., 
m = 2

Inner Lindblad resonance:

Outer Lindblad resonance:

Ωp  = Ω + κ/m

Corotational radius:
Ωp  = Ω

Ωp  = Ω − κ/2

Ωp  = Ω + κ/2

Ωp  = Ω

Most relevant cases:

Which resonances drive spiral density wave growth? 

And note that physics behind bar-like 
features in spiral galaxies is similar

How does the resonant frequencies vary by radius?

At what orbital frequencies for the spiral arms are these resonances 
relevant?

Compute Ωp = Ω − κ/2, Ω, Ω + κ/2
3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-9 3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-10

Ωp

Radius

Orbital 
frequency for 
spiral arms at 
which these 
resonances 

become 
important

isochrone 
potential

One thing you should note 
is the extended range in 

radius where the rotational 
frequency for one of these 
resonances, i.e., Ω − κ/2 is 
approximately constant.

Ωp

Radius

Rotational 
frequency for 
spiral arms at 
which these 
resonances 

become 
important

model 1 for 
our Galaxy
from BT 2.7

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-9 3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-10

Again Ω − κ/2 is 
almost 

independent of 
radius!

How does the resonant frequencies vary by radius?

At what orbital frequencies for the spiral arms are these resonances 
relevant?

Compute Ωp = Ω − κ/2, Ω, Ω + κ/2



What are the typical physical radii where these resonances 
apply?Lindblad Resonances III

Ωp

Fr
eq
ue
nc
y

Ω+κ/2

Ω
Ω−κ/2

RadiusOLRCRIILR OILR

Lindblad Resonances play important role for orbits in barred potentials.

Rotational 
frequency for 
spiral arms

Outer Lindblad 
Resonance

Corotation 
Radius

Inner Lindblad 
Resonances

(Can be more 
than one)

Let’s zoom in on this plot and look at it more closely at 
the highly relevant m = 2 case 

(typically ~20 kpc in 
a spiral galaxy like 

our own)

(typically 
~3 kpc)

(typically 
~14 kpc)

(typical pattern 
speed for spiral 

arms Ωp 
~15 km/s / kpc)

Spiral density waves can only survive and grow between the inner 
Lindblad resonance and outer Lindblad resonance.

These waves cannot pass through the inner Lindblad resonance 
(they are damped inside this radius)

Additional Properties of Spiral Density Waves

What conditions are important for gas in spiral 
galaxies for material to collapse gravitationally, 

feeding spiral density waves?

Jeans Instability

Consider homogeneous fluid that is in equilibrium, with density ρ, 
pressure p, with no internal motion.

Assume that the fluid is spherically symmetric.  We shall consider 
the fluid is the matter inside some sphere with radius r.

Suppose that we compress the fluid element so that it now has a 
radius r(1-α/3) where α is much smaller than 1.

What will be the force acting on the surface of the sphere after 
this small compression?

To first order, the density 
perturbation is ρ1 = αρ

To first order, the pressure perturbation is 
p1 = (dp/dρ)αρ = αρvs2  where vs is the 

sound speed.



Jeans Instability
The pressure force per unit mass is

Fp = ∇p / ρ

The additional gravitational force per 
unit mass is 

dFg = αGM/r2

dFp = ∇(αρvs2)/ρ

The additional pressure force per unit 
mass is 

dFp = αvs2/r

If the additional force on the surface of the sphere from the pressure 
of the fluid, i.e., dFp, is greater than the additional force on the surface of 
the sphere from gravity, i.e., dFg, then the pressure force resists the radial 

perturbation.

However, if the additional force from the gas pressure dFp is less than 
the additional force from gravity dFg, then the force of gravity will only 

accelerate the collapse.

The gravitational force per unit mass is 

Fg = ρGM/r2/ρ

Jeans Instability

In summary, for dFp > dFg ==> fluid pressure resists gravitational 
collapse

However, for dFp < dFg ==> system undergoes gravitational 
collapse

dFp = dFg represents a specific physical scale.

dFp = αvs2/r = αGM/r2 = dFg

Using M = ρ 4/3 π r3,

vs2/r = Gρ 4/3 π r

rJ~ (3 vs2 / (4π Gρ))1/2

We find:

Perturbations on a larger scale than the Jeans scale rJ will result 
in a gravitational collapse.

Toomre Instability Criterion

In spiral/disk galaxies, the stability criterion is more complex, due 
to the shearing type motion

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-13

classic instability: Jeans mass

For a stellar system, we simply need to replace vs with

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-14

σ to derive the Jeans mass. Hence, if the system is
sufficiently large, it will become unstable and fragment
into smaller pieces.
Similar, for a disk one can obtain stability criteria.
For a cold (fluid) disk, any perturbations with wave-
length larger than λcrit will be unstable

λcrit = 2π/kcrit = 4π2GΣ/κ2

(BT6.65 page 495)
However, random stellar motions will tend to stabilize
the disk (just like in the case of the Jeans equation).
Disks with stellar motions are unstable if

Q =
σRκ

3.36 G Σ
< 1

This is the Toomre criterion. It assumes that the disk
is very thin, and that the unstable modes have wave-
length substantially smaller than the size of the disk.
Again, if the dispersion σR is high enough, it will stabi-
lize the disk.
For our galaxy, κ = (37 ± 3)km/sec/kpc

old stars: σr = 38 ± 2km/sec

Σ∗ = 36 ± 5M⊙/pc−2

Hence Q∗ = 2.7 ± 0.4

Including interstellar gas: 13M⊙/pc2, 7 km/sec − >
Q=1.5

combined effect of gas and stars is worse − > nearly
unstable

Similarly for a disk galaxies, there is also a stability criterion.   Any 
perturbations with wavelength larger than λcrit are unstable.

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-13
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length larger than λcrit will be unstable

λcrit = 2π/kcrit = 4π2GΣ/κ2

(BT6.65 page 495)
However, random stellar motions will tend to stabilize
the disk (just like in the case of the Jeans equation).
Disks with stellar motions are unstable if

Q =
σRκ

3.36 G Σ
< 1

This is the Toomre criterion. It assumes that the disk
is very thin, and that the unstable modes have wave-
length substantially smaller than the size of the disk.
Again, if the dispersion σR is high enough, it will stabi-
lize the disk.
For our galaxy, κ = (37 ± 3)km/sec/kpc

old stars: σr = 38 ± 2km/sec

Σ∗ = 36 ± 5M⊙/pc−2

Hence Q∗ = 2.7 ± 0.4

Including interstellar gas: 13M⊙/pc2, 7 km/sec − >
Q=1.5

combined effect of gas and stars is worse − > nearly
unstable

Random motions by stars tend to stabilize disks.  Disks with 
stellar motions are unstable if 

This is the Toomre criterion.  It assume that the disk is thin and 
unstable modes are much smaller than the size of the sky.  Again, 
significant dispersion in the velocities of stars will stabilize the 

disk.

What is Q for our galaxy?
For our disk where κ = 37±3 km/s/kpc, σR = 38±2 km/s, Σ = 

36±5 M⦿ / pc2, Q* = 2.7±0.4.

Including interstellar gas 13 M⦿ / pc2, Q = 1.5.

What happens if Q < 1?
14.3. DISPERSION RELATIONS & THE Q PARAMETER 103

Figure 14.1: Unstable disk simulation. Initially, this disk has Q 0 63, producing the violent,
essentially local instability seen here. The galaxy model includes a bulge and a halo (not shown);
the disk is 15% of the total mass, and a version with a higher Q value is stable (Fig. 15.2). Each
frame is 15 disk scale lengths on a side; times are given in units of the rotation period at 3 disk
scale lengths.

for a stable gas disk, and
Qstars

κσR
3 36GΣ

1 (14.25)

for a stable stellar disk (Toomre 1964).
It’s worth comparing (14.25), the product of a WKB analysis, with (14.13), which was derived

by simple physical considerations. The conditionQstars 1 may be rearranged to give

σR 3 36
GΣ
κ

(14.26)

This is very similar to (14.13); apart from the numerical factor, the only difference is that the
epicyclic frequency κ replaces the Oort constant B in the denominator.

This is an illustration of 
how the disk becomes 
clumpy because of a 

Toomre-like instability.

Credit: Barnes



What impact does the measured Q value have on 
the growth of spiral density waves?

For lower values of the Q parameter — as high as Q <~ 2 — 
gravitational instabilities can feed the growth of spiral 

structure. 

This is particularly relevant at the coronation radius, given the 
similar speed of the material (stars, gas) and spiral density 

waves.

Now let’s return to spiral density waves in spiral 
galaxies

What astrophysical processes drive these spiral density 
waves as they rotate around a spiral disk?

Why are there Spiral Arms? 

It only takes a few orbits for arms to become completely wound up 
and lose spiral structure!  This is the “winding problem”. 

Density wave theory: 

•! We think that spiral arms are caused by a density 

perturbation that moves along at a speed different from 

the speed of the objects within it.  The density wave 
resists the spiral’s tendency to wind up and causes a 

rigidly rotating spiral pattern 

•! Think about what happens when there is a slow-moving 

car on a freeway … 

•! The spiral pattern is a density wave rotating through the 

galaxy at a fixed angular speed, called the pattern speed 

Spiral Density Waves 

•! There are initial “seed” perturbations in the 
spiral disk.  These come from either initial 
asymmetries in the disk and/or halo (galaxy 
formation processes), or induced via galaxy 
encounters (like the M51 system) 

•! Thus there are regions of slightly higher 

density than their surroundings.  The 

higher density accelerates matter into the 
wave.    

•! In the inner disk, stars move faster than the 

pattern speed and overtake the density 

wave; in the outer disk, the density wave 
overtakes the stars.  Either way, material 

will encounter the wave. 

Spiral Density Waves 

•! When infalling gas collides with gas in the 

density wave, stars formed, either due to 

simple Jeans criteria collapse, or induced 
through shocks. 

•! Material will continue to drift through the 

density wave, though the local gravity 

will cause a slight deceleration to the 
motion.   

•! The high-mass stars don’t go far before 

they go supernova or otherwise die.  This 

enhances the visibility of the density wave 

at bluer wavelengths.    

When the gas in the spiral density wave is compressed, 
it results in the formation of stars (due to the high gas 

densities induced by these compression waves)

After the stars form, they will approximately move at 
the circular velocity of the spiral galaxy -- which is often 

faster than the pattern speed of the spiral arm

The high mass stars formed in the spiral density 
compression waves die (SNe explosions or otherwise) 
shortly after leaving the spiral arm compression wave, 
but the lower mass (redder) stars continue to rotate 

around the disk.

Outline

Spiral structure

Stellar kinematics

Density wave theory

Stochastic star formation model

The strongest confirmation came from studies of the interstellar
medium.

Piet van der Kruit, Kapteyn Astronomical Institute Stellar kinematics and spiral structure

Credit: van der Kruit 

at inner radii in spiral 
galaxies, stars travel 
faster than the spiral 

density wave.

it is only the old (low 
mass) stars that can 

travel far enough to get 
ahead of the spiral wave

hot (massive) stars do 
not travel much beyond 
the spiral density wave 

in which they are 
formed

gas and dust lanes 
(formed from the metal 

output of the 
supernovae explosions) 
indicate the position of 
the high density spiral 

density wave

the hot stars are somewhat ahead of the gas/
dust lane, since there is some time lag between 
when gravitational collapse begins and when the 
stars finally form (i.e., are on the main sequence)

What astrophysical processes drive these spiral density 
waves as they rotate around a spiral disk?



Where is the spiral structure most evident?

Because of the hot blue stars being predominantly formed in the 
spiral density waves in disk galaxies and living for a very short

time, we would expect the spiral structure to be much clearer at 
bluer or ultraviolet wavelengths where we just see the hot blue 

stars.

Spiral Density Waves 

Since the brightest (bluest) stars die 

before leaving the spiral arm, the spiral 

density waves must show up better at 

ultraviolet wavelengths.  

Grand design spiral – M51 

Density wave theory: 

•! Spiral arm pattern is amplified by resonances between the epicyclic 

frequencies of the stars (deviations from circular orbits) and the 

angular frequency of the spiral pattern 

–! Spiral waves can only grow between the inner and outer 

Lindblad resonances ((p = (  - )/m ; (p = ( + )/m )  where ) is 

the epicyclic frequency and m is an integer  (the # of spiral 

arms) 

–! Stars outside this region find that the periodic pull of the spiral is 

faster than their epicyclic frequency, they don’t respond to the 

spiral and the wave dies out 

–! Resonance can explain why 2 arm spirals are more prominent  
•! We observe resonance patterns in spirals 

NGC 3351, inner ring 

Besides high gas densities, what else can drive 
spiral density waves?

What else can drive spiral density waves in disk galaxies?

Asymmetries in the dark and/or halo (galaxy formation 
processes)

Or from interactions with a nearby neighbor (as in the case 
of spiral galaxy M51)

Next topic is elliptical galaxies...

Elliptical galaxies consist of large numbers of stars 
on diverse orbits.

While spiral galaxies are rotation supported, 
elliptical galaxies are supported by the random 

motions of stars they contain

Their behavior can largely be described using 
collisionless dynamics.

Galaxy Formation:  Major Steps

Virialized 
Overdensity

Gravitational 
Collapse

Overdense 
Region
In Early

Universe

Disk Galaxy 
(Supported by Angular 

Momentum)

Gas 
Cooling

Spheroid Galaxy 
(Random Motion 

Supported)

Merger
Violent 

Relaxation



We will therefore be reviewing some 
concepts from collisionless dynamics 

from the Leiden Bachelor course

(this will require ~1 to ~1.5 lectures)

We will discuss how to model the dynamics 
of >1010 stars that form a self-gravitating 

system.

Let’s quantify this by estimating the time scale for collisions:

radius (galaxy) ~ 5 kpc
# of stars (galaxy) ~ 1 x 1010 stars
star diameter ~ 1.4 x 106 km
all stars have a mass equal to the sun

Let’s assume:

In 6 x 107 years, a typical star crosses pathes with N stars:

N = (Distance Covered)(# stars / size3) 

Collisions per crossing time = N πr2 

= (10 kpc)(1 x 1010 stars/(5 kpc)3)π(1.4 x 106 km)2 = 5 x 10-12 per crossing time

= 5 x 10-12 / 6 x 107 ~ 8 x 10-20 / year

Hence stars collide with each other very rarely!

REVIEW Point from Bachelor Course:  Collisions between individual 
stars are a non-issue in modeling galaxies - given the typical density, 

velocity, and cross section of stars.   The main challenge is modeling their 
collective gravitational potential.2-10-07 see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c3b-1

Galactic Dynamics - Continued

3.6 Time scales (BT 4 to start 4.1)

dynamical timescale, particle interaction timescale

Is gravitational force dominated by short or long range
encounters? (N.B. in a gas, only short range forces are
relevant).

In a galaxy, the situation is different.
Consider force with which stars in cone attract star in
apex of cone.

Force ∼ 1/r2, with r the distance from apex. If ρ is
almost constant, then the mass in a shell with width dr
increases as r2dr.

Hence differential force is constant at each r, and we
have to integrate all the way out to obtain the total
force.

2-10-07 see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c3b-2

Realistic densities decrease after some radius, so that
the force will be determined by the density distribu-
tion on a galactic scale (characterized by the half mass
radius).

3.7 Relaxation time

Short range encounters do not dominate →
Approximate force field with a smooth density ρ(x)
instead of point masses.

• Contrary of situation in gas: only consider long
range encounters (long range ∼ scale of the galaxy)

Assume all stars have mass m. Analyze perturbations
due to the fact that density is not smooth, but consists
of individual stars. Simplify, and look first at single
star-star encounter.

What is effect of a single encounter with point mass on
motion of star?
• Exact: BT §7.1: hyperbolic Keplerian encounter
• Estimate: straight line trajectory past stationary

perturber

Force from region of galaxy on a star 

= Gm(ρr2drdΩ)/r2

= GmρdrdΩ

Force is independent of r!   This 
means that a given star in a galaxy 

feels essentially the same force from 
stars at 1 kpc and stars at 4 kpc.

This is very different from 
hydrodynamics where short range 

pressure forces dominate!

BT4: pages 187

REVIEW Point from Bachelor Course:  In contrast to situations with 
fluids, the force on individual stars does not come primarily from its 

immediate neighbors, but from stars at all distances in the galaxy

First let’s look at velocity perturbation created by one 
star passing by another.

2-10-07 see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c3b-1

Galactic Dynamics - Continued

3.6 Time scales (BT 4 to start 4.1)

dynamical timescale, particle interaction timescale

Is gravitational force dominated by short or long range
encounters? (N.B. in a gas, only short range forces are
relevant).

In a galaxy, the situation is different.
Consider force with which stars in cone attract star in
apex of cone.

Force ∼ 1/r2, with r the distance from apex. If ρ is
almost constant, then the mass in a shell with width dr
increases as r2dr.

Hence differential force is constant at each r, and we
have to integrate all the way out to obtain the total
force.

2-10-07 see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c3b-2

Realistic densities decrease after some radius, so that
the force will be determined by the density distribu-
tion on a galactic scale (characterized by the half mass
radius).

3.7 Relaxation time

Short range encounters do not dominate →
Approximate force field with a smooth density ρ(x)
instead of point masses.

• Contrary of situation in gas: only consider long
range encounters (long range ∼ scale of the galaxy)

Assume all stars have mass m. Analyze perturbations
due to the fact that density is not smooth, but consists
of individual stars. Simplify, and look first at single
star-star encounter.

What is effect of a single encounter with point mass on
motion of star?
• Exact: BT §7.1: hyperbolic Keplerian encounter
• Estimate: straight line trajectory past stationary

perturber

BT4: pages 187-190

REVIEW Point from Bachelor Course:  The time scale for the relaxation 
time of individual stars to collisions will other stars is very high, i.e., 1016 

years, and thus can be ignored in modeling the dynamics of stars in a 
galaxy.   Consequently, it is possible to model the potential and phase 

space as smoothly varying.



We begin by showing that the velocity perturbation is 
the following:

v⊥ = 2Gm / bv

Relevant variables:

m = mass of “stationary” star        b = impact parameter
v = velocity of moving star           v⊥ = velocity perturbation

In this problem, we make the assumption that the 
impact parameter undergoes no meaningful change 

during the encounter.

However, this will not be true if the velocity kick is on 
order of the original velocity of the star.

bmin = Gm / v2
So, we can show that our derivation 

breaks down if

But, each star is perturbed by not just one star, but 
many stars along the line of sight.   Each perturbation 

is in a random direction.

While on average the perturbations cancel each other 
out,  the many perturbations introduces a spread in 

the overall distribution

In calculating the dispersion in the velocity distribution 
caused by perturbations by other stars, we add velocity 

kicks in quadrature

Let’s first considering the effect from an interaction with 
some random star in a star and then let’s consider all N 

stars in a galaxy.

Fraction of Stars with impact parameter b = 2πbdb/πR2

During derivation, we make use of the virial theorem

Total mass v2 = GM/R = (GNm)/R

N = # of stars per galaxy

<v⊥2> / v2 = 8 (ln N) / N

Here is the result, i.e., dispersion in velocity kicks divided by typical 
velocity in system is just a function of the number of particles in a 

dynamical system....

(per crossing time)

Radius of 
galaxy

Number of times star must cross galaxies such that the 
dispersion in its velocity kick equals the typical velocity 

gives us the relaxation time.

trelax = tcross ncross,relax = tcross(N / (8 ln N))

ncross,relax <v⊥2> = v2

Example of Time Scales
System Mass Radius Velocity N tcross trelax

M⊙ kpc km s−1 yr yr
Galaxy 1010 10 100 1010 108 > 1015

DM Halo 1012 200 200 > 1050 109 > 1060

Cluster 1014 1000 1000 103 109 ∼ 1010

Globular 104 0.01 2 104 5 × 106 5 × 108

• Dark Matter Haloes and Galaxies are collisionless
• Collisions may or may not be important in clusters of galaxies
• Relaxation is expected to have occured in (some) globular clusters

NOTE: For a self-gravitating system, the typical velocities are v ≃
√

GM
R

For the crossing time this implies: tcross = R
v

=
√

R3

GM
=

√
3

4πGρ

Useful to remember: 1 km/ s ≃ 1 kpc/ Gyr
1 yr ≃ π × 107 s
1 M⊙ ≃ 2 × 1030 kg
1 pc ≃ 3.1 × 1013 km

Credit: van den Bosch



Before even thinking about how to solve it, how shall 
we even try to model it?

MOTIVATION:

Ignore the fact that stars are discrete sources and 
assume that we treat them as a fluid with each star 

individually having an infinitesimal mass.

We will use a 7-dimension distribution function to 
describe where they are in 6-dimensional phase 

space at some time t.

We have this very complicated situation: 
how can we  model the orbits of all the stars in a galaxy 

simultaneously

Seems difficult!
At any time t, one can describe the collective positions and velocities 

for stars in a dynamical system by a distribution function f(x,v,t) 

To describe the time evolution, we define a six dimensional vector 
w = (x,v)

The flow of stars in the six dimensional phase can be described 
as dw/dt = (v,-∇Φ)

The flow dw/dt conserves stars...

BT4.1:page 190-195

REVIEW point from Bachelor course:  The time evolution of the 
distribution function is defined by the distribution function at that time, 
spatial derivatives, and the gradients of the potential (Vlasov-Equation).   

This follows directly from a conservation equation on the stars.

At any time t, one can describe the collective positions and velocities 
for stars in a dynamical system by a distribution function f(x,v,t) 

f /www.s t rw. le idenun iv.n l / " f ranx /co l i ege / m f -s t s -07 -c5 - l

Collisionless Boltzmann Equation f(j}\ci ^Oy^ <

BT 4.1 p. 190-193

Consider a system with a large nunber of stars
At any t define the distribution function f(x,v,t)dxdv
= # of stars in volume dx with velocities in range dv
(centered on x, v).

/(xjV^t) is called the distribution function or the phase
space density

a t a l l X j v : />0

We now have reduced QN functions Xi,Vi into one 7-
DIMENSIONAL FUNCTION.

If we derive the time evolution of /, we can completely
ignore individual particles !

(Notice that we can always rewrite f(x,v,t) as a sum
mation of S functions. We would then get back our
"original" particles. It shows that in some sense, one
7-dimentional function is "more complex" than 6N 1-
dimensional functions. But if we take smooth distri
bution functions, they are much simpler than the 6N
1-dimensional functions.)

In order to derive the time evolution, first define a new
coordinate w:

W = (x,v) = (W1,«72,...W6)

where w\ = x\, W2 = #2, ■•■ w* = vi, etc. Hence the
star has coordinate w in phase-space. The flow of the

W e L ^ r v ^ a ^ ^15-10-07 see ht tp: / /www.strw. le idenuniv.n l / " f ranx/col lege/ mf-sts-07-c5-2

star is given by

w = (2?, v) = (v, — V$)

The flow w conserves stars.

Hence we have the continuity equation:

__/at + £
a = l

d(fWg)
dwa

= 0

Why is this ? Integrate over any volume. The first
term gives the increase in number of stars in the vol
ume. The second term is equal to:

/ v-(/<iJ)= f{fi»)-d2sJ v J s
This is the surface integral over the flow out of the
volume. Hence the equation guarantees that stars are
conserved (the density can only increase if stars move
into the volume).

A special property of w is

dw (dvi . dvi+ dvi

Notice that by definition dvi/dxi = 0 because x* and
Vi are independent coordinates. The second term is
equal to

A d /d$ \
c c = l dvi \ dx.

= −
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term gives the increase in number of stars in the vol
ume. The second term is equal to:

/ v-(/<iJ)= f{fi»)-d2sJ v J s
This is the surface integral over the flow out of the
volume. Hence the equation guarantees that stars are
conserved (the density can only increase if stars move
into the volume).
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Notice that by definition dvi/dxi = 0 because x* and
Vi are independent coordinates. The second term is
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Notice that by definition dvi/dxi = 0 because x* and
Vi are independent coordinates. The second term is
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= −

=   0

At any time t, one can describe the collective positions and velocities 
for stars in a dynamical system by a distribution function f(x,v,t) 
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This is also equal to zero because the potential does
not depend on vi.

Hence we can now write

∂f

∂t
+

6
∑

α=1

∂fẇα

wα
= 0

or
∂f

∂t
+

6
∑

α=1

[

∂f

∂wα
.ẇα + f

∂ẇα

∂wα

]

= 0

The last term on the right is zero, as we have seen
above. Hence

∂f

∂t
+

6
∑

α=1

ẇα
∂f

∂wα
= 0

Or we write this as

∂f

∂t
+

3
∑

i=1

vi
∂f

∂xi
−

∂Φ

∂xi

∂f

∂vi
= 0

or
∂f

∂t
+ v⃗.∇⃗f − ∇⃗Φ.

∂f

∂v⃗
= 0

These equations are the Collisionless Boltzmann Equa-
tion (CBE).
The CBE is sufficient to calculate the evolution of any
f with time.
A different description of the same equation: consider
the evolution of f if one moves along with a particle
(this is the Lagrangian derivative):
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df

dt
=

∂f

∂t
+

6
∑

α=1

dwα

dt

∂f

∂wα
=

∂f

∂t
+

6
∑

α=1

ẇα
∂f

∂wα
= 0

Hence the CBE can be written as

df

dt
= 0

If you move along with the particles, their mass is con-
served. If you move along with the particles, the den-
sity is conserved. Hence the flow in phase-space is in-
compressible (the density remains conserved along a
flow-line).
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Integrals of motion can be a very useful concept for characterizing 
the orbits of stars in a galaxy.

They are useful in the case that they are isolating integrals of motion 
since the reduce the dimensionality of the phase space in which a 

star travels during its orbit.

There can be no more than 6 integrals of motion.   Typically there is 
at least one integral of motion (energy).

REVIEW Point from Bachelor Course:  Integrals of motion are functions 
of x and v which are constant along an orbit.  They are not explicit 
functions of time.  Examples: energy, angular momentum.   Most 3D 

densities allow for 3 integrals of motion, 2 of which are non-classical.

- Energy is always an integral of motion for a star in a static potential.

The energy per unit mass for a star remains constant 
throughout its orbit:  E(x,v) = (1/2) v2 + Φ(x) 

What are some examples of isolating integrals of motion?

- Lz: angular momentum in the z direction (for an axisymmetric 
potential)

- L: all three components of the angular momentum in spherically 
symmetric potential

Integrals of motion tend to arise from some symmetry in the system.

However, dynamical systems can also have other isolating integrals of 
motion outside of the classical ones (i.e., energy, angular momentum)

How can integrals of motion reduce the phase space explored by an 
orbit?

Consider a spherically symmetric potential:

12-10-07 see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c4-5

4.2 Constants and Integrals of motion
(BT 3.1 p 110-113)

First, we define the 6 dimensional “phase space” coor-
dinates (x⃗, v⃗). They are conveniently used to describe
the motions of stars. Now we introduce:

• Constant of motion: a function C(x⃗, v⃗, t) which is
constant along any orbit:

C(x⃗(t1), v⃗(t1), t1) = C(x⃗(t2), v⃗(t2), t2)

C is a function of x⃗, v⃗, and time t.

• Integral of motion: a function I(x, v) which is
constant along any orbit:

I[x⃗(t1), v⃗(t1)] = I[x⃗(t2), v⃗(t2)]

I is not a function of time ! Thus: integrals of motion
are constants of motion,
but constants of motion are not always integrals of
motion!
E.g.: for a circular orbit ψ = Ω t + ψo, so that C =
t − ψ/Ω.
C is constant of motion, but not an integral as it de-
pends on t.

Constants of motion
6 for any arbitrary orbit:

Initial position (x⃗0, v⃗0) at time t = t0. Can always
be calculated back from x⃗, v⃗, t.

12-10-07 see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c4-6

Integrals
Much harder to define. E.g.:

Energy (all static potentials): E(x⃗, v⃗) = 1

2
v2 + Φ

Lz (axisymmetric potentials)

L⃗ (spherical potentials)

• Integrals constrain geometry of orbits.
examples:

• 1. Spherical potentials:
E, Lx, Ly, Lz are integrals of motion, but also E, |L|

and the direction of L⃗ (given by the unit vector n⃗,
which is defined by two independent numbers). n⃗ de-
fines the plane in which x⃗ and v⃗ must lie. Define coor-
dinate system with z axis along n⃗

x⃗ = (x1, x2, 0)

v⃗ = (v1, v2, 0)

→ x⃗ and v⃗ constrained to 4D region of the 6D phase
space. In this 4 dimensional space, |L| and E are con-
served. This constrains the orbit to a 2 dimensional
space. Hence the velocity is uniquely defined for a
given x⃗

vr = ±
√

2(E − Φ) − L2/r2

vψ = ±L/r

12-10-07 see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c4-3

Typical orbit in a spherical potential is a planar rosette

Angle ∆ψ between successive apocenter passages de-
pends on mass distribution:

π < ∆ψ < 2π

homogeneous sphere point mass

Special cases

rmin = rmax circular orbit
v2
⊥

r
=

dΦ

dr
=

GM(r)

r2

L = 0 ⇒ radial orbit 1

2
ṙ2 = E − Φ(R)

Homogeneous sphere

Φ(r) = 1

2
Ω2r2 + Constant

In radial coordinates

12-10-07 see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c4-4

¨⃗r = −Ω2r⃗

or in cartesian coordinates x, y

ẍ = −Ω2x ÿ = −Ω2y

Hence solutions are

x = X cos(Ωt + cx) y = Y cos(Ωt + cy)

where X, Y, cx and cy are arbitracy constants. Hence,
even though energy and angular momentum restrict
orbit to a “rosetta”, these orbits are even more special:
they do not fill the area between the minimum and
maximum radius, but are always closed !
The same holds for Kepler potential. But beware, for
the homogeneous sphere the particle does two radial
excursions per cycle around the center, for the Kepler
potential, it does one radial excursion per angular cy-
cle.
We now wish to “classify” orbits and their density dis-
tribution in a systematic way. For that we use Integrals
of motion.

>=4 integrals of motion:
Energy

Lx

Ly

Lz

x3 = 0

v3 = 0

Energy

because of Lz

conservation

One alternate way of determining how restricted the orbital 
manifold of galaxies are is to construct poincare surfaces of section:

Surfaces of Section I
Consider a system with n = 2 degrees of freedom (e.g., planar motion), and
with a Hamiltonian

H(x⃗, p⃗) = 1
2
(p2

x + p2
y) + Φ(x, y)

Conservation of energy, E = H, restricts the motion to a three-dimensional
hyper-surfaceM3 in four-dimensional phase-space.

To investigate whether the orbits admit any additional (hidden) isolating
integrals of motion, Poincaré introduced the surface-of-section (SOS)

Consider the intersection of M3 with the surface y = 0. Integrate the orbit,
and everytime it crosses the surface y = 0 with ẏ > 0, record the position
in the (x, px)-plane. After many orbital periods. the accumulated points
begin to show some topology that allows one to discriminate between
regular, irregular and resonance orbits.

Given (x, px) and the condition y = 0, we can determine py from

py = +
√

2[E − Φ(x, 0)] − p2
x

where the+-sign is chosen because ẏ > 0.

To get insight, and relate orbits to their SOSs, see JAVA-Applet at:
http://burro.astr.cwru.edu/JavaLab/SOSweb/backgrnd.html

Surfaces of Section II
px

x

= periodic (resonance) orbit

= energy surface

= regular loop orbit
= regular box orbit

NOTE: Each resonance orbit creates a
             family of regular orbits.

Loop orbit: has fixed sense of rotation
                   about the center; never has x−0

Box orbit: no fixed sense of rotation 
                 about the center. Orbit comes
                 arbitrarily close to center.

= irregular (stochastic) orbit

This figure is only an illustration of the topology of various orbits in a SOS. It
does not correspond to an existing Hamiltonian.

Example surface of section

Credit: van den Bosch



We must set up a self-consistent system whereby each of the 
following steps imply the next:

(1) given density distribution ρ(r), calculate the potential Φ(r) the 
density distribution would imply

(2) given some potential Φ, determine the set of orbits that stars 
would undergo

(3) calculate the density distribution that would result from the 
collective orbits of all the stars in a system

Collisionless Dynamics in a Nutshell

ρ(x⃗) =
∫

f(x⃗, v⃗) d3v⃗

∇2Φ(x⃗) = 4πGρ(x⃗)
df
dt

= 0

The self-consistency problem of finding the orbits that reproduce ρ(x⃗) is
equivalent to finding the DF f(x⃗, v⃗) which yields ρ(x⃗).

Problem: For most systems we only have constraints on a 3D projection of
the 6D distribution function.

Recall: L(x, y, vz) =
∫ ∫ ∫

f(x⃗, v⃗, t) dz dvx dvy

The relevant equations are:

The Self-Consistency Problem
Given a density distribution ρ(x⃗), the Poisson equation yields the
gravitational potentialΦ(x⃗). In this potential I can integrate orbits using
Newton’s equations of motion. The self-consistency problem is the problem
of finding that combination of orbits that reproduces ρ(x⃗).

PotentialDensity

Orbits
?

Poisson Eq.

New
ton

’s 
2n

d l
aw

Think of self-consistency problem as follows: GivenΦ(x⃗), integrate all
possible orbits Oi(x⃗), and find the orbital weightswi such that
ρ(x⃗) =

∑
wiOi(x⃗). HereOi(x⃗) is the density contributed to x⃗ by orbit i.

Setting up equilibrium models for a collisionless system.  

It is not necessarily an easy thing to do

The Density Distribution derived in step #3 must be the same 
as assumed in step #1


