Layout of the Course

Lectures

FO rmatlon Of DlSk GalaX|eS Feb 2: Course Introduction, Overview, and Galaxy Formation Basics
Feb 9: Disk Galaxies (1)

(Part | |) [Feb 12: Disk Galaxies (If)| «—

Feb 16: Disk Galaxies (Ill) / Collisionless Stellar Dynamics
Feb 23: Collisionless Stellar Dynamics + Vlasov/Jeans Equations
Feb 26: Vlasov/Jeans Equations / Elliptical Galaxies (1)

Mar 9: Elliptical Galaxies (Il)

February I 2 Mar 23: Elliptical Galaxies (llI)
Mar 30: Dark Matter Halos
Apr 13: Large Scale Structure
Apr 20: Galaxy Stellar Populations
Apr 23: Lessons from Large Galaxy Samples at z<0.2
May 4: Evolution of Galaxies with Redshift
May | 1: Galaxy Evolution at z>1.5 / Review for Final Exam

Problem Set | February |9 Practical Session
(Distributed last week, due on Feb 23) (In 7 days)

Galaxies: Structure, Dynamics, and Evolution

Problems 5 and 6 (to be discussed)

Instructor: Dr. Bouwens

Here is problem set
Monday, February 2
Be sure to pay e
lem will be check

The entire problem set will be due before class on

d hand them before class) Eugenia Rodendo Gonzalez Andrea Gibilaro

your solution to that prob-

email them to Wout
tention to problem 3,

arefully and used in determining your homework grade. Noah Kaijser Susana Carneiro
1. Derive the potential from the density for a point-source
2

density p sphere, and a Jar isothermal sphere py,
density at radius 1 and r is the radius) using the following equa

1, uniform

e po is the

presented
in class: 1 - N
= —4rG [—/ Py + / p!)rdr’ o) 5. In lecture, we examined an arbitrary dynamical system and determined
o . ) ) )
Show your work. As the potential for a singular isothermal sphere blows how that dynamical system can be scaled in position, mass, and velocity

up at radius 0, please derive an expression for the potential such that the

and still maintain the same qualitative form.
(a) Show explicitly that the virial theorem produces the same result for the

potential equals zero at ro.

2. The model given by p = 1/(1+r2)2% is a Plummer model. Derive the

potential of this model. What is the total mass? scaling relations.
5. Assume that the age of the unverse is 13 Gyt and © = 1 and ~100% of mmmmm— i 7 (b) Derive Kepler’s Third Law using the scaling relations found in class.
e s e o This will be the graded problem

(c) Do the same sort of scaling relations exist for stars? Is it possible to
scale the position, velocity, and mass for particles in a star in the same way
— and have a system with the same qualitative form? Which equilibrium is
where 7 is the scale factor of the universe and p = po/r”, show that 7 in- N . T . 9
creases with time as 2. What does const equal for a universe where = 17 retained and which is lost?

(b) What is the Hubble constant Hy = (7/r)o that would yield a universe
7

s 2 of 1, 5, and 10. Note 6. Prove that M oc T3/2/n'/2. Use the fact that o® oc T and n oc M/R®.

r ¢ for the universe was

the equation

(,l)) = 37Gp+const/s? t)

ge of the universe at re

(1+ 2) smaller than it is today (i.c., r = rg Comment on the importance of this scaling relative to the 7" vs. n diagram

mlu}»lx w‘hw] - - ' ‘ used to understand for which mass sources Teoor < Tyyn (i-e., where galaxy
(d) How long has the light travelled which was emitted at = = 17 . . . - v
formation is efficient).

+ 2) where 1y is the scale

4. (a) Consider that there was some overdense region in the universe which
had & density p which was 2pcrie (the eritical density) which otherwise had

1




February |9 Practical Session
(In 7 days)

Problems 5 and 6 (to be discussed)

Eugenia Rodendo Gonzalez Andrea Gibilaro
Noah Kaijser Susana Carneiro
Why attend?

To prepare for final exam! Exam will include ~I-2 homework problems!

20% of Homework Grade is from Attendance in Practical Classes
(5% of your final grade)

Helpful for learning the material! Learn from your peers!

Note that there will be 6 more practical sessions.

Review of Material from Last
Week

Galaxy Formation: Major Steps

Overdense Disk Galaxy
Region (Supported by Angular
In Early Momentum)

Universe Merger
Gravitational Gas Violent
Collapse Cooling Relaxation

Spheroid Galaxy
(Random Motion
Supported)

Virialized
Overdensity

Let’s consider a collapsed object with both dark matter
(does not cool) + Baryons (can cool)

Disk Galaxy

How extended is the baryonic mass at the
center of collapsed sources?




Global Properties of Disk Galaxies

What is the reason for their disk-like, flat geometry?

A rotating disk is minimum energy configuration which preserves angular momentum
The Size of Disk Galaxies is likely determined by the angular momentum of the halo

spinning slow spinning moderate speed spinning fast

®ee

o g ————
(small enough, may not be intermediate size, large,
stable as disk galaxy) more dense disk galaxy lower density galaxy disk
higher surface brightness lower surface brightness

The other important variable is their mass which sets their luminosity and rotation

Global Properties of Disk Galaxies

Two variables (mass + angular momentum) of collapsed halos appear to
determine most of the physical properties of a spiral galaxy.

And so other variables like their circular velocity appear to closely trace what we

observe based on their luminosity and mass

Tully Fisher Relationship

24 T T T

L Template (24 clusters)

luminosity Luminosity « vc*

M- 5logh

T s _
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~2 x circular velocity

Disk Galaxy with Dark Disk Galaxy (if no Dark
Matter Matter)

(Most of mass would
Concentrate in center)

Disk Galaxy Disk Galaxy
— >
(Rotation curves would be
Keplarian)

The halo out here would likely
Dark Matter Halo contain much less mass

What is the evidence for significant mass in galaxies from dark matter?

Mass of Galaxy Clusters:

Mass of Galaxies:
Inferences from the Rotation Curve

Inferences from Velocity Dispersion of Cluster Galaxies

; | —— f M~VvIR/G
rotating rotating
(approaching) (receding) i X L
- Inferences assuming Hydrostatic Equilibrium of X-ray gas
T LRI A T
(observed rotation curve) dp GM(’[')
z * dr 72
g =z Pressure Gradient  Gravitational Force
Z iw . Determine temperature, density of gas to derive pressure
o o (rotation tucye from stars alone)
k=1 S I .
g Inferences from Gravitational Lensing
< s = : : ;
aiskc Use inferred deflection to infer mass of cluster
of s + o -, Inferences from Cluster Collisions
Radius  (kpe)
-- dark matter from the colliding -- ionized gas from the colliding clusters
Ve (observed) = G(Msars(R)+Mhaio(R))/R = GMsars(R)/R + clusters pass right through each “run into each other” forming a shock
GMuio(R)/R other

v

this presents us with a situation where the light (from baryons) and
mass (from dark matter) are in different places




Brief Context: Structure of Disk Galaxy

Four Basic Components:
I. Thin Disk
2. Thick Disk

3. Halo
4. Bulge

SKY-SCANNING COMPLETE FOR
ESA'S MILKY WAY MAPPER GAIA el

From 24 July 2014 to 15 January 2025, Gaia made 580 MILLION ¢ 13 000 .

more than three trillion observations of two billion Accesses of Gaia catalogue so far Refereed scientific publications so far
stars and other objects, which revolutionised the view

of our home galaxy and cosmic neighbourhood.

v 2.8 MILLION
3TRILLION % 4 . Commands sent to spacecraft ~ T

Observations 7 : b

e } ; / 5 U2TB "o

2 BILLION

Stars & other objects observed Downlinked data (compressed)

/ : 500 TB .
938 MILLION oy # Volume of data release 4 |\ [K

Camera pixels on board = ” . (5.5 years of observations)

Cesa

15300 & ; J
Spacecraft ‘pirouettes’ : ;aia =)
55KG 3827 1 50 000 HOURS [/~

Cold nitrogen gas consumed Days in science operations Ground station time used ~—

Credit: ESA/Gaia/DPAC, Milky Way impression by Stefan Payne-Wardenaar (
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Figure 10.25 The space density as a function of distance z from
the plane of MS stazs with absolute magnitudes 4 < My < 5. The
full lines are exponentials with scale heights zg = 300pc (at left)
and zp = 1350 pc (at right). The dashed curve shows the sum of
these two exponentials. [From data published in Gilmore & Reid
(1983)]
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Ages & Metal Abundances of Different
Components

Thin Disk

Young Halo

IIJ

]
OHG
-3 Old Halo

Age (Ga) 1°

Fig. 1.16 The age-metallicity relation of the Galaxy for the different components (see
text): TDS — thin disk stars; TDO — thin disk open clusters; ThDS — thick disk stars;
ThDG — thick disk globulars; B — bulge; YHG — young halo globulars; OHG — old halo
globulars.

Characteristics of Stars in the Stellar Halo of Milky
Way very different than the Disk

Stellar Halo Thin Disk
Low Metallicity High Metallicity
Old Ages Young Ages
Little Rotation High Rotation
Older, lower metallicity star Younger, higher metallicity star
clusters

clusters

This motivated deriving a model to explain the halo.

Two Competing Models for Formation of Stellar Halo in Milky Way

ELS Monolithic Collapse Searle & Zinn Hierarchical Model
Halo formed in first Gyr Halo built up from mergers
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Properties of Stars in Disk Galaxy:

I. the velocity dispersion of a population of stars depends on the age. The older the population
of stars, the higher the velocity dispersion.

Heating is thought to be driven by mergers (important) and also the impact of the spiral
arms and molecular clouds.

2. There is a relation between the metallicity of stars and their age

Old stars have a lower metallicity than your stars. This suggests that the metallicity
of the gas (from which the stars formed) increased gradually with time.

3. Abundance ratio of elements are also a function of the metallicity.

This can be due to the fact that different enrichment mechanisms (i.e.,
supernovae) produce metals in different ratios.

SN 1l (fast time scale) SN la (slow time scale)

produce alpha elements time produce Fe




How the Scale Height of Stars in Disk Galaxies
Changes with Time

cooling causes gas to settle in a very thin
disk (i.e., the minimum energy
configuration that preserves angular
momentum)

O—0=0—0—O—0—0—0—00=0 stars form from the cool gas and begin

their lives in the plane of the disk

° ® as time goes on, due to some heating

mechanism (e.g., mergers with small
galaxies), stars are given small kicks out of
the plane (and oscillate in and out of plane)

: ' o @ the scale height of the stars increases as
5] ® ® time goes on (due to more collisions)
(0] e ©O ) while old stars have large scale heights,
-.—%—*- newly formed stars have small scale heights
(@) [0} 15} (formed in the gas disk)

Gas Composition of Spiral Galaxies

Obviously, spiral galaxies have gas (neutral hydrogen, molecular hydrogen, ionized
hydrogen). Most of the gas resides in the disk. Most of the molecular gas content is
in the center of the galaxy, while most of the neutral gas content is on the outer
parts of galaxies.

New Material

What else has been learned about the Milky Way
from GAIA?

Milky Way is a Barred Spiral

The Disk of the Milky Way is
Significantly Warped




What else has been learned about the Milky Way
from GAIA?

How can we understand spiral structure
in disk galaxies?

Well-defined spiral structure is present in many galaxies.

Whirlpool Galaxy
Messier 51

In many cases, the spiral structure is so well organized that
the galaxies are called “grand-design” spirals

Other times the spiral structure is less well organized

Flocculent Spiral Galaxy: NGC 2841




How is such spiral structure put in place?

How does it evolve?

As disk galaxies rotate, do spiral arms lead or trail the

rotation?
-
~
Trailing steuctuce Leading steuctuce

As disk galaxies rotate, do spiral arms lead or trail the
rotation?

How can we settle this observationally?

Impossible to tell for face-on spiral galaxies or edge on galaxies
e

-

Use galaxies that are mildly inclined

How can we distinguish the above from
this?

As disk galaxies rotate, do spiral arms lead or trail the
rotation?

How can we settle this observationally?

Look at globular clusters / novae in spiral galaxies

-—

globular clusters /
novae behind disk

will be reddened

Globular clusters / novae behind disk will be highly reddened




As disk galaxies rotate, do spiral arms lead or trail the
rotation?

Most spiral arms are
found to be trailing.

Trailing steuctuce Leading steuctuce

How do the arms in spiral galaxies evolve with
time!?

Now let us consider the time evolution of azimuthal position of
each spiral arm:

(b“f, t) = ¢g + H(H),’

which is also a function of radius R (because of differential rotation)
Q(R) = angular rotation speed
Q(R) = Veircular / R
~ constant

Implies angular rotation speed is
smaller at large radii

Winding Problem

The revolution time for stars is smaller for stars on
smaller radial orbits.

90

50 million years 100 million years

Differential rodation: stars near the center take less time to orbit the center than those farther
from the center. Differential rotation can create a spiral pattem in the disk in a shorttime.

If the spiral arms rotate in the same way as the particles located in
the spiral arms, differential rotation would cause the spiral arms to
wind up.

Winding Problem

Prediction: 500 million years QObservation: 15,000 million years

Assuming that the spiral arms rotate in the same way as the particles
in these arms, one would predict that the spiral arms in a galaxy
would wind up very quickly.

This is in contrast to what is observed!




Winding Problem: How big is the discrepancy?

Consider the pitch angle.

We define the pitch angle o for spiral arms as follows:

can|n2®
cota = |Roml,

Fitting 2D light profiles of Spiral Galaxies

We can try to fit the two dimension

surface brightness profile of spiral

galaxies with the function:
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Fitting 2D light profiles of Spiral Galaxies

We can try to fit the two dimension
surface brightness profile of spiral
galaxies with the function:

I(R. ¢)
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What range of pitch angles are observed?
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Figure 6-12. Measured pitch
angle as a function of Hubble type
for 113 galaxies (Kennicutt 1981).
Reprinted by permission of The
Astronomical Journal.




How do we predict the pitch angle will change?

df?

cota = 'Rg—g : > cota = Rt [‘«l_/?
(f‘)([]) f) = {i;}(} 'F—. Sz([{), Note Q(R) = Veirealar / R

cot a = Rt (ve/ R?) = vt/R

For galaxies with a flat rotational curve vc = RQ = 200 km/s,
R =5 kpc,and t = 10 Gyr, then a ~ 0.15 degrees (much
smaller than observed)

Observed pitch angles of ~10-20 degrees differs dramatically from
expectation of 0.15 degrees from this simple baseline model.

How can we solve the winding problem?

Density Wave Theory
Lin & Shu (1964-1966)

The spiral arms in disk galaxies are not fixed structures that rotate
around the center of disk galaxies, but rather density waves.

These density waves can move at a different speed than the stars
within the galaxy itself.

The speed at which the spiral density waves propagate around the
disk of a spiral galaxy is called the pattern speed Q,.

We will investigate this in more detail, but first let us look at epicyclic
motion by stars in galaxies!

REVIEW POINT from Bachelor Course — The dynamical time scale
of galaxies is much shorter than the age of the universe - implying
that galaxies are largely in a state of equilibrium.

Assume for galaxy:
radius ~ 5 kpc / mass ~ 3 x 10!0 solar masses
v2 = P(R) = GM/R (virial relation)

v = (GM/R)!2
I pc~3.09x 10'8 cm
| solar mass ~2 x 1033 g

=> velocities ~ 164 km/s, G~ 667 x 100 cmig 52

=> tgyn = 2 (radius) / velocity
tdyn = 2 (5 kpc) / (164 km/s) ~ 6 x 107 years

tayn~ 6 x 107 years << tyniy = 1.3 x 10'0years

How can we solve the winding problem?

Density Wave Theory
Lin & Shu (1964-1966)

The spiral arms in disk galaxies are not fixed structures that rotate
around the center of disk galaxies, but rather density waves.

These density waves can move at a different speed than the stars
within the galaxy itself.

The speed at which the spiral density waves propagate around the
disk of a spiral galaxy is called the pattern speed Q.

We will investigate this in more detail, but first let us look at epicyclic
motion by stars in galaxies!




Epicyclic orbits

Stars that rotate around the center of disk galaxies are on epicyclic
orbits:

-

Epicyclic Motion

f

This may not seem intuitive to you, but it is actually expected and you
encountered this concept already in your study of the rotation of
planets around the sun in the solar system.

Epicyclic orbits
Let us analyze the orbit of a star in some axisymmetric potential
®(R)

Assume that the star has angular momentum L,

The energy of a star in this potential is as follows:
E=1 [R2+(Ré)2+z'ﬂ + @
where

Peg(R,2) = B(R, 2) + 525

/ \

Gravitational Centrifugal barrier
Potential

Epicyclic orbits
How does @ (R) behave!

2
Ber (R, 2) = B(R, 2) + o5

Different Cases:
Point Mass: ®R) ~ I/R
Isothermal Sphere: @ (R) ~ log R
Homogeneous Density ® (R) ~ R2

Typical form for

®err (R)
What happens to @c(R) at large and small radii?

As R = 0, L;2/2R? centrifugal term always dominates.

As R # 00, ®(R) term dominates.

®err (R) has a minimum at some radius Rg. Stars orbiting
around a galaxy at that radius will be on a circular orbit.

Epicyclic orbits

Expand the potential ®erf (R) about the radial position Rgand the vertical
position z=0 as a Taylor series:

= o J° Doy a1 ?)2 Dogp 9 2 " .
Do = Pegr (g, 0 42 (—-——) otz (f 2°4+0(xz%). (3.76)
& 2 0) b aRr? Ry.0) P\ 022 (R,.0)

where x =R - Rg.

The first order terms in this expansion d®c (R)/dx, d®es (R)/dz and the
second order term d2® (R)/dxdz are zero given that we are expanding
the potential about a local minimum.

Represent the second derivatives of @t (R) with respect to R and z as K
and v:

5 f)?cbr.ﬂ\) L Y ( ()’—’ebl_,.,v)
Gl = | ~2pe Wl B |
T Ae) (()R'— i A T




Epicyclic orbits

Then the time evolution of x and z are as follows:

i e h‘.d.’r,
o s
Since d®e/dR = 0 at R = Rg
0% _ 02 _ LI _
OR ~ OR R3

and since Qeff = ® + L,2/2R2, we can also rewrite K as

K2 (By) = - L3 _ (o 3 [o®
OR firey  BE \BR ) o " RI\BR),
(Rg,0) g (Re0) g \OR ) o

Epicyclic orbits

Since we can write the orbital frequency Q(R) as follows:

1 /0% L
22w = 1 (..) i
E\OR ), ~ RO

We then rewrite K as follows:

do?
2 2
el (R—dR 40 )Rs

For a point mass (Q « R-32), K=Q
For an isothermal sphere (Q « R!), kK=Q(2)2
For solid body rotation (QQ = constant), K =2Q

In general, Q <k <2Q

Therefore, a star can only undergo 2 revolutions in its epicyclic orbit in the
time it finishes an entire orbit around the center of the galaxy.

Epicyclic orbits

For the case of a point mass (QQ « R-3/2), e.g., solar system, the epicyclical
time perfectly matches the rotation time around the central body so
that orbits close on each other.

planet

In general, this is not true, however. Orbits regress and one finds a
planar rosette.

)
/

.

/

3

\

Epicyclic orbits

Using the measured values for K and Q) at the radial position of
the sun in our galaxy is as follows:

K=13Q

similar to the case for an isothermal sphere...

Period for orbit around galaxy = 21/Q

Period for epicyclic orbit = 21/K




Which resonances drive spiral density wave growth?

Now let us now consider a possible spiral density wave in the disk of
a galaxy:

¥

\ Rotational Frequency of
Spiral Density Wave =
Qp

In these illustrations, let’s adopt the most common type of “grand
design” spiral galaxy where we just have 2 arms (rotational symmetry
= |80 degrees)

Which resonances drive spiral density wave growth?

When might we expect growth of a spiral density wave?

Rotational Frequency of
Spiral Density Wave =
Qp

We might expect such if a star completes one period of
epicyclic motion every time it encounters the spiral density
wave in its orbit around the galaxy.

Which resonances drive spiral density wave growth?

Let us consider a few examples of the orbit of stars that would finish
a complete epicyclic orbit in the spiral density wave itself:

Example #1:The star is moving at the same speed as the spiral
density in orbiting around the center of a galaxy.

Let’s consider snapshots in time where the star completes an entire
epicyclic orbit. Typically a star must complete 70% of a revolution
around a galaxy before this happens.

spiral arm
L\
2 spiral ! S
arm
spiral spiral
arm arm
one epicyclic orbit two epicyclic orbits h icydlic orbi
time = 217K time = 4T[/K t ree‘eplcyc IC orbits
spiral pattern ~ 250 deg  spiral pattern ~ 500 deg time = 6TUK

star orbitted ~ 250 deg star orbitted ~ 500 deg spiral pattern ~ 750 deg
star orbitted ~ 750 deg

Which resonances drive spiral density wave growth?

Let us consider a few examples of the orbit of stars that would finish
a complete epicyclic orbit in the spiral density wave itself:

Example #2:The star is traveling much faster than the speed of the
spiral density wave.

Let’s consider snapshots in time where the star completes an entire
epicyclic orbit. In this case, the star again completes 70% of an orbit,
but the spiral arm orbits 0.2 times

L\
iral
spiral arm P\ spiral —
arm
spiral spiral
arm arm
one.eplczc;;/orblt two §p|cy_c|‘|1cn/orb|ts three epicyclic orbits
time = 0 time = 2TVK time = 4TUK time = 6TUK

spiral pattern ~ 70 deg  spiral pattern ~ 140 deg

star orbitted ~ 250 deg  star orbitted ~ 500 deg spiral pattern ~ 210 deg

star orbitted ~ 750 deg




Which resonances drive spiral density wave growth?

Let us consider a few examples of the orbit of stars that would finish
a complete epicyclic orbit in the spiral density wave itself:

Example #3:The star is traveling much slower than the speed of the
spiral density wave.

Let’s consider snapshots in time where the star completes an entire
epicyclic orbit. In this case, the star again completes 70% of an orbit,

but the spiral arm orbits 1.2 times (instead of just 0.2 times)
D\

spiral arm P\ spiral P\

arm

spiral spiral
arm arm

one epicyclic orbit two epicyclic orbits three epicyclic orbits
time = 21U/K time = 4TU/K time = 617K
spiral pattern ~ 430 deg  spiral pattern ~ 860 deg spiral pattern ~ 1290 de
star orbitted ~ 250 deg  star orbitted ~ 500 deg Etar (frbitted ~ 750 degg

time =0

Which resonances drive spiral density wave growth?

Let us look at a few movies that illustrate these concepts rather

directly:
15 , : - . Inner Lindblad
Resonance
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Which resonances drive spiral density wave growth?

Let us look at a few movies that illustrate these concepts rather

directly:
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Which resonances drive spiral density wave growth?

Let us look at a few movies that illustrate these concepts rather

directly:
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Resonance
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http://cosmo.nyu.edu/~jb2777/resonance.html

Which resonances drive spiral density wave growth?

To ensure that some arbitrary star can complete an epicyclic orbit
in the same time it takes to move from one region in the spiral arm

to another, the following condition must be satisfied:

some integer

Epicyclic (or radial)

Frequency

m(QP Q) = nK
# of Spiral Arms / \
Orbital
Frequency of ~ Orbital (or Azimuthal)

Spiral Arms

Frequency of Stars on
Circular Orbits

The only integers n for this relation that are interesting are 0, +1, -1.

Which resonances drive spiral density wave growth?
This results in a number of well known resonances:
Inner Lindblad resonance: Most relevant cases:
Q, =Q - k/m Q,=Q-k/2
Outer Lindblad resonance:
Qp, =Q +k/m Q=
Corotational radius:

Q=0

In most cases, the only relevant case is that of two spiral arms, i.e.,
m=2

And note that physics behind bar-like
features in spiral galaxies is similar

At what orbital frequencies for the spiral arms are these resonances

Compute Q, =

relevant?

Q-k/2,0,Q+kK/NR2

How does the resonant frequencies vary by radius?

Qp

Orbital
frequency for
spiral arms at

which these
resonances
become
important

units VOM/b?

f nens2 .\\
f \
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isochrone
potential

| One thing you should note

is the extended range in
radius where the rotational
frequency for one of these
resonances, i.e., Q — K/2 is

approximately constant.

At what orbital frequencies for the spiral arms are these resonances
relevant?

Compute Qp, = Q - K/2,Q,Q + K/2

How does the resonant frequencies vary by radius?

aool--nT--\iH e
AR ] model | for
Q, L) our Galaxy
K ke
_ T | from BT 2.7
Rotational - 200 A -
3 N X
frequency for B ! \ \\ﬂ“
spiral arms at 51 e %
which these £ by N 1
» 3 K/ N \\\
resonances P N e ]
= 8 S 1
become \ ’N
important Again Q - K/2 is
almost
independent of
radius!




What are the typical physical radii where these resonances
apply?

Let’s zoom in on this plot and look at it more closely at

ES
N the highly relevant m = 2 case
§
N
=
Rotational
frequency for . (typically ~20 kpc in
spiral arms (typically a spiral galaxy like

~14 kpc) our own)

(typical pattern X .
speed for spiral (i);P;fa"Y Cor Outer Lindblad
arms Q, o Pc) Resonance
~15 km/s / kpc) P ‘ —_—
i ! \i\ Q+K/2
! | ‘ ! Q
. ! | ’ Q-K/Z
IILR OILR CR OLR Radius
Inner Lindblad (Can be more
Resonances than one)

Additional Properties of Spiral Density Waves

Spiral density waves can only survive and grow between the inner
Lindblad resonance and outer Lindblad resonance.

These waves cannot pass through the inner Lindblad resonance
(they are damped inside this radius)

What conditions are important for gas in spiral
galaxies for material to collapse gravitationally,
feeding spiral density waves!?

Jeans Instability

Consider homogeneous fluid that is in equilibrium, with density p,
pressure p, with no internal motion.

Assume that the fluid is spherically symmetric. We shall consider
the fluid is the matter inside some sphere with radius r.

Suppose that we compress the fluid element so that it now has a
radius r(1-a/ 3) where o is much smaller than |I.

What will be the force acting on the surface of the sphere after
this small compression?

To first order, the density
perturbation is p1 = ap

To first order, the pressure perturbation is
pi1 = (dp/dp)ap = apvs? where vs is the
sound speed:




Jeans Instability

The pressure force per unit mass is
The gravitational force per unit mass is
Fo=Vp/p
Fe = pGM/r2/p

The additional pressure force per unit

mass is The additional gravitational force per
unit mass is
dF, = V(apvs2)/p
dF; = aGM/r2

dF, = avs?/r

If the additional force on the surface of the sphere from the pressure

of the fluid, i.e., dF, is greater than the additional force on the surface of

the sphere from gravity, i.e., dFg, then the pressure force resists the radial
perturbation.

However, if the additional force from the gas pressure dF; is less than
the additional force from gravity dF, then the force of gravity will only
accelerate the collapse.

Jeans Instability
In summary, for dF, > dF; ==> fluid pressure resists gravitational

collapse

However, for dF, < dFg ==> system undergoes gravitational
collapse

dF, = dFg represents a specific physical scale.

dF, = avs?/r = aGM/r2 = dF
UsingM =p 4/3 1ir3,
vs2lr=Gp 4/31ir

We find:
ri~ (3 vi2/ (411 Gp))'72

Perturbations on a larger scale than the Jeans scale rywill result
in a gravitational collapse.

Toomre Instability Criterion

In spiral/disk galaxies, the stability criterion is more complex, due
to the shearing type motion

Similarly for a disk galaxies, there is also a stability criterion. Any
perturbations with wavelength larger than Acric are unstable.

Acrit = 27 [keris = AT°GE /K7

Random motions by stars tend to stabilize disks. Disks with
stellar motions are unstable if

ORK
="

©=33a0% <

This is the Toomre criterion. It assume that the disk is thin and

unstable modes are much smaller than the size of the sky. Again,
significant dispersion in the velocities of stars will stabilize the

disk.

What happens if Q < |?

This is an illustration of
how the disk becomes
clumpy because of a
Toomre-like instability.

What is Q for our galaxy?

For our disk where K = 37+3 km/s/kpc, Or = 382 km/s, 2 =
3615 Mo / pc2, Q* = 2.7£0.4.

Including interstellar gas 13 Mo / pc2, Q = |.5.




What impact does the measured Q value have on
the growth of spiral density waves?

For lower values of the Q parameter — as high as Q <~ 2 —
gravitational instabilities can feed the growth of spiral
structure.

This is particularly relevant at the coronation radius, given the
similar speed of the material (stars, gas) and spiral density
waves.

Now let’s return to spiral density waves in spiral
galaxies

What astrophysical processes drive these spiral density
waves as they rotate around a spiral disk?

O
When the gas in the spiral density wave is compressed, Q
it results in the formation of stars (due to the high gas ‘ =
densities induced by these compression waves) OO
After the stars form, they will approximately move at o OO
the circular velocity of the spiral galaxy -- which is often - 0: 0
faster than the pattern speed of the spiral arm B OO
@0 O
The high mass stars formed in the spiral density OO
0

compression waves die (SNe explosions or otherwise) ::'
shortly after leaving the spiral arm compression wave, :::o ©Q
but the lower mass (redder) stars continue to rotate
around the disk.

What astrophysical processes drive these spiral density
waves as they rotate around a spiral disk?

at inner radii in spiral

galaxies, stars travel

faster than the spiral
density wave.

gas and dust lanes
(formed from the metal
output of the
supernovae explosions)
indicate the position of
the high density spiral
density wave

hot (massive) stars do
not travel much beyond
the spiral density wave
in which they are
formed

‘\/ VAVAVAVAVAVIIL| =
R I V U X G

it is only the old (low
mass) stars that can
travel far enough to get

the hot stars are somewhat ahead of the gas/
dust lane, since there is some time lag between
when gravitational collapse begins and when the ahead of the spiral wave

stars finally form (i.e., are on the main sequence)

‘ Credit: van der Kruit




Where is the spiral structure most evident?

Because of the hot blue stars being predominantly formed in the
spiral density waves in disk galaxies and living for a very short
time, we would expect the spiral structure to be much clearer at
bluer or ultraviolet wavelengths where we just see the hot blue
stars.

Ultraviolet Visible Near Infrared

Besides high gas densities, what else can drive
spiral density waves?

What else can drive spiral density waves in disk galaxies?

Asymmetries in the dark and/or halo (galaxy formation
processes)

Or from interactions with a nearby neighbor (as in the case
of spiral galaxy M51)

Next topic is elliptical galaxies...

Elliptical galaxies consist of large numbers of stars
on diverse orbits.

While spiral galaxies are rotation supported,
elliptical galaxies are supported by the random
motions of stars they contain

Their behavior can largely be described using
collisionless dynamics.

Galaxy Formation: Major Steps

Overdense Disk Galaxy
Region (Supported by Angular
In Early Momentum)

Universe

Merger

Gravitational Gas Violent
Collapse Cooling Relaxation

Spheroid Galaxy
(Random Motion
Supported)

Virialized
Overdensity




We will therefore be reviewing some
concepts from collisionless dynamics
from the Leiden Bachelor course

We will discuss how to model the dynamics
of >10!0 stars that form a self-gravitating
system.

(this will require ~1 to ~1.5 lectures)

REVIEW Point from Bachelor Course: Collisions between individual
stars are a non-issue in modeling galaxies - given the typical density,
velocity, and cross section of stars. The main challenge is modeling their
collective gravitational potential.

Let’s quantify this by estimating the time scale for collisions:

radius (galaxy) ~ 5 kpc
# of stars (galaxy) ~ | x 10'0 stars

star diameter ~ |.4 x 106 km
all stars have a mass equal to the sun

Let’s assume:

In 6 x 107 years, a typical star crosses pathes with N stars:

N = (Distance Covered)(# stars / size3)

Collisions per crossing time = N 112
= (10 kpe)(I x 1010 stars/(5 kpc)3)ri(1.4 x 106 km)2=5 x 10-12 per crossing time
=5x1012/6 x 107 ~8x 1020/ year

Hence stars collide with each other very rarely!

REVIEW Point from Bachelor Course: In contrast to situations with
fluids, the force on individual stars does not come primarily from its
immediate neighbors, but from stars at all distances in the galaxy

Force from region of galaxy on a star

= Gm(pr2drdQ)/r2
= GmpdrdQ

Force is independent of r!  This
means that a given star in a galaxy
feels essentially the same force from
stars at | kpc and stars at 4 kpc.

This is very different from
hydrodynamics where short range
pressure forces dominate!

" gradient in the density of stars within the galaxy. .

— .
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Figure 4-1. I she density of siars were everywhere
the sawne, the stars In each of the shaded segments
would meke edual contributions to the net force on
& star ai the cone's apex. Thug the acceleration of
a gtar at the apex iz determined by the largescale

BT4: pages 187

REVIEW Point from Bachelor Course: The time scale for the relaxation
time of individual stars to collisions will other stars is very high, i.e., 10'é
years, and thus can be ignored in modeling the dynamics of stars in a
galaxy. Consequently, it is possible to model the potential and phase
space as smoothly varying.

First let’s look at velocity perturbation created by one
star passing by another.

= Figure 4-2, A fiold star approaches
H ¥ the test star st spesd » and upack
parspeter b, We estimate the
resulting impulse %o the test star
by approxtinating the field star's
trajectory as a sireight Ene.

BT4: pages 187-190




Relevant variables:

m = mass of “stationary” star b = impact parameter
v = velocity of moving star v = velocity perturbation

We begin by showing that the velocity perturbation is
the following:

v, =2Gm/ bv

In this problem, we make the assumption that the
impact parameter undergoes no meaningful change
during the encounter.

However, this will not be true if the velocity kick is on
order of the original velocity of the star.

So, we can show that our derivation

breaks down if bmin = Gm / v2

But, each star is perturbed by not just one star, but
many stars along the line of sight. Each perturbation
is in a random direction.

While on average the perturbations cancel each other
out, the many perturbations introduces a spread in
the overall distribution

In calculating the dispersion in the velocity distribution
caused by perturbations by other stars, we add velocity
kicks in quadrature

Let’s first considering the effect from an interaction with
some random star in a star and then let’s consider all N
stars in a galaxy.

Fraction of Stars with impact parameter b = 2rtbdb/mR2

Radius of

During derivation, we make use of the virial theorem

Total mass v2 = GM/R = (GNm)/R

N = # of stars per galaxy

Here is the result, i.e., dispersion in velocity kicks divided by typical
velocity in system is just a function of the number of particles in a

dynamical system....

<v.2>/v2=8(InN) /N (per crossing time)

Number of times star must cross galaxies such that the
dispersion in its velocity kick equals the typical velocity
gives us the relaxation time.

Ncross,relax <y, 2> =2

trelax = teross Ncross,relax = tcross(N / (8 In N))

Example of Time Scales

System | Mass Radius Velocity N teross trelax
Mg kpc kms—?! yr yr
Galaxy | 10%° 10 100 101 108 > 101
DM Halo | 102 200 200 > 1059 10° > 1080
Cluster | 104 1000 1000 108 10° ~ 1010
Globular | 10* 0.01 2 104 5x 10 5 x 108

Dark Matter Haloes and Galaxies are collisionless
Collisions may or may not be important in clusters of galaxies
Relaxation is expected to have occured in (some) globular clusters

Credit: van den Bosch




MOTIVATION:

We have this very complicated situation:
how can we model the orbits of all the stars in a galaxy
simultaneously

Seems difficult!

Before even thinking about how to solve it, how shall
we even try to model it?

Ignore the fact that stars are discrete sources and
assume that we treat them as a fluid with each star
individually having an infinitesimal mass.

We will use a 7-dimension distribution function to
describe where they are in 6-dimensional phase
space at some time t.

REVIEW point from Bachelor course: The time evolution of the
distribution function is defined by the distribution function at that time,
spatial derivatives, and the gradients of the potential (Vlasov-Equation).

This follows directly from a conservation equation on the stars.

At any time t, one can describe the collective positions and velocities
for stars in a dynamical system by a distribution function f(x,v,t)

To describe the time evolution, we define a six dimensional vector
w = (X,V)

The flow of stars in the six dimensional phase can be described

as dw/dt = (v,-VO)

The flow dw/dt conserves stars...

BT4.1:page 190-195

equal to each other from

At any time t, one can describe the collective positions and velocities
for stars in a dynamical system by a distribution function f(X,v,t)
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At any time t, one can describe the collective positions and velocities
for stars in a dynamical system by a distribution function f(X,v,t)

of )
En V- (fw) =0

. af 0% of

o) =0
ot =" or;  0u; v,

of =, = Of
5 TV - Ve =0

Collisionless Boltzmann
Equation
“Vlasov Equation”

df

also canwriteas — — ()

dt




REVIEW Point from Bachelor Course: Integrals of motion are functions
of x and v which are constant along an orbit. They are not explicit
functions of time. Examples: energy, angular momentum. Most 3D

densities allow for 3 integrals of motion, 2 of which are non-classical.

Integrals of motion can be a very useful concept for characterizing
the orbits of stars in a galaxy.

They are useful in the case that they are isolating integrals of motion
since the reduce the dimensionality of the phase space in which a
star travels during its orbit.

There can be no more than 6 integrals of motion. Typically there is
at least one integral of motion (energy).

What are some examples of isolating integrals of motion?

- Energy is always an integral of motion for a star in a static potential.

The energy per unit mass for a star remains constant
throughout its orbit: E(x,v) = (1/2) v2 + ®(x)

- Lz angular momentum in the z direction (for an axisymmetric
potential)

- L: all three components of the angular momentum in spherically
symmetric potential

Integrals of motion tend to arise from some symmetry in the system.

However, dynamical systems can also have other isolating integrals of
motion outside of the classical ones (i.e., energy, angular momentum)

How can integrals of motion reduce the phase space explored by an
orbit?

Consider a spherically symmetric potential:

e 1. Spherical potentials:
E, L., Ly, L. are integrals of motion, but also E, |L|

and the direction of L (given by the unit vector 7,

which is defined by two independent numbers). 7 de- x3 =0
fines the plane in which # and @ must lie. Define -

dinate system with z axis along 7@
vi=0

— & and ¥ constrained to 4D region of the 6D phase
space. In this 4 dimensional space, |L| and E are con- Energy
served. This constrains the orbit to a 2 dimensi

Figure 31, A typical orbit in »
apheritsl potential forms a rosatte,

space. Hence the velocity is uniquely defi or a
given 7 because of L, . )
conservation >=4 integrals of motion:
v = +£\/2(E — ®) — L2/r2 Energy
Lx
vy = £L/r LY
L,

One alternate way of determining how restricted the orbital
manifold of galaxies are is to construct poincare surfaces of section:

To investigate whether the orbits admit any additional (hidden) isolating
integrals of motion, Poincaré introduced the surface-of-section (SOS)

Consider the intersection of M 3 with the surface y = 0. Integrate the orbit,
and everytime it crosses the surface y = 0 with ¢y > 0, record the position
in the (x, p,;)-plane. After many orbital periods. the accumulated points
begin to show some topology that allows one to discriminate between
regular, irregular and resonance orbits.

Example surface of section

= energy surface

= regular box orbit
———— =regular loop orbit
= irregular (stochastic) orbit
« = periodic (resonance) orbit

NOTE: Each resonance orbit creates a
family of regular orbits.

Loop orbit: has fixed sense of rotation
about the center; never has x-

Box orbit: no fixed sense of rotation
about the center. Orbit comes
arbitrarily close to center.

Credit: van den Bosch




Setting up equilibrium models for a collisionless system.
It is not necessarily an easy thing to do

We must set up a self-consistent system whereby each of the
following steps imply the next:

(1) given density distribution p(r), calculate the potential ®(r) the
density distribution would imply

(2) given some potential @, determine the set of orbits that stars
would undergo

(3) calculate the density distribution that would result from the
collective orbits of all the stars in a system

The Density Distribution derived in step #3 must be the same

as assumed in step #|

Poisson Eq.

The relevant equations are: [Density | [Potential]
N
p(E) = [ f(@0)d%F \ o
Vi@ (F) = 4nGp(T) : &
L
dt




