
Formation of Disk Galaxies
(Part 1)

February 9

Layout of the Course

Feb 2:  Course Introduction, Overview, and Galaxy Formation Basics
Feb 9:  Disk Galaxies (I)
Feb 12:  Disk Galaxies (II)
Feb 16:  Disk Galaxies (III) / Collisionless Stellar Dynamics
Feb 23:  Collisionless Stellar Dynamics + Vlasov/Jeans Equations
Feb 26:  Vlasov/Jeans Equations / Elliptical Galaxies (I)
Mar 9:  Elliptical Galaxies (II)
Mar 23:  Elliptical Galaxies (III)
Mar 30:  Dark Matter Halos
Apr 13:  Large Scale Structure
Apr 20: Galaxy Stellar Populations
Apr 23: Lessons from Large Galaxy Samples at z<0.2
May 4: Evolution of Galaxies with Redshift
May 11: Galaxy Evolution at z>1.5 / Review for Final Exam

Lectures 

Problem Set 1
(Distributed last week, due on Feb 23)

Galaxies: Structure, Dynamics, and Evolution

Problem Set 1

Instructor: Dr. Bouwens

Here is problem set #1. The entire problem set will be due before class on

Monday, February 23 (email them to Wout and hand them before class).

Be sure to pay extra attention to problem 3, as your solution to that prob-

lem will be checked carefully and used in determining your homework grade.

1. Derive the potential from the density for a point-source mass M , uniform

density ⇢ sphere, and a singular isothermal sphere ⇢0/r
2
(where ⇢0 is the

density at radius 1 and r is the radius) using the following equation presented

in class:

� = �4⇡G


1

r

Z r

0
⇢(r

0
)r

02
dr

0
+

Z 1

r
⇢(r

0
)r

0
dr

0
�

(1)

Show your work. As the potential for a singular isothermal sphere blows

up at radius 0, please derive an expression for the potential such that the

potential equals zero at r0.

2. The model given by ⇢ = 1/(1 + r
2
)
2.5

is a Plummer model. Derive the

potential of this model. What is the total mass?

3. Assume that the age of the universe is 13 Gyr and ⌦ = 1 and ⇠100% of

the mass-energy density of the universe is in the form of matter.

(a) Using the equation
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where r is the scale factor of the universe and ⇢ = ⇢0/r
3
, show that r in-

creases with time as t
2/3

. What does const equal for a universe where ⌦ = 1?

(b) What is the Hubble constant H0 = (ṙ/r)0 that would yield a universe

with an age of 13 Gyr?

(c) Calculate the age of the universe at redshifts z of 1, 5, and 10. Note

that for redshifts z of 1, 5, and 10, the scale factor r for the universe was

(1 + z) smaller than it is today (i.e., r = r0/(1 + z) where r0 is the scale

factor today).

(d) How long has the light travelled which was emitted at z = 1?

4. (a) Consider that there was some overdense region in the universe which

had a density ⇢ which was 2⇢crit (the critical density) which otherwise had

1

Feb 19:  Board Work + Problem Set 1
Mar 12:  Board Work + Problem Set 2
Mar 26: Problem Set 3 / Paper Presentations (4 slots)
Apr 2: Paper Presentations (7 slots)
Apr 16: Problem Set 4 / Paper Presentations (4 slots)
Apr 30: Problem Set 5 / Paper Presentations (4 slots)
May 7: Problem Set 6 / Paper Presentations (4 slots) 

Practical Sessions

Problem Set 1
(Distributed last week, due on Feb 23)

Opportunity to discuss 
hardest problems in 
working session on

February 19



Problem Set 1
(Distributed last week, due on Feb 23)

Requested Feedback 
on Problems to 

Discuss in Class Here:

Homework Grade — What goes into It?

50% —> Graded Problem Sets (~6)

30% —> Oral Presentation of a Solution During Practical Class

(Only One Problem from Each Set Graded)

20% —> Attendance / Participation in Practical Classes

100% Score, if attend 71% of Classes
80% Score, if attend 57% of Classes
60% Score, if attend 43% of Classes
30% Score, if attend 29% of Classes

If you provide consistent feedback on problems to discuss in 
class, credit for 1 additional class attended.

Feb 19:  Board Work + Problem Set 1
Mar 12:  Board Work + Problem Set 2
Mar 26: Problem Set 3 / Paper Presentations (4 slots)
Apr 2: Paper Presentations (7 slots)
Apr 16: Problem Set 4 / Paper Presentations (4 slots)
Apr 30: Problem Set 5 / Paper Presentations (4 slots)
May 7: Problem Set 6 / Paper Presentations (4 slots) 

Practical Sessions

Problem Set 1
(Distributed last week, due on Feb 23)

Will be asking two groups of 3-4 people to present solutions to two 
problems from problem set 1 on February 19

I will contact 3-4 of you by tomorrow.   Are there people who want 
to volunteer?   If not, I will randomly pick names.   

Don’t worry, if you have questions you can contact Wout or myself to 
help in solving the problems.

Teaching Assistant

Wout will also be available by appointment to 
answer your questions.

Wout Goesart
BW.3.21

goesaert@strw.leidenuniv.nl

Wout will be holding office hours on
Tuesday: 11:00-12:00
Friday: 10:30-11:30

mailto:goesaert@strw.leidenuniv.nl


Review of Material from Last 
Week

Galaxies have many different morphologies

In this course, we will focus on many of these mechanisms, 
as we aim to understand galaxy formation and evolution.

Not surprisingly, these different morphologies reflect 
different formation mechanisms.

Galaxy Formation:  Major Steps
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Relaxation

Galaxy formation is driven by the impact of gravity in forming 
collapsed, virtualized halos, consistently primarily of dark matter.

FIRST STEP:  Gravitational Collapse



REVIEW:  How do disk galaxies form?

FIRST STEP:  Gravitational Collapse

Assume you have a spherically symmetric region of the universe where has an 
average density which is higher than the critical density.

22-11-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c8-15

δ ∝ r ∝ t2/3

We can prove this by considering a homogeneous sphere
at z = 106 with overdensity δ. The sphere is embed-
ded in a Ω = 1 universe.

The particles in the sphere do not feel anything from
the outside universe. Hence the sphere will evolve
like it is a “separate universe”, with Ω = (1 + δ).
Since a universe with Ω > 1 will collapse at some
time, the sphere will collapse at some time tcollapse.
Before that, the density of the sphere will evolve like

1

Ω(t)
− 1 =

1
Ω0

− 1

1 + z(t)
=

1
Ω0

− 1

1/r(t)
= (

1

Ω0
− 1)r(t)

where r is the “radius” of the universe (expansion pa-
rameter). Take at z = 106 : Ω0 = 1 + δ0, then we
find

1

Ω0
− 1 =

1

1 + δ0
− 1 = 1 − δ0 − 1 = −δ0
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Hence, the equation results into

δ(t) = δ0 ×
r(t)

r0
= δ0 ∗

(

t

t0

)2/3

Hence, the density contrast of the sphere increases lin-
early with expansion radius. As a result, if a fluctua-
tion was present of 10−6 at z = 106, it would have
grown to a fluctuation of δ = 1 at z = 0 under its
own gravity.

This mechanism is the basic mechanism to
form galaxies

In detail, what happens is the following:

The sphere will collapse, and start oscillating (if we ig-
nore the material just outside of the sphere). In reality,
the sphere will have internal density fluctuations, and it
will settle to an equilibrium structure, with a radius of
about half the “maximum expansion ” radius.

δ  = ρ/ρc − 1

δ = Overdensity 
relative to critical...

22-11-07 see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c8-3

HOW DO GALAXIES FORM ?

We know that

• Universe was very smooth at z=1000 from the
Cosmic Background Radiation (fluctuations ∝

10−5)

• Universe is not so smooth now: galaxies, clusters,
large scale structure

Where does this come from ?

SIMPLEST HYPOTHESIS:

gravitational collapse of very small density en-
hancements
• We start with a homogeneous universe, with a

very small section at slightly higher density
• we notice that the relative density contrast

δ = δρ/ρ grows with time.
this is easy to derive using simple equations, and
we will show this below

22-11-07 see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c8-4

The expanding universe

it is observed that the universe expands

• nearby: v = H0D
• v=velocity , D = distance, H0= 100 h km/s/Mpc

h=0.73 ± 0.03

What are the equations of motion ?

• The complete answer follows from General Relativ-
ity

• the correct answer can also be derived from basic,
Newtonian physics

Consider a homogeneous sphere, with density ρ, and
uniformly expanding

Consider the force on a shell of the sphere, at radius r,
and velocity ṙ:

r̈ = −
GM(< r)

r2

As the sphere expands, the mass is conserved. Multiply
both sides with ṙ

ṙr̈ = −
GMṙ

r2

Integrate once:

The acceleration the outer shell of this spherical region will feel can be 
described by the following equation:

where M is the mass and r is the 
radius of the sphere

ρc = 3((dR/dt)/R)2 / (8πG)
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The expanding universe

it is observed that the universe expands

• nearby: v = H0D
• v=velocity , D = distance, H0= 100 h km/s/Mpc

h=0.73 ± 0.03

What are the equations of motion ?

• The complete answer follows from General Relativ-
ity

• the correct answer can also be derived from basic,
Newtonian physics

Consider a homogeneous sphere, with density ρ, and
uniformly expanding

Consider the force on a shell of the sphere, at radius r,
and velocity ṙ:

r̈ = −
GM(< r)

r2

As the sphere expands, the mass is conserved. Multiply
both sides with ṙ

ṙr̈ = −
GMṙ

r2

Integrate once:

The acceleration the outer shell of this spherical region will feel can be 
described by the following equation:

where M is the mass and r is the 
radius of the sphere

ρc = 3((dR/dt)/R)2 / (8πG)

ρc = 3H2 / (8πG)
R/R(t=0) = 1/(1+z)

When used for cosmology

H = Hubble constant
z = Redshift
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This radius is often called the “virialization radius” ,
rvir. The sphere will obtain this radius at the first col-
lapse time, which is also called the “virialization time”
(or “formation time”)
By comparing the maximum expansion radius of the
sphere to the “normal expansion” radius of the uni-
verse (with Ω = 1) at the virialization time, we can
derive:

rmax =
1

1
4 (12π)2/3

rΩ=1(tcollapse) (≈ 0.36rΩ=1(tcollapse))

This is derived using analytical solutions for the expan-
sion of the universe. Since rvir = 1/2rmax

rvir =
1

1
2 (12π)2/3

rΩ=1

The relative density of the sphere, compared to the
rest of the universe, is simply given by the ratio
(rΩ=1/rvir)3, since the mass of the sphere is con-
served, but the density is increased compared to the
Ω = 1 universe since the mass is put in a smaller den-
sity structure.
Hence

ρvir

ρ(universe)(z = zvir)
= (rΩ=1/rvir)

3

= (1/2(12π)2/3)3 = 18π2 = 178

This makes a very specific prediction for the density of
objects (galaxies, clusters, etc : If a galaxy forms at a
redshift zform, it will have a density which is 178 times
higher the density of the universe at zform.

22-11-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c8-18

After the galaxy has formed, it will remain the same,
whereas the universe will keep expanding. Hence, the
density contrast will increase with time

ρvir

ρ(universe)
= 178 ∗ (r/rform)3

= 178 ∗ ((1 + zform)/(1 + z))3 = 178 ∗ (t/tform)2

This can be used as a simple recipe: we now measure
that galaxies have an overdensity of about 105 inside
the optical radius. This part would be formed at a
redshift of

(1 + zform) = (105/178)1/3 = 8

The galaxy is much bigger, however, than the optical
radius. The halo has a density profile which goes like
ρ ∝ r−2. The average density goes down like r−2, and
the density contrast will be a lot smaller if we take the
halo into account. If we assume that the halo extends
to 100 kpc (10 times further), the density will be lower
by a factor of 100, and the formation redshift will be

(1 + zform) = (103/178)1/3 = 1.8

Hence, the fact galaxies have halos has a very impor-
tant consequence for galaxy formation: it makes them
bigger, have lower mean density, and thereby form
much later !
At maximum expansion, the region has an overdensity
of about 5, this increases very rapidly to 178 in the
next half of the total collapse time.
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Hence, the density contrast of the sphere increases lin-
early with expansion radius. As a result, if a fluctua-
tion was present of 10−6 at z = 106, it would have
grown to a fluctuation of δ = 1 at z = 0 under its
own gravity.
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form galaxies
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nore the material just outside of the sphere). In reality,
the sphere will have internal density fluctuations, and it
will settle to an equilibrium structure, with a radius of
about half the “maximum expansion ” radius.

rmax rvir
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rest of the universe, is simply given by the ratio
(rΩ=1/rvir)3, since the mass of the sphere is con-
served, but the density is increased compared to the
Ω = 1 universe since the mass is put in a smaller den-
sity structure.
Hence

ρvir

ρ(universe)(z = zvir)
= (rΩ=1/rvir)

3

= (1/2(12π)2/3)3 = 18π2 = 178

This makes a very specific prediction for the density of
objects (galaxies, clusters, etc : If a galaxy forms at a
redshift zform, it will have a density which is 178 times
higher the density of the universe at zform.
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After the galaxy has formed, it will remain the same,
whereas the universe will keep expanding. Hence, the
density contrast will increase with time

ρvir

ρ(universe)
= 178 ∗ (r/rform)3

= 178 ∗ ((1 + zform)/(1 + z))3 = 178 ∗ (t/tform)2

This can be used as a simple recipe: we now measure
that galaxies have an overdensity of about 105 inside
the optical radius. This part would be formed at a
redshift of

(1 + zform) = (105/178)1/3 = 8

The galaxy is much bigger, however, than the optical
radius. The halo has a density profile which goes like
ρ ∝ r−2. The average density goes down like r−2, and
the density contrast will be a lot smaller if we take the
halo into account. If we assume that the halo extends
to 100 kpc (10 times further), the density will be lower
by a factor of 100, and the formation redshift will be

(1 + zform) = (103/178)1/3 = 1.8

Hence, the fact galaxies have halos has a very impor-
tant consequence for galaxy formation: it makes them
bigger, have lower mean density, and thereby form
much later !
At maximum expansion, the region has an overdensity
of about 5, this increases very rapidly to 178 in the
next half of the total collapse time.

The radius of the spherically symmetric region will evolve as shown in the 
diagram to the lower left:

By solving the 
differential equation 

presented in last class, 
it can be shown that 

rmax and rvir are as given 
below

If you trace the evolution of the radius of this spherically symmetric region, it 
will initially continue expansion, stop, and then turn around.

The second essential step in the formation of galaxies is the need for baryons 
to be able to cool to the center of the collapsed halo.

During the initial gravitational collapse of an overdensity, we would expect the 
baryons to be distributed in a very similar way to the dark matter.

Both matter distributions are supported by the random motions of the particles.

Baryonic gas particles can lose energy through 
radiative processes, but dark matter cannot.

However, in favorable conditions, baryons sink 
to the center of the gravitational potential, 

but dark matter remains where it is.

SECOND STEP:  Gas cooling

Dark and visible matter!
NGC 4216 

Collisionless Collapse!
Given that we see numerous signs of the presence of dark matter the calculations

 for a collisionless collapse are part of the standard picture for galaxy formation. 

White & Rees (1978) were the first to suggest that the formation process must be in
 two stages – baryons condense within the potential wells defined by the

 collisionless collapse of dark matter haloes. 

This simplifies the problem in many way – since the complex fluid-mechanical and

 radiative behaviour of the gas can be initially ignored. 

Bottom-up, CDM small-scale perturbations survive recombination; consistent with

 heirarchical look of the universe (many galaxy groups and clusters). 

It may seem obvious that an infinitely nonlinear density field cannot be analysed
 within the bounds of linear theory –  

but a way forward was identified by Press & Schecter (1974). 

Their critical assumption is that even if the field is nonlinear the amplitude of large

 wavelength modes in the final field will be close to that predicted from linear theory. 

Mass function of collapsed halos!
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Press & Schechter 1974 ApJ, 187, 425 

Assumption that primordial density perturbations were

 Gaussian fluctuations. Thus, the phases of the

 waves which made up the density distribution were
 random and the probability distribution of the

 amplitudes of the perturbations could be described  by

 Gaussian function: 

is the density contrast associated

 with perturbations of mass M. 

Being a gaussian distribution, the mean value is zero,

 with a finite variance ,2(M) 

This is exact statistical description of the perturbations

 implicit in the analysis of early universe. 

assumption is that when the perturbations have developed an amplitude greater

 than some critical value $c, they evolved rapidly into bound objects with mass M.  

Press-Schechter Mass Function 

power law spectrum P(k) = kn  plus rules that describe the growth of the perturbations.  

Press & Schechter assumed Einstein-de Sitter ()0=1 )(=0) so perturbations developed $* a* t2/3.   

For fluctuations of a given mass M, the fraction F(M) of those which become bound at a particular epoch

 are those with amplitudes greater than &. 

"(x) is the probabilty

 integral, defined by The mean square density perturbations on mass scale M are defined

 as being related to the power spectrum in this form:  

A, constant 
Can now express tc in terms of mass distribution 

reference mass: 

Dark Matter

Baryons
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Galaxy Formation

Leading questions for today
• How do visible galaxies form inside halos ?
• Why do galaxies/halos merge so easily ?

How do visible galaxies form inside halos ?

density fluctuations and gravity produce:
dark matter halos

• halos much bigger than visible part of galaxy
• halos rotate slowly < v > /σ ≈ 0.3

Halos entirely UNLIKE visible galaxies
So what happens ?
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dark matter

gas

When new halo just formed: gas is distributed like dark
matter
• gas supported by pressure
• dark matter supported by random motions

Gas can cool by radiation, and can collapse to the cen-
ter if cooling efficient

Dark matter cannot cool ! Will not collapse to center

Gas cooling is expressed as:

cooling rate = n2Λ(T )

cooling rate is cooling per unit volume element
n is number density of gas
Λ(T ) is cooling function

The cooling rate can be expressed as

where n is the gas volume density and Λ(T) is the temperature dependent 
cooling rate.
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Cooling mechanisms: bound-bound, bound-free, free-
free, electron scattering

• 104 = ionization/recombination hydrogen
• 105 = ionization/recombination helium

T > 106K : thermal bremsstrahlung and Compton
scattering

Now take a halo with gas inside. Two options:
• Tcool < Tdyn, then cooling is efficient, and the gas

will collect in the center
• Tcool > Tdyn, then cooling is inefficient, and the

gas will NOT collect in the center
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Draw figure of nlum, the number density in luminous
material (in units of particles/cm3), versus temper-
ature T . Draw the line of tcool = tdyn, and put in
astronomical objects:
• galaxies
• groups and clusters of galaxies

We find
• gas in galaxies cools efficiently
• gas in clusters does not !

Ionization /
Recombination 

Hydrogen

Ionization /
Recombination 

Helium

Thermal 
Bremsstrahlung

There are two time scales of interest in thinking about galaxy formation:

(1) dynamical time scale tdyn

(2) cooling time scale  tcool

(∝ n-1/2)
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Draw figure of nlum, the number density in luminous
material (in units of particles/cm3), versus temper-
ature T . Draw the line of tcool = tdyn, and put in
astronomical objects:
• galaxies
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We find
• gas in galaxies cools efficiently
• gas in clusters does not !

constant mass lines

For sources with galaxy-sized masses 
(1010 Msol), cooling is efficient...

 
However for cluster-scale masses (1014 

Msol), cooling is not efficient... and have 
lots of hot gas.

SECOND STEP:  Gas cooling

For cooling to have any impact,  tcool << tdyn

How do these time scales compare for various mass halos?

New Material

Let’s consider a collapsed object with both dark matter 
(does not cool) + Baryons (can cool)

How extended is the baryonic mass at the 
center of collapsed sources?

Disk Galaxy

Dark Matter



What sets the physical size of 
disk galaxies?

What determines the Size of Disk Galaxies?

Likely the angular momentum of the halo

spinning slow spinning moderate speed spinning fast

after cooling after cooling after cooling

intermediate size,
more dense disk galaxy

large, 
lower density galaxy disk

(small enough, may not be 
stable as disk galaxy)

higher surface brightness lower surface brightness

How far can the baryonic matter collapse into the center of 
the dark matter halo?

What stops it from collapsing to the center?

Angular momentum of the Baryonic Material

While radiative processes can remove energy from the gas, 
these processes preserve its angular momentum. 

Gas can only collapse so far while preserving its angular momentum:
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when galaxies cool, the density will increase, while T
remains roughly constant.

When the gas becomes self gravitating, the T might
increase (the circular velocity will increase, hence the
temperature ∝ v2

c )

when the gas is self-gravitating, it can start to form
stars !

As a result, the luminous galaxy forms in the
center of the halo, and is much smaller than
the dark halo

Homework assignment

1) prove M ∝ T 3/2/n1/2

lum. Use σ2 ∝ T and nlum ∝
M/R3.

3-12-07 see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c9-6

How to get disks in spiral galaxies?

Gas cools down and contracts.
Assume that specific angular momentum is conserved

j =
J

m
= rstart < v >= 0.3rstartσdm

Gas contracts by factor f :

f =
rstart

rend

specific angular momentum is conserved:

jend = rend < vend >= jstart = 0.3rstartσdm

Hence

< vend >= 0.3
rstart

rend
σdm

= 0.3fσdm

The gas rotates faster and faster while the gas con-
tracts

contraction is halted when the cooled gas is in circular
orbits around the center. For such orbits

v = vc =
√

2σdm

Hence this occurs when

0.3f =
√

(2)
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j =
J

m
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Gas contracts by factor f :

f =
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Hence
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√
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By comparing <vend> with <v>, we can determine <rend>/<rstart>

This results in the formation of a gas disk (for a disk galaxy), since a disk is the 
minimum energy configuration that still conserves angular momentum.

What determines their Size?

Together, these two variables (mass + angular momentum) 
of the matter in a collapsed halo should determine most 

of the physical properties of a spiral galaxy.

The disk size rd is a function of the radius of the collapsed 
halo R200 and the dimensionless angular momentum λ

rdisk = λR200 / 21/2

λ = J E1/2 / (GM5/2)

where the dimensionless angular momentum is defined as 
follows:

The dimensionless angular momentum λ typically falls in 
the range: ~0.03 - 0.10 (from tidal torque theory)



What type of scaling relations might we expect to hold?

If we assume that there is a fixed circular velocity at large radii (as is the case 
for many disk galaxies):

the mass enclosed in some radius is

22-11-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c8-19

Homework assignment:
5) Calculate the luminosity overdensity of a typical
galaxy inside 10 kpc. Assume that the luminosity func-
tion implies a luminosity density of 0.01 L∗ per Mpc3,
where L∗ is the typical luminosity of a galaxy.
6) Estimate when this galaxy would have formed using
the equations given above.
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Scaling relations

If galaxies all form at some fixed redshift, we might
expect that they all have the same mean density.
This would apply to their halos, obviously:

< ρhalo >= constant

The implication is that mass is simply related to halo
size:

M ∝< ρ > R3

where R is the halo size.
We assume that the halo is isothermal with a density

profile

ρ = ρ0r
−2

Hence the circular velocity vc is constant with radius.
The total mass is given by

v2
c/R = GM/R2

M = Rv2
c/G

Now use R ∝ M1/3, hence

M ∝ M1/3v2
c

take M to the left side of the equation

M2/3 ∝ v2
c

Assuming that galaxies form at a fixed redshift, we would expect 
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Scaling relations

If galaxies all form at some fixed redshift, we might
expect that they all have the same mean density.
This would apply to their halos, obviously:

< ρhalo >= constant

The implication is that mass is simply related to halo
size:

M ∝< ρ > R3

where R is the halo size.
We assume that the halo is isothermal with a density

profile

ρ = ρ0r
−2

Hence the circular velocity vc is constant with radius.
The total mass is given by

v2
c/R = GM/R2

M = Rv2
c/G

Now use R ∝ M1/3, hence

M ∝ M1/3v2
c

take M to the left side of the equation

M2/3 ∝ v2
c

Manipulating the second expression to derive an equation for R and substituting it in 
the first equation, we find
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or

M ∝ v3
c

This relation is very close to that observed for galaxies

• Tully-Fisher for spirals: L ∝ v(3−4)
c

• Faber-Jackson for ellipticals: L ∝ σ(3−4)

both relations have significant scatter - cannot be com-
pared to the narrow main sequence for stars

22-11-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c8-22

The fact that galaxies follow these relations is remark-
able, because it not at all necessary for galaxies to
have such a relation from “simple” dynamics.

The relations are even more remarkable since the pre-
diction is for the mass, not the light, of galaxies to
follow such a relation. As a consequence, there is a
likely, simple relation between mass and light

Mhalo ∝ Lstars???

The explanation for this relation is usually the follow-
ing: Each dark matter halo has some fraction f of its
mass in baryons (hydrogen mainly). These baryons sink
to the center, and form stars. The light of the stars is
proportional to the mass in baryons, which is propor-
tional to the mass in dark matter. This simple explana-
tion might just work...

If the galaxy luminosity is proportional to mass, then
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L

which isn’t quite true, but is close to the observed scaling.

How do their structural parameters correlate?

The global properties of spiral galaxies are observed to correlate with each 
other:

Tully-Fisher Relation: 

•! Because galaxies have flat rotation curves, if one 

observes all the gas in a galaxy simultaneously (i.e., 

via an integrated spectrum), its emission-line will have 

a well-defined maximum-width (W) 

•! The width of this profile can be translated into a 

velocity, via W ~ 2 Vmax sin i 

–! Note we need to correct W for random motions 

•! Tully & Fisher (1977) found that a galaxy’s maximum 

rotational velocity is well-correlated with its total 

absolute magnitude, i.e.,                  where  ! ~ 4 

–! Why is this relationship useful?? 

•! Note that the slope & scatter change with wavelength 

–! Why would we expect this? ! 

L"V
max

#

Observed HI profile width 

Face-on 

HI line profile for NGC 1744 

W 

Tully-Fisher at various wavelengths 

        ! = 3.2 
Scatter=0.25 mag 

        ! = 3.5 
Scatter=0.25 mag 

        ! = 4.4 
Scatter=0.19 mag 

log L = a log W + b 

measure this W parameter 
by looking at the total 

velocity spread for galaxy 
at single time (based on 
observations of 21 cm

spectral line)

luminosity

Outline

Tully-Fisher relation

Rotation curves and mass distribution

In the I-band Giovanelli
et al.a find from 555
galaxies in 24 clusters a
slope of 7.68 ± 0.13 (in
magnitudes, which
corresponds to 3.07 ±
0.05).

aR. Giovanelli & 6 other
authors, Ap.J. 477, L1
(1997)

Piet van der Kruit, Kapteyn Astronomical Institute Rotation curves and dark matter

~2 x circular velocity

Tully Fisher Relationship Luminosity ∝ vc4

Slope of Tully-Fisher Relationship depends on which 
wavelength one measures the luminosity

How do their structural parameters correlate?
also a correlation between luminosity and size

luminosity

size

it is clear that the size-luminosity relation is less tight!

Courteau+2007

What about the radial structure of disk galaxies?

From the Kinematic Information, we can derive a mean 
velocity along the line of sight vs. position (like for ellipticals)

As we showed previously, from the line of sight “circular” velocity 
information we immediately have information on the enclosed mass.

Total enclosed mass and rotation curve

For a circular orbit with velocity vc(r) we

have:

d�

dr
=

GM(< r)

r2
=

v2c
r

So the Jeans equation can be written as

v2c =
GM(< r)

r
= � v2r

0

@d ln ⌫

d ln r
+

d ln v2r
d ln r

+2�

1

A

Measure: ⌫(r), v2r and � ) determine

enclosed mass
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Outline

Tully-Fisher relation

Rotation curves and mass distribution

Exponential disk

Dark matter halo

Maximum disk hypothesis

Independent checks on the maximum disk hypothesis

Modified dynamics

The maximum disk solution to the rotation curve of NGC 3198
looks as follows.
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The maximum disk solution to the rotation curve of NGC 3198
looks as follows.
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Outline

Tully-Fisher relation

Rotation curves and mass distribution

Exponential disk

Dark matter halo

Maximum disk hypothesis

Independent checks on the maximum disk hypothesis

Modified dynamics

The di�culty with the maximum disk hypothesis is that it is
possible to make similar good fits with lower disk masses ...
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Outline

Tully-Fisher relation

Rotation curves and mass distribution

Exponential disk

Dark matter halo

Maximum disk hypothesis

Independent checks on the maximum disk hypothesis

Modified dynamics

... and even no disk mass at all!

Piet van der Kruit, Kapteyn Astronomical Institute Rotation curves and dark matter



Final Picture of Galaxy

Dark Matter Halo

Disk Galaxy

Presence of Dark Matter Has Huge Impact 
on This

What is the evidence for significant mass 
in galaxies from dark matter?

(Mostly REVIEW from 
bachelor course)

Mass of Galaxies:
Inferences from the Rotation Curve

rotating
(receding)

rotating
(approaching)

Rotation Velocity

Line of Sight Velocity

Radius on Sky

What data are used for this?

Hα (optical spectroscopy) -- star-forming/ionized regions

CO (mm arrays) -- molecular hydrogen
HI (radio 21 cm) -- atomic hydrogen

Mass of Galaxies:
Inferences from the Rotation Curve

rotating
(receding)

rotating
(approaching)



29-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c7-11

7.2 Mass distribution and dark matter in spi-
ral galaxies

Dark Matter Halos in Spiral Galaxies BT 10.1-
6

measure rotation curve of cold gas
• H alpha (optical)
• CO (mm arrays)
• H I (vla, westerbork)

assume circular orbits:

v2
c (r)

r
=

GM(< r)

r2

The enclosed mass is directly given by

M(< r) = rv2
c (r)/G

Isothermal sphere: vc = constant, ρ ∝ r−2

Point Mass: vc ∝ 1/
√

r

Measurement in practice:

• Take edge-on system, measure maximum veloc-
ity of gas at each point
possible problems: extinction, confusion

• Take inclined galaxies, measure velocities every-
where
• Model by fitting a circular velocity field with
unknown inclination and rotation curve
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Historically, optical rotation curves like these on the
following figure indicated for the first time the presence
of dark matter.

Very modern data are based on 21cm HI emission lines.
The HI disks can often be followed to very large radii,
and hence the rotation curve can be followed to well

How do we derive masses?

Mass of Galaxies:
Inferences from the Rotation Curve

rotating
(receding)

rotating
(approaching)

If the only matter in spiral galaxies was from the observed stars, then the rotation curve 
would look as follows:

29-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c7-15

model looks like:

We can now model the galaxy. Take the surface bright-
ness profile, and calculate the rotation curve if the
mass-to-light ratio were constant:

29-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c7-16

Obviously, an additional mass component is necessary
to explain the rotation curve.

Fit rotation curves:

Constant M/L for starlight
add halo, with ρ = ρ0/(1 + (r/a)2)

Example for NGC 3198

Problems: The fit is never unique. Different M/L’s
for the disk, and different values of a, ρ0 for the
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(rotation curve from stars alone)

Vc2 (implied from stars) = GMstars(R)/R

In such a case, the rotation curve would have an approximately Keplerian shape 
(i.e., vc ∝1/r1/2) at large radii

29-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c7-11

7.2 Mass distribution and dark matter in spi-
ral galaxies

Dark Matter Halos in Spiral Galaxies BT 10.1-
6

measure rotation curve of cold gas
• H alpha (optical)
• CO (mm arrays)
• H I (vla, westerbork)

assume circular orbits:

v2
c (r)

r
=

GM(< r)

r2

The enclosed mass is directly given by

M(< r) = rv2
c (r)/G

Isothermal sphere: vc = constant, ρ ∝ r−2

Point Mass: vc ∝ 1/
√

r

Measurement in practice:

• Take edge-on system, measure maximum veloc-
ity of gas at each point
possible problems: extinction, confusion

• Take inclined galaxies, measure velocities every-
where
• Model by fitting a circular velocity field with
unknown inclination and rotation curve

29-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c7-12

Historically, optical rotation curves like these on the
following figure indicated for the first time the presence
of dark matter.

Very modern data are based on 21cm HI emission lines.
The HI disks can often be followed to very large radii,
and hence the rotation curve can be followed to well

⇒

Observations of the rotation curve always rapidly rise from center

Velocity of the rotation Curve is nearly always flat at the largest radii

29-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c7-17

halo will give fits which are all good.
Hence: it is very hard to determine how much of
the mass is due to the halo, within the outer most
radius

Solution: determine the “minimum halo mass”,
by calculating “maximum disk”. But this is only
the minimum !

Various authors have assembled large samples of galax-
ies with rotation curves. An example: Casertano and
van Gorkom (1991, AJ 101, 1231)

Resulting rotation curves:

• Rapid rise near center
• nearly flat out to most distant point, with some

variations:
dwarf galaxies: still rising
intermediate galaxies: flat

29-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c7-18

large bright galaxies - slightly falling, compact
galaxies, falling slightly more

• Never Keplerian - always a lot of dark matter !

Homework Assignment:
1) Calculate the total mass, the mass in the disk, and
the mass in the halo for NGC 3198 at a radius of 30kpc.
Use the decomposition into components shown in the
figure above.
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If the only matter in spiral galaxies was from the observed stars, then the rotation curve 
would look as follows:

29-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c7-15

model looks like:

We can now model the galaxy. Take the surface bright-
ness profile, and calculate the rotation curve if the
mass-to-light ratio were constant:

29-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c7-16

Obviously, an additional mass component is necessary
to explain the rotation curve.

Fit rotation curves:

Constant M/L for starlight
add halo, with ρ = ρ0/(1 + (r/a)2)

Example for NGC 3198

Problems: The fit is never unique. Different M/L’s
for the disk, and different values of a, ρ0 for the
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(rotation curve from stars alone)

Vc2 (implied from stars) = GMstars(R)/R

In such a case, the rotation curve would have an approximately Keplerian shape 
(i.e., vc ∝1/r1/2) at large radii

29-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c7-11

7.2 Mass distribution and dark matter in spi-
ral galaxies

Dark Matter Halos in Spiral Galaxies BT 10.1-
6

measure rotation curve of cold gas
• H alpha (optical)
• CO (mm arrays)
• H I (vla, westerbork)

assume circular orbits:

v2
c (r)

r
=

GM(< r)

r2

The enclosed mass is directly given by

M(< r) = rv2
c (r)/G

Isothermal sphere: vc = constant, ρ ∝ r−2

Point Mass: vc ∝ 1/
√

r

Measurement in practice:

• Take edge-on system, measure maximum veloc-
ity of gas at each point
possible problems: extinction, confusion

• Take inclined galaxies, measure velocities every-
where
• Model by fitting a circular velocity field with
unknown inclination and rotation curve

29-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c7-12

Historically, optical rotation curves like these on the
following figure indicated for the first time the presence
of dark matter.

Very modern data are based on 21cm HI emission lines.
The HI disks can often be followed to very large radii,
and hence the rotation curve can be followed to well

⇒



However, the observed rotation curve looks flat, even at large radii,
and is very different from expectations if only stars contribute

29-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c7-15

model looks like:

We can now model the galaxy. Take the surface bright-
ness profile, and calculate the rotation curve if the
mass-to-light ratio were constant:

29-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c7-16

Obviously, an additional mass component is necessary
to explain the rotation curve.

Fit rotation curves:

Constant M/L for starlight
add halo, with ρ = ρ0/(1 + (r/a)2)

Example for NGC 3198

Problems: The fit is never unique. Different M/L’s
for the disk, and different values of a, ρ0 for the

(rotation curve from stars alone)

(observed rotation curve)

Vc2 (observed) > Vc2 (implied from stars) = GMstars(R)/R

This implies there must be another component...
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If the only matter in spiral galaxies was from the observed stars, then the rotation curve 
would look as follows:

Vc2 (observed) = GMall(R)/R

Vc2 (observed) = G(Mstars(R)+Mhalo(R))/R = GMstars(R)/R + GMhalo(R)/R

In principle, this allows us to measure the dark matter in galaxies very precisely.
The challenge is that there is some uncertainty in measuring the mass in stars.

29-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c7-15

model looks like:

We can now model the galaxy. Take the surface bright-
ness profile, and calculate the rotation curve if the
mass-to-light ratio were constant:

29-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c7-16

Obviously, an additional mass component is necessary
to explain the rotation curve.

Fit rotation curves:

Constant M/L for starlight
add halo, with ρ = ρ0/(1 + (r/a)2)

Example for NGC 3198

Problems: The fit is never unique. Different M/L’s
for the disk, and different values of a, ρ0 for the

(rotation curve from stars alone)

(observed rotation curve)
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Observations of the rotation curve always rapidly rise from center

29-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c7-17

halo will give fits which are all good.
Hence: it is very hard to determine how much of
the mass is due to the halo, within the outer most
radius

Solution: determine the “minimum halo mass”,
by calculating “maximum disk”. But this is only
the minimum !

Various authors have assembled large samples of galax-
ies with rotation curves. An example: Casertano and
van Gorkom (1991, AJ 101, 1231)

Resulting rotation curves:

• Rapid rise near center
• nearly flat out to most distant point, with some

variations:
dwarf galaxies: still rising
intermediate galaxies: flat

29-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c7-18

large bright galaxies - slightly falling, compact
galaxies, falling slightly more

• Never Keplerian - always a lot of dark matter !

Homework Assignment:
1) Calculate the total mass, the mass in the disk, and
the mass in the halo for NGC 3198 at a radius of 30kpc.
Use the decomposition into components shown in the
figure above.

For large luminous galaxies, the rotation curve falls slightly at largest radii (vc independent 
of radius)

Rotation Velocity

Observations of the rotation curve always rapidly rise from center

29-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c7-17

halo will give fits which are all good.
Hence: it is very hard to determine how much of
the mass is due to the halo, within the outer most
radius

Solution: determine the “minimum halo mass”,
by calculating “maximum disk”. But this is only
the minimum !

Various authors have assembled large samples of galax-
ies with rotation curves. An example: Casertano and
van Gorkom (1991, AJ 101, 1231)

Resulting rotation curves:

• Rapid rise near center
• nearly flat out to most distant point, with some

variations:
dwarf galaxies: still rising
intermediate galaxies: flat

29-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c7-18

large bright galaxies - slightly falling, compact
galaxies, falling slightly more

• Never Keplerian - always a lot of dark matter !

Homework Assignment:
1) Calculate the total mass, the mass in the disk, and
the mass in the halo for NGC 3198 at a radius of 30kpc.
Use the decomposition into components shown in the
figure above.

Nevertheless, for dwarf galaxies, the rotation curve is still slightly rising at largest radii.

Rotation Velocity

Different dependencies of the circular velocities on radius for different galaxies tell us 
about mass profiles of dark matter and stars in these sources.



What other evidence is there for 
significant mass from dark matter?

(Mostly REVIEW from 
bachelor course)

Mass of Galaxy Clusters:
Inferences From Velocity Dispersion

Galaxy Cluster

In clusters of galaxies, 
galaxies are observed 

to show a huge 
dispersion in their 

observed  velocities 
along the line of sight:

29-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c7-29

7.5 Clusters of galaxies BT 10.2-4

measure redshifts of cluster galaxies

velocity dispersions of 1000 km/s or higher are mea-
sured !

Kent and Gunn 1982

29-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c7-30

Careful model shows: total mass is 2 × 1015M⊙ (H0 =
70 km/sec/Mpc).

Total amount of light: 279 galaxies brighter than L∗,
L∗ = 0.7 1010L⊙. Total amount of light is 4.33×L∗×
N= 0.8 1013L⊙

Hence mass to light ratio = M/L = 21015/0.81013 =
250 M⊙/L⊙.

Similar study (Kent and Sargent) Perseus: M/LV =
420 M/L⊙

Typical masses of clusters: 1014 − 1015 M⊙

Normal galaxy: MLV < 10M/L⊙, hence a lot of dark
matter.

29-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c7-29

7.5 Clusters of galaxies BT 10.2-4

measure redshifts of cluster galaxies

velocity dispersions of 1000 km/s or higher are mea-
sured !

Kent and Gunn 1982

29-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c7-30

Careful model shows: total mass is 2 × 1015M⊙ (H0 =
70 km/sec/Mpc).

Total amount of light: 279 galaxies brighter than L∗,
L∗ = 0.7 1010L⊙. Total amount of light is 4.33×L∗×
N= 0.8 1013L⊙

Hence mass to light ratio = M/L = 21015/0.81013 =
250 M⊙/L⊙.

Similar study (Kent and Sargent) Perseus: M/LV =
420 M/L⊙

Typical masses of clusters: 1014 − 1015 M⊙

Normal galaxy: MLV < 10M/L⊙, hence a lot of dark
matter.
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Obtained by measuring 
redshifts / Doppler shifts 
of all galaxies in cluster

Assuming virial equilibrium, we can derive the mass for a galaxy cluster from the observed 
spread in velocities:

GM / R ~ v2 M ~ v2 R / G 

Mass of Galaxy Clusters:
Inferences from the x-ray emission

29-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c7-31

Similar mass determinations from gas . Temperatures
can now be measured easily with X-ray satellites. Re-
sults:

• Confirms high masses

Mass budget:
• Gas mass fraction 20-30 % of total mass
• Star mass fraction < 10 % of mass
• Remaining: dark matter 60-70 % !

29-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c7-32

7.6 Dark matter in universe as a whole BT
10.3-1

The emissivity of light in the universe in the V band is

j0 = 1.7 ± 0.6108hL⊙Mpc−3

The critical density for the universe is:

ρc =
3H2

0

8πG

This density is enough to stop the expansion at t =
infinity

Define the density parameter Ω0 = ρ0/ρc, where ρ0 is
the actual density of the universe

Express Ω0 in terms of M/L ratio of galaxies:

Ω0 = 6.110−4h−1M/L/(M/L)⊙

The critical mass-to-light ratio for Ω = 1 is given by

M/Lc = 1600h(M/L)⊙

Clusters imply M/Lc = 300 − 600h(M/L)⊙, hence
more realistic values are

Ω0 = 0.2 − 0.4

from clusters.

29-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c7-31

Similar mass determinations from gas . Temperatures
can now be measured easily with X-ray satellites. Re-
sults:

• Confirms high masses

Mass budget:
• Gas mass fraction 20-30 % of total mass
• Star mass fraction < 10 % of mass
• Remaining: dark matter 60-70 % !

29-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c7-32

7.6 Dark matter in universe as a whole BT
10.3-1

The emissivity of light in the universe in the V band is

j0 = 1.7 ± 0.6108hL⊙Mpc−3

The critical density for the universe is:

ρc =
3H2

0

8πG

This density is enough to stop the expansion at t =
infinity

Define the density parameter Ω0 = ρ0/ρc, where ρ0 is
the actual density of the universe

Express Ω0 in terms of M/L ratio of galaxies:

Ω0 = 6.110−4h−1M/L/(M/L)⊙

The critical mass-to-light ratio for Ω = 1 is given by

M/Lc = 1600h(M/L)⊙

Clusters imply M/Lc = 300 − 600h(M/L)⊙, hence
more realistic values are

Ω0 = 0.2 − 0.4

from clusters.

Derive total mass assuming hydrostatic equilibrium

29-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c7-25

7.4 X-ray gas in halos of Ellipticals BT
10.1-7(c)

Many luminous ellipticals have huge X-ray halos

Example: NGC 720

29-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c7-26

What is equilibrium of gas ?

Balance pressure with gravity
For spherical systems, gravity balances the pressure
gradient if

dp

dr
= −ρ

GM(r)

r2

Use the ideal gas law

p =
ρkBT

m

Since p = ρ v2
x , this implies v2

x = 1
3

v2 =
kBT

m
Now we find

dρkBT/m

dr
= −

GM(r)ρ

r2

M(r) =
−kB

mG

r2

ρ

dρT

dr

= −
kbTr

mG

rdρT

ρTdr
=

kbTr

mG

[

−
d ln ρ

d ln r
−

d lnT

d ln r

]

Note how comparable this equation is to the isotropic
spherical formula for stellar systems.

Observations: example NGC 720

from analysis of the spectrum (continuum and lines)
for NGC 720: T = 7 × 106K

Pressure 
Gradient

Gravitational 
Force

Can determine the density of the gas and pressure gradient from the x-ray light 
profile and the measured gas temperature.

This allows the total mass to be derived.



Mass of Galaxy Clusters:
Inferences from Gravitational Lensing

From analyses of the x-ray light and the gravitational lensing of background galaxies 
around galaxy clusters, we find very similar masses for galaxy clusters.

Measure the mass of a galaxy cluster from the 
impact it has on light passing by the cluster

Diagram here shows such 
a measurement using 

multiple images of same 
sources, but often 

measurement made using 
distortion of galaxy shapes

Mass budget: 
• Star mass fraction < 10 % of mass 
• Gas mass fraction 20-30 % of total mass 
• Remaining: dark matter 60-70 % !

What is composition of galaxy clusters by 
mass?

Bottom Line:

Evidence from the Observations of Colliding Clusters

-- ionized gas from the 
colliding clusters “run into 

each other” forming a shock

-- dark matter from the colliding clusters 
pass right through each other

Reason it is useful 
can be seen from 

the following 
“simulation”:

Cluster #1 Cluster #2

this presents us with a situation where the light (from baryons) and 
mass (from dark matter) are in different places Observational Cosmology Lectures 4-6:  Cosmology with Galaxy Clusters

Dark matter with Bullet Cluster

9

Clowe et al. 2006

-- x-ray light shows us where the 
ionized gas (i.e., baryons) is 

-- gravitational lensing shows us where 
the mass is (mostly dark matter)

x-ray “baryons”

lensing “dark matter”

“Bullet Cluster” Clowe et al. 2006

Observational Cosmology Lectures 4-6:  Cosmology with Galaxy Clusters

Dark matter with Bullet Cluster

9

Clowe et al. 2006

-- ionized gas from the colliding clusters 
“run into each other” forming a shock

-- dark matter from the colliding clusters 
pass right through each other

Evidence from the Observations of Colliding Clusters

-- how can we use the observations 
to see that baryons do not provide 

most of the mass



The Bullet Cluster

Orange: stars Red : X-ray gas Blue : Mass from lensing measurements

See Clowe et al. 2006 
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Sunday, March 28, 2010

Credit: Papovich for layout



In assessing the amount of matter in the universe, usually this is done relative to the 
density of matter in the universe necessary to stop the expansion of the universe.

29-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c7-31

Similar mass determinations from gas . Temperatures
can now be measured easily with X-ray satellites. Re-
sults:

• Confirms high masses

Mass budget:
• Gas mass fraction 20-30 % of total mass
• Star mass fraction < 10 % of mass
• Remaining: dark matter 60-70 % !

29-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c7-32

7.6 Dark matter in universe as a whole BT
10.3-1

The emissivity of light in the universe in the V band is

j0 = 1.7 ± 0.6108hL⊙Mpc−3

The critical density for the universe is:

ρc =
3H2

0

8πG

This density is enough to stop the expansion at t =
infinity

Define the density parameter Ω0 = ρ0/ρc, where ρ0 is
the actual density of the universe

Express Ω0 in terms of M/L ratio of galaxies:

Ω0 = 6.110−4h−1M/L/(M/L)⊙

The critical mass-to-light ratio for Ω = 1 is given by

M/Lc = 1600h(M/L)⊙

Clusters imply M/Lc = 300 − 600h(M/L)⊙, hence
more realistic values are

Ω0 = 0.2 − 0.4

from clusters.

The critical density of the universe (needed to stop expansion at time infinity) is

We then compare the observed density of matter in the universe ρ0  with the 
critical density ρc using the parameter Ω0.   We define it as follows:

Ω0 =  ρ0 /ρc 

What does this imply about the matter 
density of the universe?

(Mostly REVIEW from bachelor course)

29-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c7-33

other indicators give:

29-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c7-34

Measurements on the largest scales concern those
caused by inflows around clusters (BT 10.3-2)

matter falls into clusters of galaxies. Assume that the
density contrast of the cluster is the same as that of
the light

ρcluster

ρuniverse
=

jcluster

juniverse
= δ

where j is emissivity. The total mass of the cluster is
proportional to Ω0

Mass ∝ R3ρ ∝ δρuniverse ∝ δΩ0

Hence, the acceleration of galaxies outside the cluster
will depend on Ω0.

Example: determine Ω0 from “Virgo centric infall”
As we probe larger physical scales outside galaxies, we find a lot of matter!

What does this imply about the matter 
density of the universe?

Disk Galaxy with Dark 
Matter

Dark Matter Halo

Disk Galaxy Disk Galaxy

Disk Galaxy (if no Dark 
Matter)

(Most of mass would
Concentrate in center)

The halo out here would likely 
contain much less mass

Brief Context: Structure of Disk Galaxy
Four Basic Components:

1.  Thin Disk
2.  Thick Disk
3.  Halo
4.  Bulge



Brief Context: Structure of Disk Galaxy
Four Basic Components:

1.  Thin Disk
2.  Thick Disk
3.  Halo
4.  Bulge

Stellar 
Halo

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c03b-5

above that. Both the thin and the thick disk sepa-
rately go like ρ ∝ exp−(z/zh), where zh is the scale
height.

This is illustrated in the figure below

The thick disk is also apparent when the relation be-
tween age and metallicity is plotted.

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c03b-6

Thick disk stars are more metal poor and older. Caused
by a merger ? Or “initial conditions ? ”

Existence of Both Thin and Thick Disk

Density Thin Disk 
dominates

Thick Disk 
Dominates

Of course, with recent 
Gaia data, it is clear that 
even these distinctions 

are too simple.

13

Credit: ESA/Gaia/DPAC, Milky Way impression by Stefan Payne-Wardenaar (source)

Brief Context: Structure of Disk Galaxy
Four Basic Components:

1.  Thin Disk
2.  Thick Disk
3.  Halo
4.  Bulge



Ages & Metal Abundances of Different 
Components

54 Bland-Hawthorn1 & Freeman

components give a rough indication of the number of SN II enrichments which
preceded their formation, although we note that as time passes, an increas-
ing fraction of Fe is produced by SN Ia events. For a given parcel of gas in a
closed system, only a few SN II events are required to reach [Fe/H] ⇡ -3, 30
to 100 events to get to [Fe/H] ⇡ -1.5, and maybe a thousand events to reach
solar metallicities. We wish to stress that [Fe/H] is not a clock: rather it is
a measure of supernova occurrences and the depth of the di↵erent potential
wells that a given parcel of gas has explored.

Fig. 1.16 The age-metallicity relation of the Galaxy for the di↵erent components (see
text): TDS � thin disk stars; TDO � thin disk open clusters; ThDS � thick disk stars;
ThDG � thick disk globulars; B � bulge; YHG � young halo globulars; OHG � old halo
globulars.

During the latter stages of the Golden Age, most of the baryons began to
settle to a disk for the first time. Two key observations emphasize what we
consider to be the mystery of the main epoch of baryon dissipation. First,
there are no stars with [Fe/H] < -2.2 which rotate with the disk. Secondly,
despite all the activity associated with the Golden Age, at least 80% of the
baryons appear to have settled gradually to the disk over many Gyr; this
fraction could be as high as 95% if the bulge formed after the disk.

About 10% of the baryons reside in a ‘thick disk’ which has [Fe/H] ⇡ -2.2
to -0.5, compared to the younger thin disk with [Fe/H] ⇡ -0.5 to +0.3. It is
striking how the globular clusters and the thick disk have similar abundance
ranges, although the detailed abundance distributions are di↵erent. There
is also a similarity in age: globular clusters show an age range of 12 to 14
Gyr, and the thick disk appears to be at least 12 Gyr old. Both the thick disk

Thin Disk

Old Halo

Young Halo

Bulge

Properties of Components

Age of StarsYoung Old

Thin Disk Thick Disk

Stellar Halo

Bulge

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c03b-3

• relation between age and metallicity

Stars in the disk have a wide range in metallicity. The
figure below shows the result

Old stars have a lower metallicity than young stars.
This suggests that the metallicity of the gas (from
which the stars formed) increased gradually with time.
This is expected to happen, due to metals being in-
jected into the gas by stellar winds and supernovae.

However, notice the large scatter ! The inter stellar
medium did not have a simple metallicity-age relation !

• The abundance ratios of elements also vary as a
function of metallicity

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c03b-4

This can be due to the fact that different enrichment
mechanisms produce metals in different ratios. For ex-
ample, supernovae type Ia have different ratios from
type II supernovae. We’ll return to this later. Type Ia
supernovae play an important role for iron, but they
probably occur well after type II’s . Hence, the ratios
will change with time.

• The thick disk
The disk is not “simple” When studied in detail, it

has an “extension” which is often called the thick
disk. The thin disk is the part which dominates at
small distances from the plane. The density of the
thick disk becomes comparable to that of the thin
disk around 1.5 kpc above the plane, and dominates

Correlation between Age and Metallicity of Stars

Old stars have a lower 
metallicity than your stars.  

This suggests that the 
metallicity of the gas (from 
which the stars formed) 
increased gradually with 

time.

This is expected to 
happen, due to metals 

being injected into the gas 
by stellar winds and 

supernovae.

Properties of Components

Age of StarsYoung Old

Thin Disk Thick Disk

Stellar Halo

Bulge

Lower 
Metallicity

Higher 
Metallicity
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mechanisms produce metals in different ratios. For ex-

ample, supernovae type Ia have different ratios from

type II supernovae. We’ll return to this later. Type Ia

supernovae play an important role for iron, but they

probably occur well after type II’s . Hence, the ratios

will change with time.

• The thick disk
The disk is not “simple” When studied in detail, it

has an “extension” which is often called the thick
disk. The thin disk is the part which dominates at
small distances from the plane. The density of the
thick disk becomes comparable to that of the thin
disk around 1.5 kpc above the plane, and dominates

Lower Metallicity Stars also Show a [α/Fe] enhancement

This is thought to be the case 
because SNe II produce metals 

earlier in the star formation 
history of galaxies than SNe Ia 
and produce a higher [α/Fe] 

abundance
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3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c03b-9

and neutral form (assuming some conversion of CO
emission to H2 surface density).

The H2 dominates at the center, the H I at the outer
parts. Why ? H2 can only form if the gas is shielded
from UV radiation. Hence at high surface brightness,
and at high metallicity, more dust will be present, and
more shielding is possible.

3.3.2 Halo

Our galaxy also has stars which move very differently
from the disk stars. See, for example, the figure below

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c03b-10

The stars have much lower metallicity, and the system
of stars hardly rotates around the center. These are
halo stars. They were probably formed much earlier
than the disk stars - although many astronomers think
they may have been deposited in the halo by mergers !

Globular clusters also form part of the halo, and are
easy to track !

One might expect the halo to be regular - but recent
evidence shows that this might not be the case.

The image below shows the distribution of stars on the
sky in the halo - as derived from the SDSS catalogue.
Stars are selected in a narrow color interval and mag-
nitude interval. They lie at roughly the same distance.
The distribution appears not to be smooth

Rotation Speed of our 
Solar System:

Stars in the Stellar Halo Move Very Differently from Stars in the Disk

Halo Halo
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Segregation in Metallicity between Disk and Halos even seen in 
star clusters

Higher Metallicity Lower Metallicity

How Did the Stellar Halo of the Milky 
Way and Other Disk Galaxies Form?

Thin DiskStellar Halo
Low Metallicity

Old Ages
Little Rotation

High Metallicity

High Rotation

Young Ages

Older, lower 
metallicity star 

clusters

Younger, higher 
metallicity star 

clusters

ELS Monolithic Collapse ModelANNUAL EDITIONS
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halo follow elliptical orbits that cut across the plane of the
Milky Way.

These distinctions could be explained, said ELS, by the
way in which the Galaxy formed (Figure 6). According to
ELS, the Milky Way began as a spherical cloud of gas—a
protogalaxy—that was born collapsing toward its center.
The original gas was poor in metals, and so stars formed
as the cloud was collapsing would also be metal poor.
These newly made stars maintained the kinematic prop-
erties of the gas in the collapsing cloud, and so followed
eccentric orbits around the center of the Galaxy, forming
the population II stars of the halo and the globular clus-
ters. As the cloud contracted, some of its energy would
have been lost to heat in a dissipative collapse. The rota-
tional speed of the collapsing cloud would also increase
due to the conservation of angular momentum (which is
a function of rotational velocity and radius). Such
changes would induce the cloud to collapse preferentially
along its rotational axis, so that it would become progres-
sively flatter—and thus form a disk. The gas in the flat-
tened disk would be enriched in metals produced by
supernovae from the first generation of stars. Like their
counterparts in the halo, stars formed in the flattened disk

would preserve the metallicity and kinematics of the gas
at the time of their birth, and so form the population I
stars. All of this took place within 300 million years ac-
cording to ELS.

In the decades that followed, a number of observations
indicated that the Galaxy could not have formed in such
a rapid collapse. The ELS model, as originally proposed,
could not be right. One notable alternative was suggested
by the American astronomers Leonard Searle and Robert
Zinn in 1978. Searle and Zinn had been studying the glob-
ular dusters in the galactic halo and noticed a wide dis-
crepancy in the metallicity of these objects. According to
their metallicities, some globular clusters appeared to be
significantly older than others. The spread in the globular
clusters’ ages meant that they could not have been
formed in the relatively brief timescale proposed by ELS.

Instead of a single-cloud collapse, Searle and Zinn pro-
posed that the halo of the Milky Way formed by the ag-
gregation of many cloud fragments, each of which may
have already formed stars and globular clusters (Figure
7). Since the fragments had independent evolutionary
histories, they could form objects of varying ages. In some
sense the Searle and Zinn model has been confirmed by

Figure 6. The "ELS" model holds that the Milky Way formed from the rapid collapse of a single cloud of gas. Stars formed early
in the collapse maintained the dynamics of the metal-poor gas and so now travel around the Galaxy in elliptical orbits within
the halo. As the cloud collapsed (red arrows) preferentially along its rotational axis, it formed a disk that had been enriched with
the metals produced by the early generations of halo stars.

ELS Monolithic Collapse Model

The ELS model (Eggen, Lynden-Bell, and Sandage 1962): the Milky 
Way formed from the rapid collapse of a large proto-galactic 

nebula: top-down approach

The oldest halo stars formed early, while still on nearly radial 
trajectories and with low metallicity

Then the disk formed because of angular momentum conservation, 
and disk stars are thus younger and more metal rich

The ongoing star formation is confined to distances ~100 pc 
from the mid-lane at a typical rate of a few solar masses per year
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observations that show that small, or “dwarf,” galaxies
continue to collide with the Milky Way to this day. These
dwarf galaxies may have evolved from the cloud frag-
ments that failed to become part of the Milky Way early
in its evolution. The Sagittarius dwarf galaxy, which
was discovered in 1996, appears to be just such a frag-
ment. Over the course of billions of years it oscillates
back and forth through the galactic plane, and with each
pass it loses some of its mass. In time it will be com-
pletely consumed.

Other authors have proposed various serial and parallel
models of the Galaxy’s formation. In a serial model, the
Galaxy forms as a continuous process during a single in-
fall event. The halo represents the early phases of the pro-
cess, and the disk forms only after the halo is completed.
The ELS model is sequential in this manner, except that
everything is formed very quickly. In contrast, parallel
models assume that the various galactic components
started forming at the same time from the same gas, but
then evolved at different rates according to their respec-
tive star-formation histories.

A Halo-Disk Discontinuity?
New observations suggest that none of the early models
holds a complete explanation of how the Milky Way was
made. In particular, models such as ELS suggest that the
formation of the disk involved a smooth dissipational col-
lapse of the halo. Such models also assume a continuous
evolutionary transition in the formation of the thick disk
and the thin disk. It appears, however, that our galaxy’s
formation was neither smooth nor continuous.

According to Rosemary Wyse of Johns Hopkins Uni-
versity and Gerard Gilmore of the Institute of Astronomy
in the United Kingdom, the halo and the thin disk are dis-
tinct entities that could not have formed from a single
cloud of gas. They base their distinctions on the angular
momenta of the Galaxy’s stellar populations. They show
that the halo and the bulge tend to consist of low-angular-
momentum stars, whereas the thick disk and the thin disk
typically contain stars with a high angular momentum.
Since angular momentum is conserved, these distinctions
reflect the intrinsic characteristics of the parent gas from
which the stars evolved. So these galactic components
must have originated from separate clouds of material
with different angular momenta.

There is also evidence that the rate of star formation
has not been continuous in the Galaxy’s history. Observa-
tions by Raffaele Gratton, of the Astronomical Observa-
tory of Padova, Italy, and his colleagues, suggest that the
rate of star formation decreased suddenly in the solar
neighborhood fairly early in the Galaxy’s evolution. Grat-
ton and his colleagues studied the relative chemical abun-
dances of iron compared with two alpha (a) elements
(oxygen and magnesium) for stars in the halo, the thick
disk and the thin disk. At a certain point in the Galaxy’s
history, as measured along an [a/H] timeline, there ap-
pears to be a “gap” during which almost no alpha ele-
ments were produced (Figure 8). This is evident as a
sudden increase in [Fe/a] while [a/H] remains constant.
The identity of the stars on either side of the gap suggest
that star formation effectively stopped after the formation
of the halo / thick disk (which are both very old) but be-
fore the thin disk formed.

The duration of this gap can also be deduced. Since the
alpha elements are produced by the type II supernovae,
which are the explosions of short-lived stars, their rate of
production is effectively a measure of the star-formation
rate. On the other hand, the quantity of iron actually in-
creased during this time because the binary systems that
produced the type Ia supernovae were created long be-
fore the gap in star formation. Given the typical matura-
tion period of type Ia supernovae, the data suggest that
the gap lasted no more than a billion years.

By studying the kinematics of these same stars, Grat-
ton’s team identified three distinct populations. One pop-
ulation made up the halo, part of the thick disk and
perhaps the bulge stars (which originated from the dissi-
pative collapse of part of the halo). Another population of
stars made up the thin disk, which resulted from an ex-
treme dissipative collapse of the disk. And the third pop-
ulation consisted of a relatively small number of stars in
the thick disk that had a unique origin. This third popula-
tion of metal-poor stars (with [Fe/H] less than -1.0) prob-
ably formed in satellite galaxies and was then added to
the Milky Way during the gap in star formation. In this
view the thick disk actually has two components.

Other scientists have also found that the thick disk and
the thin disk are kinematically distinct. Timothy Beers of

Figure 7. The Searle and Zinn model proposes that the Milky
Way formed from an aggregation of several cloud fragments.
This model helps to explain the observed differences in the
metallicity of globular clusters in the galactic halo. Since
each of the cloud fragments had independent histories, some
may have evolved more than others, and so have produced
objects of greater metallicity.

Searle & Zinn (1978) Hierarchical Model

A bottom-up scenario: galaxies are build from merging smaller 
fragments (similar to but not the same hypothesis that giant 

ellipticals formed from merging spiral galaxies).

By observing galaxies at higher redshifts, we are probing the 
epoch of galaxy formation - indeed at large redshift have very 

different morphologies, and the fraction of spirals in galaxy 
clusters is higher than today.

Two Competing Models for Formation of 
Stellar Halo in Milky Way

ELS Monolithic 
Collapse

Zinn & Searle 
Hierarchical Model

Halo formed in 
first Gyr

Halo built up 
from mergers

Which was correct?

Pre-GAIA, there was strong evidence for a lack of uniformity in 
the distribution of halo stars on the sky3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c03b-11

When we subtract a smooth model for the halo, we ob-
serve the following residuals in the density distribution

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c03b-12

These kind of residuals can be reproduced in merger
formation models for the halo. Some examples are
shown below. The simulations have been “observed”
in the same way as the original stars in our halo

Favored Zinn & 
Searle (1978) 

Model
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Credit: ESA/Gaia/DPAC, Milky Way impression by Stefan Payne-Wardenaar (source)
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Two Competing Models for Formation of 
Stellar Halo in Milky Way

ELS Monolithic 
Collapse

Zinn & Searle 
Hierarchical Model

Halo formed in 
first Gyr

Halo built up 
from mergers

GAIA Results Show this 
Model is Largely Correct



What about the Thick Disk?

cooling causes gas to settle in a very thin 
disk (i.e., the minimum energy 

configuration that preserves angular 
momentum)

stars form from the cool gas and begin 
their lives in the plane of the disk

as time goes on, due to some heating 
mechanism (e.g., mergers with small 

galaxies), stars are given small kicks out of 
the plane (and oscillate in and out of plane)

the scale height of the stars increases as 
time goes on (due to more collisions)

while old stars have large scale heights, 
newly formed stars have small scale heights 

(formed in the gas disk)

How might the thick disk form?

=> Disk Heating (from spiral arms, molecular clouds, minor mergers)

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c03b-1

3.2 Internal structure of disks

Our own galaxy gives a unique insight into disks: we
can look at individual stars !

From good spectra and photometry, one can derive
velocities, stellar age, and metal abundance.

Basic results:

• the velocity dispersion of a population of stars de-
pends on the age. The older the population of
stars, the higher the velocity dispersion.

Interestingly, the velocity dispersions in the 3 directions
change in very characteristic ways - with, for example,
σφ/σr being quite constant.

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c03b-2

How can this ’disk heating’ trend be explained ?
several mechanisms have been proposed
heating due to interactions with spiral arms
heating due to interactions with molecular clouds
heating as a left-over from formation
heating due to infall of satellites

These all predict different trends - and none fit the
data very well.

Yes, the velocity dispersion 
of a population of stars 

depends on the age.  The 
older the population of 

stars, the higher the velocity 
dispersion.

Interestingly, the velocity 
dispersion in the 3 

directions change in very 
characteristic ways -- with, 

for example, σφ ~ σr

Is there evidence for disk heating? How might the thick disk form?

=> Debris from Past Merging onto the Milky Way



3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c03b-7

3.3 Other components in spiral galaxies

3.3.1 Gas

Obviously, spiral galaxies have gas (neutral hydrogen,
molecular hydrogen, and ionized hydrogen). Most of
the gas resides in the disk. Some gas disks are warped
in the outer parts - as if somebody is toying with the
galaxy. Typical gas masses are around 3 − 6e9 M⊙.
In galaxies like our own galaxy, the amount of gas in
molecular and neutral form is comparable. Molecular
gas tends to be more centrally concentrated.

An example of a strongly warped galaxy: NGC 4013.
The warp starts at the edge of the optical disk

Molecular and Neutral gas in NGC 6946. The neutral
gas is traced best by CO emission. Here the CO emis-
sion is shown, super imposed on the SDSS image of
the galaxy. The CO is strongly peaked at the center.

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c03b-8

Here is the H I 21-cm emission line map:

And here is shown the gas surface density in molecular

Obviously, spiral galaxies have gas 
(neutral hydrogen, molecular 
hydrogen, ionized hydrogen).   

Most of the gas resides in the disk.   
Some gas disks are warped in the 

outer parts.

Typical gas masses are around 3-6 
x 109 solar masses.   In galaxies like 

our own, the amount of neutral 
gas and molecular gas are similar.   

The molecular gas is concentrated 
mostly towards the center of the 

gas.

Neutral gas content in a strongly 
warped galaxy:

What about the Gas Distribution?
3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c03b-7
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Molecular and neutral gas in 
NGC 6946.  The neutral gas 

is traced best by CO 
emission.   Here the CO 
emission is shown, super 

imposed on the SDSS imge 
of the galaxy.  The CO is 
strongly peaked at the 

center.

What about the Gas Distribution?
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What about the Gas Distribution?

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c03b-9

and neutral form (assuming some conversion of CO
emission to H2 surface density).

The H2 dominates at the center, the H I at the outer
parts. Why ? H2 can only form if the gas is shielded
from UV radiation. Hence at high surface brightness,
and at high metallicity, more dust will be present, and
more shielding is possible.

3.3.2 Halo

Our galaxy also has stars which move very differently
from the disk stars. See, for example, the figure below

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c03b-10

The stars have much lower metallicity, and the system
of stars hardly rotates around the center. These are
halo stars. They were probably formed much earlier
than the disk stars - although many astronomers think
they may have been deposited in the halo by mergers !

Globular clusters also form part of the halo, and are
easy to track !

One might expect the halo to be regular - but recent
evidence shows that this might not be the case.

The image below shows the distribution of stars on the
sky in the halo - as derived from the SDSS catalogue.
Stars are selected in a narrow color interval and mag-
nitude interval. They lie at roughly the same distance.
The distribution appears not to be smooth

And here is shown the amount of 
gas in molecular and neutral form 
(assuming some conversion from 

CO emission to H2 surface density)

The H2 dominates at the center, 
the H I in the outer parts.  Why?  

H2 can only form if the gas is 
shielded from UV radation.  Hence, 
at high surface brightnesses and at 
high metallicity, more dust will be 

present and more shielding is 
possible.

What about the Gas Distribution?



What else has been learned about the Milky Way 
from GAIA?

Milky Way is a Barred Spiral The Disk of the Milky Way is 
Significantly Warped

What else has been learned about the Milky Way 
from GAIA?

How can we understand spiral structure 
in disk galaxies?

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-1

3. Structure of disc galaxies

This is the typical image of a spiral

Now analyze in detail

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-2

3.1 How to get spiral arms ?

NGC 6814

Whirlpool Galaxy
Messier 51

Well-defined spiral structure is present in many galaxies.

In many cases, the spiral structure is so well organized that
the galaxies are called “grand-design” spirals



Other times the spiral structure is less well organized

Flocculent Spiral Galaxy: NGC 2841

How is such spiral structure put in place?

How does it evolve?
Grand design spiral 

Multiple arm spiral 

NGC 6946 

Flocculent spiral Most spiral arms are trailing 

As disk galaxies rotate, do spiral arms lead or trail the 
rotation? 

How can we settle this observationally?

Impossible to tell for face-on spiral galaxies or edge on galaxies

Use galaxies that are mildly inclined

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-3 3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-4

How can we distinguish the above from
this?

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-3 3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-4

As disk galaxies rotate, do spiral arms lead or trail the 
rotation? 



How can we settle this observationally?

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-3 3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-4

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-3 3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-4

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-3 3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-4

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-3 3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-4

globular clusters / 
novae behind disk 
will be reddened

Globular clusters / novae behind disk will be highly reddened

Look at globular clusters / novae in spiral galaxies

As disk galaxies rotate, do spiral arms lead or trail the 
rotation? 

Grand design spiral 

Multiple arm spiral 

NGC 6946 

Flocculent spiral Most spiral arms are trailing 

As disk galaxies rotate, do spiral arms lead or trail the 
rotation? 

Most spiral arms are 
found to be trailing. 

How do the arms in spiral galaxies evolve with 
time?

Now let us consider the time evolution of azimuthal position of 
each spiral arm:

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-5 3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-6

which is also a function of radius R (because of differential rotation)

φ
Ω(R) = angular rotation speed

How do the arms in spiral galaxies evolve with 
time?

Now let us consider the time evolution of azimuthal position of 
each spiral arm:

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-5 3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-6

which is also a function of radius R (because of differential rotation)

φ Ω(R) = angular rotation speed

Ω(R) = vcircular / R

Implies angular rotation speed is 
smaller at large radii 

~ constant



Winding Problem

Winding problem

12

The revolution time for stars is smaller for stars on 
smaller radial orbits.

If the spiral arms rotate in the same way as the particles located in 
the spiral arms, differential rotation would cause the spiral arms to 

wind up.

Winding ProblemWinding problem

The problem: most spiral galaxies would be tightly wound by
now, which is inconsistent with observations.

Spiral arms cannot be a static structure (i.e. at di↵erent times,
arms must be made of di↵erent stars)

13

Assuming that the spiral arms rotate in the same way as the particles 
in these arms, one would predict that the spiral arms in a galaxy 

would wind up very quickly.

This is in contrast to what is observed!

Winding Problem: How big is the discrepancy?

Consider the pitch angle.

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-3 3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-4

We define the pitch angle α for spiral arms as follows:

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-5 3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-6
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3. Structure of disc galaxies

This is the typical image of a spiral

Now analyze in detail

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-2

3.1 How to get spiral arms ?

NGC 6814

Fitting 2D light profiles of Spiral Galaxies

We can try to fit the two dimension 
surface brightness profile of spiral 

galaxies with the function:

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-3 3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-4
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3. Structure of disc galaxies

This is the typical image of a spiral

Now analyze in detail

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-2

3.1 How to get spiral arms ?

NGC 7156

We can try to fit the two dimension 
surface brightness profile of spiral 

galaxies with the function:

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-3 3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-4

Fitting 2D light profiles of Spiral Galaxies What range of pitch angles are observed?

How do we predict the pitch angle will change?
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For galaxies with a flat rotational curve vc = RΩ = 200 km/s, 
R = 5 kpc, and t = 10 Gyr,  then α ~ 0.15 degrees (much 

smaller than observed)

cot α = Rt (vc / R2) = vct/R 

Observed pitch angles of ~10-20 degrees differs dramatically from 
expectation of 0.15 degrees from this simple baseline model.

Density Wave Theory

The spiral arms in disk galaxies are not fixed structures that rotate 
around the center of disk galaxies, but rather density waves.

Lin & Shu (1964-1966)

These density waves can move at a different speed than the stars 
within the galaxy itself.

The speed at which the spiral density waves propagate around the 
disk of a spiral galaxy is called the pattern speed Ωp.

We will investigate this in more detail, but first let us look at epicyclic 
motion by stars in galaxies!

How can we solve the winding problem?



Epicyclic orbits

Epicycle Approximation IV
An important question is: “When is the epicycle approximation valid?”

First consider the z-motion: The equation of motion, z̈ = −ν2z implies a
constant density in the z-direction. Hence, the epicycle approximation is
valid as long as ρ(z) is roughly constant. This is only approximately true
very close to equatorial plane. In general, however, epicycle approx. is poor
for motion in z-direction.

In the radial direction, we have to realize that the Taylor expansion is only
accurate sufficiently close to R = Rg . Hence, the epicycle approximation is
only valid for small librations around the guiding center; i.e., for orbits with
an angular momentum that is close to that of the corresponding circular
orbit.

Epicyclic Motion

Stars that rotate around the center of disk galaxies are on epicyclic 
orbits:

This may not seem intuitive to you, but it is actually expected and you 
encountered this concept already in your study of the rotation of 

planets around the sun in the solar system.

Epicyclic orbits

Let us analyze the orbit of a star in some axisymmetric potential 
φ(R)

Assume that the star has angular momentum Lz

The energy of a star in this potential is as follows:

Orbits in Axisymmetric Potentials II
As for the spherical case, we can reduce the equations of motion to

R̈ = −∂Φeff

∂R z̈ = −∂Φeff

∂z

withΦeff (R, z) = Φ(R, z) + L2
z

2R2 the effective potential. The
L2

z/R2-term serves as a centrifugal barrier, only allowing orbits with
Lz = 0 near the symmetry-axis.

This allows us to reduce the 3D motion to 2D motion in Meridional Plane
(R, z), which rotates non-uniformly around the symmetry axis according to
θ̇ = Lz/R2.

In addition to simplifying the problem, it also allows the use of
surfaces-of-section to investigate the orbital properties.

For the energy we can write

E = 1
2

[
Ṙ2 + (Rθ̇)2 + ż2

]
+ Φ = 1

2

(
Ṙ2 + ż2

)
+ Φeff

so that the orbit is restricted to the area in the meridional plane satisfying
E ≥ Φeff . The curve bounding this area is called the zero-velocity curve
(ZVC) (since for a point on it v⃗ = 0).

where

Orbits in Axisymmetric Potentials II
As for the spherical case, we can reduce the equations of motion to

R̈ = −∂Φeff

∂R z̈ = −∂Φeff

∂z

withΦeff (R, z) = Φ(R, z) + L2
z

2R2 the effective potential. The
L2

z/R2-term serves as a centrifugal barrier, only allowing orbits with
Lz = 0 near the symmetry-axis.

This allows us to reduce the 3D motion to 2D motion in Meridional Plane
(R, z), which rotates non-uniformly around the symmetry axis according to
θ̇ = Lz/R2.

In addition to simplifying the problem, it also allows the use of
surfaces-of-section to investigate the orbital properties.

For the energy we can write

E = 1
2

[
Ṙ2 + (Rθ̇)2 + ż2

]
+ Φ = 1

2

(
Ṙ2 + ż2

)
+ Φeff

so that the orbit is restricted to the area in the meridional plane satisfying
E ≥ Φeff . The curve bounding this area is called the zero-velocity curve
(ZVC) (since for a point on it v⃗ = 0).

Centrifugal barrierGravitational 
Potential

Epicyclic orbits

How does Φeff (R) behave?

Orbits in Axisymmetric Potentials II
As for the spherical case, we can reduce the equations of motion to

R̈ = −∂Φeff

∂R z̈ = −∂Φeff

∂z

withΦeff (R, z) = Φ(R, z) + L2
z

2R2 the effective potential. The
L2

z/R2-term serves as a centrifugal barrier, only allowing orbits with
Lz = 0 near the symmetry-axis.

This allows us to reduce the 3D motion to 2D motion in Meridional Plane
(R, z), which rotates non-uniformly around the symmetry axis according to
θ̇ = Lz/R2.

In addition to simplifying the problem, it also allows the use of
surfaces-of-section to investigate the orbital properties.

For the energy we can write

E = 1
2

[
Ṙ2 + (Rθ̇)2 + ż2

]
+ Φ = 1

2

(
Ṙ2 + ż2

)
+ Φeff

so that the orbit is restricted to the area in the meridional plane satisfying
E ≥ Φeff . The curve bounding this area is called the zero-velocity curve
(ZVC) (since for a point on it v⃗ = 0).

Different Cases:

Point Mass: Φ (R) ~ 1/R
Isothermal Sphere: Φ (R) ~ log R
Homogeneous Density Φ (R) ~ R2

As R → 0,  Lz2/2R2 centrifugal term always dominates.

As R →∞,  Φ(R) term dominates.

φeff (R) has a minimum at some radius Rg.   Stars orbiting 
around a galaxy at that radius will be on a circular orbit.

What happens to Φeff(R) at large and small radii?

12-10-07 see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c4-1

4 Orbits in stationary Potentials (BT 3 to
page 107)

Now we have seen how to calculate forces and po-
tentials from the smoothed density ρ. We can now
analyse how stars move in this potential. Because two
body interactions can be ignored, we can analyse each
star by itself. We therefore speak of “orbits”

4.1 Orbits in spherical potentials

Potential function of r = |r⃗|: Φ = Φ(r)
equation of motion for star with unit mass

d2r⃗

dt2
= F (r)e⃗r

recall that r⃗ × r⃗ = 0 for any r⃗

d

dt

(

r ×
dr⃗

dt

)

=
dr⃗

dt
×

dr⃗

dt
+ r⃗ ×

d2r⃗

dt2
= F (r)r⃗ × e⃗r = 0

Hence L⃗ = r⃗ × ˙⃗r is constant with time. L⃗ = angu-
lar momentum/unit mass . L⃗ is always perpendicular
to the plane in which r⃗ and v⃗ lie. Since it is constant
with time, these vectors always lie in the same plane.
Hence the orbit is constrained to this plane.

Use polar coordinates (r, ψ) in orbital plane:

12-10-07 see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c4-2

rewrite equations of motion in polar coordinates
r̈ − rψ̇2 = F (r)
2ṙψ̇ + rψ̈ = Fψ

Because of the circular symmetry, we have Fψ = 0.
Hence:

2ṙψ̇ + rψ̈ =
1

r

dr2ψ̇

dt
= 0 ⇒ r2ψ̇ = rv⊥ = L = cst

r̈ − rψ̇2 = r̈ −
L2

r3
= −

dΦ

dr

where Φ is the potential.

Multiply the last equation by ṙ, and integrate w.r.t. t:

1

2
ṙ2 = E − Φ −

L2

2r2
= E − Φeff(r)

with E the energy.
This
equation governs
radial motion
in effective poten-
tial Φeff(r)

Motion possible
only when ṙ2 ≥ 0

rmin ≤ r ≤ rmax

pericenter apocenter
Typical form for

 Φeff (R)

Epicyclic orbits

Expand the potential φeff (R) about the radial position Rg and the vertical 
position z=0 as a Taylor series:

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-5 3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-6

The first order terms in this expansion dΦeff (R)/dx, dΦeff (R)/dz and the 
second order term d2Φeff (R)/dxdz are zero given that we are expanding 

the potential about a local minimum.

Represent the second derivatives of Φeff (R) with respect to R and z as κ 
and ν:

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-5 3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-6

where x = R - Rg.



Epicyclic orbits

Then the time evolution of x and z are as follows:

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-7 3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-8

and since Φeff = Φ + Lz2 / 2R2, we can also rewrite κ as

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-7 3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-8

Since dΦeff/dR = 0 at R = Rg

Epicycle Approximation I
We have defined the effective potentialΦeff = Φ + L2

z

2R2 . This has a
minimum at (R, z) = (Rg, 0), where

∂Φeff

∂R
= ∂Φ

∂R
− L2

z

R3 = 0

The radius R = Rg corresponds to the radius of a circular orbit with energy

E = Φ(Rg, 0) + 1
2
v2

c = Φ(Rg, 0) + L2
z

2R2
g

= Φeff .

If we define x = R − Rg and expandΦeff around the point
(x, y) = (0, 0) in a Taylor series we obtain

Φeff = Φeff (Rg, 0) + (Φx)x + (Φy)y + (Φxy)xy + 1
2(Φxx)x2+

1
2(Φyy)y2 + O(xz2) + O(x2z) + etc

where

Φx =
(

∂Φeff

∂x

)
(Rg,0)

Φxx =
(

∂2Φeff

∂x2

)

(Rg,0)
Φxy =

(
∂2Φeff

∂x∂y

)

(Rg,0)

By definition of Rg , and by symmetry considerations, we have that

Φx = Φy = Φxy = 0

Epicyclic orbits

Since we can write the orbital frequency Ω(R) as follows:

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-7 3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-8

We then rewrite κ as follows:
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For a point mass (Ω ∝ R-3/2), κ = Ω
For an isothermal sphere (Ω ∝ R-1), κ = Ω (2)1/2

For solid body rotation (Ω = constant), κ = 2Ω

In general, Ω < κ < 2 Ω
Therefore, a star can only undergo 2 revolutions in its epicyclic orbit in the 

time it finishes an entire orbit around the center of the galaxy.

Epicyclic orbits

For the case of a point mass (Ω ∝ R-3/2), e.g., solar system, the epicyclical 
time perfectly matches the rotation time around the central body so 

that orbits close on each other.

In general, this is not true, however.   Orbits regress and one finds a 
planar rosette.

Here are some examples of orbits where the phase space is only 
incompletely filled:

12-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c4-17

A general 3-dimensional potential

Stäckel potential( ρ = 1/(1 + m2)2)

12-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c4-18

A Simple recipe to build galaxies
Schwarzschild’s method:

• Define density ρ
• Calculate potential, forces
• Integrate orbits, find orbital densities ρi

• Calculate weights wi > 0 such that

ρ =
∑

ρiwi

Examples: build a 2D galaxy in a logarithmic potential
Φ = ln(1 + x2 + y2/a).

• As we saw, box orbits void the outer x-axis
• As we saw, loop orbits void the inner x-axis

→ both box and loop orbits are needed.

Suppose we have constructed a model.
• What kind of rotation can we expect ?

box orbits: no net rotation
loop orbits: can rotate either way: positive, nega-
tive, or “neutral”.

Hence: a maximum rotation is defined if all loop
orbits rotate the same way. The rotation can vary
between zero, and this maximum rotation

BT 3.4: page 155

12-10-07 see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c4-3

Typical orbit in a spherical potential is a planar rosette

Angle ∆ψ between successive apocenter passages de-
pends on mass distribution:

π < ∆ψ < 2π

homogeneous sphere point mass

Special cases

rmin = rmax circular orbit
v2
⊥

r
=

dΦ

dr
=

GM(r)

r2

L = 0 ⇒ radial orbit 1

2
ṙ2 = E − Φ(R)

Homogeneous sphere

Φ(r) = 1

2
Ω2r2 + Constant

In radial coordinates

12-10-07 see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c4-4

¨⃗r = −Ω2r⃗

or in cartesian coordinates x, y

ẍ = −Ω2x ÿ = −Ω2y

Hence solutions are

x = X cos(Ωt + cx) y = Y cos(Ωt + cy)

where X, Y, cx and cy are arbitracy constants. Hence,
even though energy and angular momentum restrict
orbit to a “rosetta”, these orbits are even more special:
they do not fill the area between the minimum and
maximum radius, but are always closed !
The same holds for Kepler potential. But beware, for
the homogeneous sphere the particle does two radial
excursions per cycle around the center, for the Kepler
potential, it does one radial excursion per angular cy-
cle.
We now wish to “classify” orbits and their density dis-
tribution in a systematic way. For that we use Integrals
of motion.

typical orbit in spherical potential forms a 
planar rosette

in most general case, the orbit is not closed 
and will fill entire area between rmin and rmax

BT 3.1: page 106

There can be no more than 6 integrals of motion.   Typically there is 
at least one integral of motion (energy).

Stacker potential: triaxial potential 
that admits three integrals of motion

Epicyclic orbits

κ = 1.3 Ω 

Using the measured values for κ and Ω at the radial position of 
the sun in our galaxy is as follows:

similar to the case for an isothermal sphere...

Period for orbit around galaxy = 2π/Ω

Period for epicyclic orbit = 2π/κ



Which resonances drive spiral density wave growth? 

Now let us now consider a possible spiral density wave in the disk of 
a galaxy:

In these illustrations, let’s adopt the most common type of “grand 
design” spiral galaxy where we just have 2 arms (rotational symmetry 

= 180 degrees)

Rotational Frequency of 
Spiral Density Wave = 

Ωp

We might expect such if a star completes one period of 
epicyclic motion every time it encounters the spiral density 

wave in its orbit around the galaxy.

Rotational Frequency of 
Spiral Density Wave = 

Ωp

When might we expect growth of a spiral density wave?

Which resonances drive spiral density wave growth? 

Let us consider a few examples of the orbit of stars that would finish 
a complete epicyclic orbit in the spiral density wave itself:

Example #1: The star is moving at the same speed as the spiral 
density in orbiting around the center of  a galaxy.

star

spiral arm

spiral 
arm

one epicyclic orbit
time = 2π/κ

spiral pattern ~ 250 deg
star orbitted ~ 250 deg

spiral 
arm

two epicyclic orbits
time = 4π/κ

spiral pattern ~ 500 deg
star orbitted ~ 500 deg

three epicyclic orbits
time = 6π/κ

spiral pattern ~ 750 deg
star orbitted ~ 750 deg

spiral 
arm

Let’s consider snapshots in time where the star completes an entire 
epicyclic orbit.  Typically a star must complete 70% of a revolution 

around a galaxy before this happens.

Which resonances drive spiral density wave growth? 

Let us consider a few examples of the orbit of stars that would finish 
a complete epicyclic orbit in the spiral density wave itself:

Example #2: The star is traveling much faster than the speed of the 
spiral density wave.

spiral arm

time = 0

spiral 
arm

one epicyclic orbit
time = 2π/κ

spiral pattern ~ 70 deg
star orbitted ~ 250 deg

spiral 
arm

two epicyclic orbits
time = 4π/κ

spiral pattern ~ 140 deg
star orbitted ~ 500 deg

three epicyclic orbits
time = 6π/κ

spiral pattern ~ 210 deg
star orbitted ~ 750 deg

spiral 
arm

Let’s consider snapshots in time where the star completes an entire 
epicyclic orbit.  In this case, the star again completes 70% of an orbit, 

but the spiral arm orbits 0.2 times

Which resonances drive spiral density wave growth? 



Let us consider a few examples of the orbit of stars that would finish 
a complete epicyclic orbit in the spiral density wave itself:

Example #3: The star is traveling much slower than the speed of the 
spiral density wave.

Let’s consider snapshots in time where the star completes an entire 
epicyclic orbit.  In this case, the star again completes 70% of an orbit, 

but the spiral arm orbits 1.2 times (instead of just 0.2 times)

spiral arm

time = 0

spiral 
arm

one epicyclic orbit
time = 2π/κ

spiral pattern ~ 430 deg
star orbitted ~ 250 deg

spiral 
arm

two epicyclic orbits
time = 4π/κ

spiral pattern ~ 860 deg
star orbitted ~ 500 deg

spiral 
arm

three epicyclic orbits
time = 6π/κ

spiral pattern ~ 1290 deg
star orbitted ~ 750 deg

Which resonances drive spiral density wave growth? 

Let us look at a few movies that illustrate these concepts rather 
directly:

Credit: Jo Bovy

Corotation

http://cosmo.nyu.edu/~jb2777/resonance.html

Which resonances drive spiral density wave growth? 

Let us look at a few movies that illustrate these concepts rather 
directly:

Credit: Jo Bovy

Inner Lindblad 
Resonance

Which resonances drive spiral density wave growth? 

Credit: Jo Bovy

Let us look at a few movies that illustrate these concepts rather 
directly:

Outer Lindblad 
Resonance

Which resonances drive spiral density wave growth? 

http://cosmo.nyu.edu/~jb2777/resonance.html


To ensure that some arbitrary star can complete an epicyclic orbit 
in the same time it takes to move from one region in the spiral arm 

to another, the following condition must be satisfied:

m(Ωp - Ω) = nκ

# of Spiral Arms

Orbital 
Frequency of 
Spiral Arms

Epicyclic (or radial) 
Frequency

Orbital (or Azimuthal) 
Frequency of Stars on 

Circular Orbits

some integer

The only integers n for this relation that are interesting are 0, +1, -1.

Which resonances drive spiral density wave growth? 

This results in a number of well known resonances:

Ωp  = Ω − κ/m

In most cases, the only relevant case is that of two spiral arms, i.e., 
m = 2

Inner Lindblad resonance:

Outer Lindblad resonance:

Ωp  = Ω + κ/m

Corotational radius:
Ωp  = Ω

Ωp  = Ω − κ/2

Ωp  = Ω + κ/2

Ωp  = Ω

Most relevant cases:

Which resonances drive spiral density wave growth? 

How does the resonant frequencies vary by radius?

At what orbital frequencies for the spiral arms are these resonances 
relevant?

Compute Ωp = Ω − κ/2, Ω, Ω + κ/2
3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-9 3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-10

Ωp

Radius

Orbital 
frequency for 
spiral arms at 
which these 
resonances 

become 
important

isochrone 
potential

One thing you should note 
is the extended range in 

radius where the rotational 
frequency for one of these 
resonances, i.e., Ω − κ/2 is 
approximately constant.

Ωp

Radius

Rotational 
frequency for 
spiral arms at 
which these 
resonances 

become 
important

model 1 for 
our Galaxy
from BT 2.7

3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-9 3-4-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c02-10

Again Ω − κ/2 is 
almost 

independent of 
radius!

How does the resonant frequencies vary by radius?

At what orbital frequencies for the spiral arms are these resonances 
relevant?

Compute Ωp = Ω − κ/2, Ω, Ω + κ/2



What are the typical physical radii where these resonances 
apply?Lindblad Resonances III

Ωp

Fr
eq
ue
nc
y

Ω+κ/2

Ω
Ω−κ/2

RadiusOLRCRIILR OILR

Lindblad Resonances play important role for orbits in barred potentials.

Rotational 
frequency for 
spiral arms

Outer Lindblad 
Resonance

Corotation 
Radius

Inner Lindblad 
Resonances

(Can be more 
than one)

Let’s zoom in on this plot and look at it more closely at 
the highly relevant m = 2 case 

(typically ~20 kpc in 
a spiral galaxy like 

our own)

(typically 
~3 kpc)

(typically 
~14 kpc)

(typical pattern 
speed for spiral 

arms Ωp 
~15 km/s / kpc)


