Relevant Material from Bachelor Course where many of
the key concepts are explained.

“Galaxies: Structure, Dynamics, and Evolution”




Key Point #3 from Bachelor Course: Constructing Galaxy
Potentials

W =1/2 / p(7)®(7)d7

We derive this as follows. Assume that we “build” up
the galaxy slowly. We have a galaxy with a density fp,
with 0 < f < 1. We add a tiny bit of density J fp,
taking the mass from infinity to the galaxy. Ignoring
the change in the potential, this costs an energy

[ s10@) ro(@)az

where f® is simply the potential of density fp, and the
integral is the integral over the full galaxy volume.

We now have to add all the contributions together to
derive the full energy needed to “build” the full galaxy

W= /0 1 [ ola) ra@az af
= [z [ ra

—1/2 / p(7)®(7)d7

3.1 Potential for spherical systems (BT 2.1,
2.2)

Newton’s Theorems:

e First Theorem:
A body inside an infinitesimally thin spherical shell
of matter experiences no net gravitational force
from that shell

Figure 2-

1. Proof of Newton’s first theorem.

Consider contributions to the force at point 7, due to the
matter in the shell in a very narrow cone df). The intersec-
tion angles at 1 and 2, ©1 and ©s, are equal for infinitely
small d€). The relative masses in the cone 01 and dmso sat-
isfy 5m1/5m2 = (7“1/7“2)2. The gravitational forces are
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proportional to 5m1/r% and 5m2/r§, and therefore equal,
but of opposite sign. Hence the matter in the cone does not
contribute any net force at the location 7. If we sum over all
cones, we find no net force !

e Newton's Second Theorem:

The gravitational force on a body outside a closed
spherical shell of matter is the same as it would be
if all the shell's matter were concentrated into a
point at its center.

i
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Figure 2-2. Proof of Newton’s
second theorem.

Calculate the potential at point ﬁat radius 7 from the center
of an infinitesimally thin shell with mass M and radius a. Con-
sider the contribution from the portion of the sphere with solid

angle 0 at q’:

GM 60
5@1 == _—’——7_
P—q| A
Now take an infinitesimally thin shell with the same mass M,
but radius 7. Scale P’ down to ]7 , so that it lies at a radius a

inside the shell. Scale (7 up, so that it lies on the shell. Calcu-
late the potential at ]7 The contribution of the matter near ¢
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with the same solid angle 0€2 is:

GM Q)
5(132 = T S A
P’ —q) 4
Since |ﬁ— (7| = |]7 — (ﬂ , 001 = 0P3. Sum over all solid
angles to obtain

) = Py

Since @9 is the potential inside a sphere with mass M and
radius T, it is equal to Py = —GM/T, and this is equal to
®,. This is the same as the potential at 7 if all the mass is
concentrated at the center.

We can now calculate potential of spherical system
with density p(r). Divide system up into shells, and
add contribution from each shell. Distinguish between
shells with radius 7’ , r’ < r and shells with " > r:
r<r:db=-GéM/r,

r">r: 60 =—-GoM/r

Hence total potential:

d = —4nQG F/ p(r")r"?dr’ +/ p(r’)r’dr'} .
0 T

r

Hence only single integration ! The force on the unit
mass at radius r is determined by mass interior to r:

F(T‘) = —%é’r = _T—gr,

where
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M(r) = 47r/0 p(r)r’2dr’.

The circular speed v.(r) is defined as the speed of a
test particle with unit mass in a circular orbit around
the center, with radius r. We derive

d® GM(r)
2 _
vi(r) = T_dfr =rF = -

THE CIRCULAR SPEED MEASURES THE MASS
INSIDE 7 !

And is independent of the mass outside r.

The escape speed v, is the speed needed to escape

from the system, for a star at radius r. It is given by

ve(r) = /2|®(r)]

Only if a star has a speed greater than that, it can es-
cape. It is dependent on the full mass distribution.

13-9-07 see http://www.strw.leidenuniv.nl/~ franx/college/ mf-sts-07-c2-8

3.2 Simple potentials

e Pointmass

GM GM 2GM

If the circular speed declines like % we call it “Keple-

rian” .

e Homogeneous Sphere

density is constant p within radius a, outside it is 0.
For r < a:

M(r) = 3nr’p, wve.=r/37Gp

The circular velocity is proportional to the radius of the
orbit. Hence the orbital period is:

T 2rr _ 3_7r
Ve V Gp

independent of radius !

release a test mass from rest at position . Equation of
motion:




Key Point #4 from Bachelor Course: Virial Theorem .., wcoas

3.3 Virial Theorem: (not in BT) Since df’ F; we have
. : - 1d?I =
relation for global properties: Kinetic Energy and Po- = ZF@’,L 1+ 2K.
tential energy. 2 dt .

Now assume the galaxy is 'quasi- static', i.e. its prop-

Again consider our system of point masses m; with erties change only slowly so that 21 = 0. Then the
positions ;. equation above implies
Construct >, p;2; and differentiate w.r.t. time: )

(5

dt2

d d7; . d~—1d,
dt pzxz—dthz txz_dtzi:zdt(m’x)

Then assume that the force F; can be written as a
summation over 'pairwise forces' Fj;

C1dI
= ——2 — —
2 dt F = Z F,;
where I =Y. m;xz?, which is the moment of inertia. Jiii

Now realize that

Zﬁifi:ZZﬁ 7

d oL dpz = d:z:l
Dik; = i T Z i i jAi

However, we can also write:

dt

This summation can be rewritten. We sum the terms
over the fullarea 0 <7+ < N,0 < j < N, i # j.
Then However, we can also limit the summation over just
half thisarea: 0 < ¢ < N,7 < 5 < N, and add

_ d¥; ~ the (j,4) term explicitly to the (7, 7) term within the
Zpi_z = Zmi ; =2K summation.

Hence instead of summing over Fj;Z;, we sum over

with K the kinetic energy. FyjTi + Fjil;
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Hence

ZZEjfz = Z Z(ﬁwfz + ﬁjlfj)

i Gt i j>i

This is simply a change in how the summation is done,
it does not use any special property of the force field.

Because ﬁij = —F}i (forces are equal and opposite for
pairwise forces) the last term can be rewritten

Y FEEi=Y ) Fy@i—-1)
i i j>i

. . — G . . r._ 7.
For gravitational force Fj; = — |£Tigb|j2 éf._?
(3 N 7 J

Zﬁi@_ 2.2 ‘szm] (@i — 2;)(T; — @)

- T — T3
T J>1

which equals

ZZ |Gmﬂry7 B ZZ szm] W

7 J>ZI'—$| 7 j;éz|$2_ajj‘

with W the total potential energy. Therefore for a
galaxy in quasi-static equilibrium:

1
K=—-W
2 Y
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which is the virial theorem for quasi-static systems.
The more general expression for non-static systems is:

1d%I

== 2K.
sar =W
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3.4 Applications (BT pages 213, 214)

Consider a system with total mass M

Kinetic energy K = £ M (v?) with

(v?) = mean square speed of stars (assumption: speed
of star not correlated with mass of star)

Define gravitational radius r

_GM2

Tg

W =

Spitzer found for many systems that r, = 2.57}, where
r;, is the radius which contains half the mass

Virial theorom implies:

2
Tg
M = (v*)r,G™*

Hence, we can estimate the mass of galaxies if we
know the typical velocities in the galaxy, and its size!
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Large Radii

Key Point #5+6: Measured Masses in Galaxies Require Presence
of Dark Matter at

7.2 Mass distribution and dark matter in spi-
ral galaxies

Dark Matter Halos in Spiral Galaxies BT 10.1-
6

measure rotation curve of cold gas
e H alpha (optical)
e CO (mm arrays)
e H | (vla, westerbork)

assume circular orbits:

v3(r) _ GM(<r)

r r

The enclosed mass is directly given by
M(< r)=rvi(r)/G

Isothermal sphere: v, = constant, p oc r=2

Point Mass: v, o< 1/4/r
Measurement in practice:

e Take edge-on system, measure maximum veloc-
ity of gas at each point
possible problems: extinction, confusion

e Take inclined galaxies, measure velocities every-
where
e Model by fitting a circular velocity field with
unknown inclination and rotation curve

Historically, optical rotation curves like these on the
following figure indicated for the first time the presence
of dark matter.

VELOCITY IN PLANE OF GALAXY (km s')
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Figure 10-1. Photographs, spectra, and rotation curves for five Sc galaxies, arranged in
order of increasing luminosity from top to bottom. The top three images are television
pictures, in which the spectrograph slit appears as a dark line crossing the center of the
galaxy. The vertical line in each spectrum is continuum emission from the nucleus. The
distance scales are based on a Hubble constant h = 0.5. Reproduced from Rubin (1983}, by
permission of Science.

Very modern data are based on 21cm HI emission lines.
The HI disks can often be followed to very large radii,
and hence the rotation curve can be followed to well
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model looks like: Obviously, an additional mass component is necessary

o to explain the rotation curve.
Ny I Fit rotation curves:

g ov4:— . .
) Constant M/L for starlight
2 ]

! : _ 2
U(:“ T E) é J; 5 Figure 8.31 A typical galactic add halo’ Wlth p — pO/(l + (r/a/) )
r circular-speed curve.

Example for NGC 3198

200 T T T T [ 1 1 I T ] T T T T I T T 1 1 I 1 1 1 T
i NGC 3198 i
Figure 8.32 The spider diagram
generated by the circular-speed curve
of Figure 8.31 when the system is 150
viewed at inclination i = 30° with
the apparent major axis horizontal.
The area contoured is a square 10 —
distance units on a side. )
~
.:Eg: 100
We can now model the galaxy. Take the surface bright- =
ness profile, and calculate the rotation curve if the >
mass-to-light ratio were constant:
50
20 &\ i
AN ]
22; ; Olllll]]llll]l]llllllllll
£ i 1 0 10 20 30 40 50
2a \\ ] Radius (kpc)
\ 1 Figure 8.35 The 21-cm circular- Figure 10-2. The Sc galaxy NGC 3198. Top: neutral
S I N R ;ﬁ;;di;%;Otfh;i‘e:;tgf;’t‘}{e"g‘;’f hydrogen column density contours superimposed on an optical
200 axy’s mass lies beyond Rps. The photograph. Bottom: circular-speed curve plus model fits
i E ibper panel shows the r-band sur- using an exponential disk with constant mass-to-light ratio and
50 F e . . ace brightness profile from Kent’s : i
) VAN “et*'"'' 1 OCD photometry. The curve in the halo density profile (10-10). The model curve is for the
oy S 7 the lower panel shows the circular- maximum possible disk mass-to-light ratio. The horizontal scale
g 100 — J speed curve derived from this and .
< 1 the observed HI mass under the as- assumes k = 0.75. Reprinted from van Albada et al. (1985}, by
R F | sumption that T, = 3.87(®). The issi ) '
50 i I ote in the o panel show Zhe permission of The Astrophysical Journal.
F 1 circular-speed curve d[erived from the
ol Ll L L 21-cm vel‘ocity ﬁeld: After B?geman . . . .
° 0 ey 30 (. Bopsing data kindly provided by Problems: The fit is never unique. Different M/L's

for the disk, and different values of a, py for the
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halo will give fits which are all good.
Hence: it is very hard to determine how much of
the mass is due to the halo, within the outer most
radius
Solution: determine the “minimum halo mass”,
by calculating “maximum disk”. But this is only
the minimum !
Various authors have assembled large samples of galax-
ies with rotation curves. An example: Casertano and
van Gorkom (1991, AJ 101, 1231)

T T T
200 - -

100 — -

v (km s7%)
v (km s

Dwarf galaxies 1 Intermediate galaxies 1
Vimax < 100 9 J‘// 100 < Vpee < 180

o L 1 ! ol | |

0 5 10 15 20 0 10 20 30
r (kpe) r (kpe)
300 . . . 300
[ 1
1
1
i, 1 T
o - a
> 1 > 1
L 1 1
i Large bright galaxies ] i | Compact bright galaxies J
] 180 < Ve < 260 ] A 180 < Vgey < 260
h > 3.5 kpe ] b h < 3.5 kpe
0 I . 1 ol 1 A L
0 10 0 30 40 50 0 10 R0 30
r (kpe) r (kpe)

F1G. 5.Comparison of the 28 extended rotation curves shown in Fig. 4. Each panel refers to one of the four galaxy groups described in the text: dwarf,
intermediate, bright and bright compact galaxies. The rotation curves are drawn with thick solid lines beyond an inner fiducial radius corresponding
to two-thirds of the optical radius. A ic change in shape i rotation curves of dwarf galaxies rise, often out to the last measured point;
those of intermediate galaxies are generally flat, with some exceptions (rising for NGC 247 and declining for NGC 7793); those of bright galaxies fall,
weakly for large ones, more steeply for compact galaxies.

Resulting rotation curves:

e Rapid rise near center

e nearly flat out to most distant point, with some
variations:
dwarf galaxies: still rising
intermediate galaxies: flat
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large bright galaxies - slightly falling, compact
galaxies, falling slightly more

e Never Keplerian - always a lot of dark matter !

Homework Assignment:

1) Calculate the total mass, the mass in the disk, and
the mass in the halo for NGC 3198 at a radius of 30kpc.
Use the decomposition into components shown in the
figure above.
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7.5 Clusters of galaxies BT 10.2-4

measure redshifts of cluster galaxies

velocity dispersions of 1000 km /s or higher are mea-
sured |

10.2 Dark Matter in Systems of Galaxies 615
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Figure 10-4. Line-of-sight velocities of galaxies in the Coma cluster
(in kms™!) as a function of distance from the cluster center in minutes
of arc (Kent & Gunn 1982). The curves mark the authors’ estimate of
the boundary between cluster members and interlopers. At the distance
of Coma 1 arcmin = 20h~!kpc. Reprinted by permission from The
Astronomical Journal.

Kent and Gunn 1982
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965 KENT AND GUNN: COMA CLUSTER 965
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Careful model shows: total mass is 2 x 10 M (HO =
70 km/sec/Mpc).

Total amount of light: 279 galaxies brighter than L.,
L, = 0.7 101°L,. Total amount of light is 4.33 x L, x
N=0.8 103 L,

Hence mass to light ratio = M /L = 210'5/0.810'3 =
250 Moy /Lo,

Similar study (Kent and Sargent) Perseus: M/Ly =
420 M/L,

Typical masses of clusters: 1014 — 10 M

Normal galaxy: Mpy < 10M /L), hence a lot of dark
matter.
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F'igureA 10-5. X-ray surface-brightness contours sup_erimposed on
photographs of several clusters of galaxies. Clockwise from top
left, the clusters are A1367, A262, A85, and A2256 (see Jones &

Forman 1984).

Similar mass determinations from gas . Temperatures
can now be measured easily with X-ray satellites. Re-
sults:

e Confirms high masses

Mass budget:
e Gas mass fraction 20-30 % of total mass
e Star mass fraction < 10 % of mass
e Remaining: dark matter 60-70 % !
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7.6 Dark matter in universe as a whole BT
10.3-1

The emissivity of light in the universe in the V band is

jo = 1.7+ 0.610°hLoMpc3

The critical density for the universe is:

3H2

Pe = G

This density is enough to stop the expansion at t =
infinity

Define the density parameter Qg = po/pe, where pg is
the actual density of the universe

Express €y in terms of M/ L ratio of galaxies:

Qg =6.110"*A"*M/L/(M/L)g

The critical mass-to-light ratio for {2 = 1 is given by
M/L. = 1600h(M/L)q

Clusters imply M/L. = 300 — 600h(M /L), hence
more realistic values are

0y =02-04

from clusters.
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other indicators give:

Table 10-2. Estimates of the density parameter

Method TV / To QO
Solar neighborhood 5 0.003h~1
Elliptical galaxy cores 12h 0.007
Local escape speed 30 0.018h71
Satellite galaxies 30 0.018h71
Magellanic Stream > 80 > 0.05h71
Rotation curve of NGC 3198 > 28h > 0.017
X-ray halo of M87 > 750 > 0.46h7!
Local Group timing 100 0.06R~1
Groups of galaxies 260h 0.16
Clusters of galaxies 400~ 0.25
Virgocentric flow — 0.25
Nucleosynthesis - (0.01 — 0.05)h~2
Inflation — 1

NOTES: All lines except the last three are based on the luminosity density
(10-24). Nucleosynthesis estimate omits density in non-baryonic matter.
Several methods, such as Local Group timing and X-ray halo of M87, de-
pend on h in complicated ways, and this dependence has been suppressed.
See text for further detail.
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Measurements on the largest scales concern those
caused by inflows around clusters (BT 10.3-2)

matter falls into clusters of galaxies. Assume that the
density contrast of the cluster is the same as that of
the light

Pcluster . jcluster —5

Puniverse Juniverse

where 7 is emissivity. The total mass of the cluster is
proportional to €2

Mass R3,0 X O Puniverse X 082

Hence, the acceleration of galaxies outside the cluster
will depend on €.

Example: determine €}y from “Virgo centric infall”




Key Point #8 from Bachelor Course: Do Stars Collide? |... oo

3.1 Equations of motion

assume a collection of masses m; at location x;, and

assume gravitational interaction. Hence the force F,
on particle ¢ is given by

2 — —
— d 5 Tj — Ty
F,=m;,—x; = E == Gmm;

ar" T e - P

e Only analytic solution for 2 point masses

e “Easy” to solve numerically (brute force) - but
slow for 1011 particles [see http://astrogrape.org/]

e Analytic approximations necessary for a better un-
derstanding of solution

In the following we investigate properties of gravita-
tional systems without explicitly solving the equations
of motion.

3.2 Do stars collide 7 (BT 1to 1.1)
Is it safe to ignore non-gravitational interactions 7

Calculate number of collisions between t; and t1 + dt
of star coming in from the left, in galaxy with homoge-
neous number density n.

O
O
0O o] O
O NN ENE ~
(7797177~
o Vl
o (»)

£, €, +dt

e incoming star has velocity v

e suppose all stars have radius r,.

e all stars in volume V; will cause collision —
Vi=m(2r,)? x v xdt

e number of starsin V7 : Ny =nV;

e number of collisions per unit time = 47r2nv
Typical values:
reo =7 x 101% cm
n = 10'°/[3kpc]®> = 1.3 x 107°%cm—3
v = 200 km/sec= 2 x 107 cm/sec

1

which gives a collision rate of 1.6x1072¢ sec™! =
5x107 1 yr=t — very rare indeed

Hence we can ignore these collisions without too much
trouble.
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3.5 Binding Energy and Formation of Galaxies

The total energy E of a galaxy is

e Bound galaxies have negative energy - cannot fall
apart and dissolve into a very large homogeneous
distribution

e A galaxy cannot just form from an unbound, ex-
tended smooth distribution —> FEiotq; = Fstart =
0, E4u1 = —K, so energy must be lost or the
structure keeps oscillating:

(D020 (OO

Possible energy losses through
e Ejection of stars
e Radiation (before stars would form)




Key Point #9 from Bachelor Course: Interactions with Other
Stars Not Especially Important

Galactic Dynamics - Continued

3.6 Time scales (BT 4 to start 4.1)

dynamical timescale, particle interaction timescale

Is gravitational force dominated by short or long range
encounters? (N.B. in a gas, only short range forces are
relevant).

In a galaxy, the situation is different.

Consider force with which stars in cone attract star in
apex of cone.

Py

4r
TEy wr,g’d Flizt]

///// 'J
dr

Mgt r:drcﬁﬂ
Figure 4-1. H the density of siars were everywhere -
thet saine, the stars in each of the shaded seqments
wonkd make egual contributions to the net force on
a star i the cone's apex. Thus the aeceleration of
a gtar at the apax i= determined by she large-soale

- gradient in the density of stars withis the galaxy.

Force ~ 1/r2, with r the distance from apex. If p is
almost constant, then the mass in a shell with width dr
increases as r2dr.

Hence differential force is constant at each r, and we
have to integrate all the way out to obtain the total
force.

Realistic densities decrease after some radius, so that
the force will be determined by the density distribu-
tion on a galactic scale (characterized by the half mass
radius).

3.7 Relaxation time

Short range encounters do not dominate —

Approximate force field with a smooth density p(z)
instead of point masses.

e Contrary of situation in gas: only consider long
range encounters (long range ~ scale of the galaxy)

Assume all stars have mass m. Analyze perturbations
due to the fact that density is not smooth, but consists
of individual stars. Simplify, and look first at single
star-star encounter.

What is effect of a single encounter with point mass on
motion of star?

e Exact: BT §7.1: hyperbolic Keplerian encounter

e Estimate: straight line trajectory past stationary
perturber

# Flgure 4-2, A ficld star approaches

. * ¥ the test star st speed v and bupact
Lo ;b . parameter b We estunaie the
F. ;\ C resulting impulse o the tesi star
\<i : by approxiinating the feld star's

trajectory as a straight Bne.
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The perpendicular force F| gives perturbation 07 :

7o Gm?2cos 6 B Gm?Zcos 6 B Gm?2b
- r2 - (b2 +22) - (b2 +22)3/2
Gm?
b2[1+ (vt/b)2]3/2
d F,
Newton: —v;, = —
ewton o o - =
ﬁJ_ Gm
ov = |dt = dt
oL / m / b2[1 + (vt/b)2]3/2
_Gm T ds B Gm S >
v ) (T+s2)32 b V1482

B 2G'm
b

Note: approximation fails when
57, >v = b<Gm/v? = by

Galaxy has characteristic radius R.

Define crossing time t. as the time it takes a star to
move through the galaxy t. = R/v

Calculate number of perturbing encounters per crossing
time t.
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In a crossing time, the star has 1 “encounter” with
each other star in the galaxy

The impact parameter of each encounter can be de-
rived by projecting each star onto a plane perpendic-
ular to the unperturbed motion of the star

Hence “flatten” the galaxy in the plane perpendicular
to the motion of the star, and assume that the stars
are homogeneously distributed in that plane, out to
a radius R, and no stars outside R. This is obviously
a simplifying assumption, but it is reasonably accu-
rate.

This can be used to derive the distribution of impact
parameters:

N stars in total in Galaxy, distributed over total surface
TR?

4 per unit ol
er unit area. e
P TR?

In a crossing time, the star has dn encounters with
impact parameter between b and b + db. dn is given
by the area of the annulus 27bdb times the density of
stars on the surface, which is N/(7R?):

N N
on = 2 ombdb = 2N db

Result: (6v,) =0

as the perturbations are randomly distributed, and will
not change the average velocity
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- (2520 ()

as each perturbation adds to (§v? ) by an equal amount
(2Gm /bv)?.

The encounters do not produce an average perpendic-
ular velocity, but they do produce an average (perpen-

dicular velocity)2. Hence, on average, the stars still
follow their average path, but they tend to “diffuse”
around it.

The total increase in rms perpendicular velocity can be
calculated by integrating over all impact parameters
from b, to infinity:

Total rms increase:
R R

(Av? ) = /<5vi> db = /8N (%)2 db/b =

brnin brnin

:8N(C;—T:>21nA

with In A = Coulomb logarithm = In 1
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We can rewrite this equation. Use
binin = Gm /v?

From virial theorem
12 =GM/R=GNm/R

Hence byin = Gm/(GNm/R) = R/N
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Furthermore from virial theorem:

GM? s GM 5  GNm 9 v R
7 Mvy® - — =0 5 = v — N Cm
so that: (Avi) = 8In NV

This last number is the fractional change in energy per
crossing time. Hence we need the inverse number of

crossings N/(8In N) to get (Av?) ~ v?

The timescale t,..;4. is defined as the time it takes to
deflect each star significantly by two body encounters,
and it is therefore equal to

; N
relax — SIn N

te

Conclusions

e effect of point mass perturbations decreases as N
increases

e even for low N=50, (Av?)/v? = 0.6, hence deflec-
tions play a moderate role.

e for larger systems the effect of encounters become
even less important
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Notice: one derives the same equation when the exact
formulas for the encounters are used. Put in another
way, the encounters with b < b,,;, do not dominate.

3.8 Relaxation time for large systems

0N
relax — n N c

System N te (yr) trelax (Yr)
globular cluster 10° 10° 2 x 108
galaxy 10t 108 1017
galaxy cluster 103 10° 3 x 1010

Age of Universe ~ Hubble time ~ 1.5 x 1010 yr

= Galaxies are collisionless systems

e motion of a star accurately described by single
particle orbit in smooth gravitational field of galaxy

e no need to solve N-body problem with N = 10!!
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