
Relevant Material from Bachelor Course where many of 
the key concepts are explained.

“Galaxies: Structure, Dynamics, and Evolution”
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W = 1/2

∫

ρ(x⃗)Φ(x⃗)dx⃗

We derive this as follows. Assume that we “build” up
the galaxy slowly. We have a galaxy with a density fρ,
with 0 < f < 1. We add a tiny bit of density δfρ,
taking the mass from infinity to the galaxy. Ignoring
the change in the potential, this costs an energy

∫

δfρ(x⃗) fΦ(x⃗)dx⃗

where fΦ is simply the potential of density fρ, and the
integral is the integral over the full galaxy volume.
We now have to add all the contributions together to
derive the full energy needed to “build” the full galaxy

W =

∫ 1

0

∫

ρ(x⃗) fΦ(x⃗)dx⃗ df

=

∫

ρ(x⃗)Φ(x⃗)dx⃗

∫ 1

0

fdf

= 1/2

∫

ρ(x⃗)Φ(x⃗)dx⃗
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3.1 Potential for spherical systems (BT 2.1,
2.2)

Newton’s Theorems:

• First Theorem:
A body inside an infinitesimally thin spherical shell
of matter experiences no net gravitational force
from that shell

Consider contributions to the force at point r⃗, due to the

matter in the shell in a very narrow cone dΩ. The intersec-

tion angles at 1 and 2, Θ1 and Θ2, are equal for infinitely

small dΩ. The relative masses in the cone δm1 and δm2 sat-

isfy δm1/δm2 = (r1/r2)2. The gravitational forces are

Key Point #3 from Bachelor Course:  Constructing Galaxy 
Potentials
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proportional to δm1/r2
1 and δm2/r2

2 , and therefore equal,

but of opposite sign. Hence the matter in the cone does not

contribute any net force at the location r⃗. If we sum over all

cones, we find no net force !

• Newton’s Second Theorem:
The gravitational force on a body outside a closed
spherical shell of matter is the same as it would be
if all the shell’s matter were concentrated into a
point at its center.

Calculate the potential at point p⃗ at radius r from the center

of an infinitesimally thin shell with mass M and radius a. Con-

sider the contribution from the portion of the sphere with solid

angle δΩ at q′:

δΦ1 = −
GM

|p⃗ − q⃗′|
δΩ

4π

Now take an infinitesimally thin shell with the same mass M,

but radius r. Scale p⃗ down to p⃗′ , so that it lies at a radius a
inside the shell. Scale q⃗′ up, so that it lies on the shell. Calcu-

late the potential at p⃗′. The contribution of the matter near q⃗
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with the same solid angle δΩ is:

δΦ2 = −
GM

|p⃗′ − q⃗|
δΩ

4π

Since |p⃗ − q⃗′| = |p⃗′ − q⃗| , δΦ1 = δΦ2. Sum over all solid

angles to obtain

Φ1 = Φ2

Since Φ2 is the potential inside a sphere with mass M and

radius r, it is equal to Φ2 = −GM/r, and this is equal to

Φ1. This is the same as the potential at r if all the mass is

concentrated at the center.

We can now calculate potential of spherical system
with density ρ(r). Divide system up into shells, and
add contribution from each shell. Distinguish between
shells with radius r′ , r′ < r and shells with r′ > r:
r′ < r : δΦ = −GδM/r,
r′ > r : δΦ = −GδM/r′.

Hence total potential:

Φ = −4πG

[

1

r

∫ r

0

ρ(r′)r′2dr′ +

∫ ∞

r
ρ(r′)r′dr′

]

.

Hence only single integration ! The force on the unit
mass at radius r is determined by mass interior to r:

F⃗ (r) = −
dΦ

dr
e⃗r = −

GM(r)

r2
e⃗r,

where
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M(r) = 4π

∫ r

0

ρ(r′)r′2dr′.

The circular speed vc(r) is defined as the speed of a
test particle with unit mass in a circular orbit around
the center, with radius r. We derive

v2
c (r) = r

dΦ

dr
= rF =

GM(r)

r
.

THE CIRCULAR SPEED MEASURES THE MASS
INSIDE r !

And is independent of the mass outside r.
The escape speed ve is the speed needed to escape
from the system, for a star at radius r. It is given by

ve(r) =
√

2|Φ(r)|

Only if a star has a speed greater than that, it can es-
cape. It is dependent on the full mass distribution.
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3.2 Simple potentials

• Pointmass

Φ(r) = −
GM

r
, vc(r) =

√

GM

r
, ve(r) =

√

2GM

r

If the circular speed declines like 1√
r

we call it “Keple-

rian”.

• Homogeneous Sphere

density is constant ρ within radius a, outside it is 0.
For r < a:

M(r) = 4

3
πr3ρ, vc = r

√

4

3
πGρ

The circular velocity is proportional to the radius of the
orbit. Hence the orbital period is:

T =
2πr

vc
=

√

3π

Gρ

independent of radius !

release a test mass from rest at position r. Equation of
motion:
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3.3 Virial Theorem: (not in BT)

relation for global properties: Kinetic Energy and Po-
tential energy.

Again consider our system of point masses mi with
positions x⃗i.
Construct

∑
i p⃗ix⃗i and differentiate w.r.t. time:

d

dt

∑

i

p⃗ix⃗i =
d

dt

∑

i

mi
dx⃗i

dt
x⃗i =

d

dt

∑

i

1

2

d

dt
(mix

2
i )

=
1

2

d2I

dt2

where I =
∑

i mix2
i , which is the moment of inertia.

However, we can also write:

d

dt

∑

i

p⃗ix⃗i =
∑

i

dp⃗i

dt
x⃗i +

∑

i

p⃗i
dx⃗i

dt

Then

∑

i

p⃗i
dx⃗i

dt
=

∑

i

miv⃗
2
i = 2K

with K the kinetic energy.
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Since dp⃗i

dt
= F⃗i we have

1

2

d2I

dt2
=

∑

i

F⃗ix⃗i + 2K.

Now assume the galaxy is ’quasi-static’, i.e. its prop-
erties change only slowly so that d2I

dt2
= 0. Then the

equation above implies

K = −
1

2

∑

i

F⃗ix⃗i

.

Then assume that the force F⃗i can be written as a
summation over ’pairwise forces’ F⃗ij

F⃗i =
∑

j,j ̸=i

F⃗ij

Now realize that

∑

i

F⃗ix⃗i =
∑

i

∑

j ̸=i

F⃗ij x⃗i

This summation can be rewritten. We sum the terms
over the full area 0 < i ≤ N , 0 < j ≤ N , i ̸= j.
However, we can also limit the summation over just
half this area: 0 < i ≤ N , i < j ≤ N , and add
the (j, i) term explicitly to the (i, j) term within the
summation.
Hence instead of summing over F⃗ij x⃗i, we sum over

F⃗ij x⃗i + F⃗jix⃗j

Key Point #4 from Bachelor Course:  Virial Theorem
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Hence

∑

i

∑

j ̸=i

F⃗ij x⃗i =
∑

i

∑

j>i

(F⃗ij x⃗i + F⃗jix⃗j)

This is simply a change in how the summation is done,
it does not use any special property of the force field.

Because F⃗ij = −F⃗ji (forces are equal and opposite for
pairwise forces) the last term can be rewritten

∑

i

F⃗ix⃗i =
∑

i

∑

j>i

F⃗ij(x⃗i − x⃗j)

For gravitational force F⃗ij = − Gmimj

|x⃗i−x⃗j |2
x⃗i−x⃗j

|x⃗i−x⃗j |

∑

i

F⃗ix⃗i = −
∑

i

∑

j>i

Gmimj

|x⃗i − x⃗j |3
(x⃗i − x⃗j)(x⃗i − x⃗j)

which equals

= −
∑

i

∑

j>i

Gmimj

|x⃗i − x⃗j |
= −

1

2

∑

i

∑

j ̸=i

Gmimj

|x⃗i − x⃗j |
= W

with W the total potential energy. Therefore for a
galaxy in quasi-static equilibrium:

K = −
1

2
W,
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which is the virial theorem for quasi-static systems.
The more general expression for non-static systems is:

1

2

d2I

dt2
= W + 2K.

Homework assignments:

1) derive the relation for the potential energy given
above. Suppose each particle has mass fmi, 0 ≤
f ≤ 1. Slowly add an extra mass midf to each par-
ticle from infinity and calculate how much energy is
released. Integrate f from 0 to 1.

2) How empty are galaxies ? Calculate the distance
between stars, and calculate the radius of a star. Take
the ratio of the two. Compare this to the same ratio of
galaxies: take the average distance between galaxies,
and the radius of galaxies.
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3.4 Applications (BT pages 213, 214)

Consider a system with total mass M

Kinetic energy K = 1

2
M⟨v2⟩ with

⟨v2⟩ = mean square speed of stars (assumption: speed
of star not correlated with mass of star)

Define gravitational radius rg

W = −
GM2

rg

Spitzer found for many systems that rg = 2.5rh, where
rh is the radius which contains half the mass
Virial theorom implies:

M⟨v2⟩ =
GM2

rg

M = ⟨v2⟩rgG
−1

Hence, we can estimate the mass of galaxies if we
know the typical velocities in the galaxy, and its size!
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Homework Assignments:

3) calculate the mass of our galaxy for two assumed
radii:
a.) 10 kpc (roughly the distance to the sun)
b.) 350 kpc (halfway out to Andromeda)
Take as a typical velocity the solar value of 200 km/s.

4) Give the correct expression for the total kinetic en-
ergy if the velocities of stars ARE correlated with their
mass.
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7.2 Mass distribution and dark matter in spi-
ral galaxies

Dark Matter Halos in Spiral Galaxies BT 10.1-
6

measure rotation curve of cold gas
• H alpha (optical)
• CO (mm arrays)
• H I (vla, westerbork)

assume circular orbits:

v2
c (r)

r
=

GM(< r)

r2

The enclosed mass is directly given by

M(< r) = rv2
c (r)/G

Isothermal sphere: vc = constant, ρ ∝ r−2

Point Mass: vc ∝ 1/
√

r

Measurement in practice:

• Take edge-on system, measure maximum veloc-
ity of gas at each point
possible problems: extinction, confusion

• Take inclined galaxies, measure velocities every-
where
• Model by fitting a circular velocity field with
unknown inclination and rotation curve
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Historically, optical rotation curves like these on the
following figure indicated for the first time the presence
of dark matter.

Very modern data are based on 21cm HI emission lines.
The HI disks can often be followed to very large radii,
and hence the rotation curve can be followed to well

Key Point #5+6: Measured Masses in Galaxies Require Presence 
of Dark Matter at Large Radii
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model looks like:

We can now model the galaxy. Take the surface bright-
ness profile, and calculate the rotation curve if the
mass-to-light ratio were constant:
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Obviously, an additional mass component is necessary
to explain the rotation curve.

Fit rotation curves:

Constant M/L for starlight
add halo, with ρ = ρ0/(1 + (r/a)2)

Example for NGC 3198

Problems: The fit is never unique. Different M/L’s
for the disk, and different values of a, ρ0 for the
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halo will give fits which are all good.
Hence: it is very hard to determine how much of
the mass is due to the halo, within the outer most
radius

Solution: determine the “minimum halo mass”,
by calculating “maximum disk”. But this is only
the minimum !

Various authors have assembled large samples of galax-
ies with rotation curves. An example: Casertano and
van Gorkom (1991, AJ 101, 1231)

Resulting rotation curves:

• Rapid rise near center
• nearly flat out to most distant point, with some

variations:
dwarf galaxies: still rising
intermediate galaxies: flat
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large bright galaxies - slightly falling, compact
galaxies, falling slightly more

• Never Keplerian - always a lot of dark matter !

Homework Assignment:
1) Calculate the total mass, the mass in the disk, and
the mass in the halo for NGC 3198 at a radius of 30kpc.
Use the decomposition into components shown in the
figure above.
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7.5 Clusters of galaxies BT 10.2-4

measure redshifts of cluster galaxies

velocity dispersions of 1000 km/s or higher are mea-
sured !

Kent and Gunn 1982
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Careful model shows: total mass is 2 × 1015M⊙ (H0 =
70 km/sec/Mpc).

Total amount of light: 279 galaxies brighter than L∗,
L∗ = 0.7 1010L⊙. Total amount of light is 4.33×L∗×
N= 0.8 1013L⊙

Hence mass to light ratio = M/L = 21015/0.81013 =
250 M⊙/L⊙.

Similar study (Kent and Sargent) Perseus: M/LV =
420 M/L⊙

Typical masses of clusters: 1014 − 1015 M⊙

Normal galaxy: MLV < 10M/L⊙, hence a lot of dark
matter.



29-10-07see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c7-31

Similar mass determinations from gas . Temperatures
can now be measured easily with X-ray satellites. Re-
sults:

• Confirms high masses

Mass budget:
• Gas mass fraction 20-30 % of total mass
• Star mass fraction < 10 % of mass
• Remaining: dark matter 60-70 % !
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7.6 Dark matter in universe as a whole BT
10.3-1

The emissivity of light in the universe in the V band is

j0 = 1.7 ± 0.6108hL⊙Mpc−3

The critical density for the universe is:

ρc =
3H2

0

8πG

This density is enough to stop the expansion at t =
infinity

Define the density parameter Ω0 = ρ0/ρc, where ρ0 is
the actual density of the universe

Express Ω0 in terms of M/L ratio of galaxies:

Ω0 = 6.110−4h−1M/L/(M/L)⊙

The critical mass-to-light ratio for Ω = 1 is given by

M/Lc = 1600h(M/L)⊙

Clusters imply M/Lc = 300 − 600h(M/L)⊙, hence
more realistic values are

Ω0 = 0.2 − 0.4

from clusters.
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other indicators give:
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Measurements on the largest scales concern those
caused by inflows around clusters (BT 10.3-2)

matter falls into clusters of galaxies. Assume that the
density contrast of the cluster is the same as that of
the light

ρcluster

ρuniverse
=

jcluster

juniverse
= δ

where j is emissivity. The total mass of the cluster is
proportional to Ω0

Mass ∝ R3ρ ∝ δρuniverse ∝ δΩ0

Hence, the acceleration of galaxies outside the cluster
will depend on Ω0.

Example: determine Ω0 from “Virgo centric infall”
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3.1 Equations of motion

assume a collection of masses mi at location xi, and
assume gravitational interaction. Hence the force F⃗i
on particle i is given by

F⃗i = mi
d2

dt2
x⃗i =

∑

j ̸=i

x⃗j − x⃗i

|x⃗j − x⃗i|3
Gmimj

• Only analytic solution for 2 point masses
• “Easy” to solve numerically (brute force) - but

slow for 1011 particles [see http://astrogrape.org/]

• Analytic approximations necessary for a better un-
derstanding of solution

In the following we investigate properties of gravita-
tional systems without explicitly solving the equations
of motion.

3.2 Do stars collide ? (BT 1 to 1.1)

Is it safe to ignore non-gravitational interactions ?

Calculate number of collisions between t1 and t1 + dt
of star coming in from the left, in galaxy with homoge-
neous number density n.
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• incoming star has velocity v
• suppose all stars have radius r∗.
• all stars in volume V1 will cause collision −>

V1 = π(2r∗)2 × v × dt
• number of stars in V1 : N1 = nV1

• number of collisions per unit time = 4πr2
∗nv

Typical values:

r⊙ = 7 × 1010 cm

n = 1010/[3kpc]3 = 1.3 × 10−56cm−3

v = 200 km/sec= 2 × 107 cm/sec

which gives a collision rate of 1.6×10−26 sec−1 =
5×10−19 yr−1 −> very rare indeed

Hence we can ignore these collisions without too much
trouble.

Key Point #8 from Bachelor Course: Do Stars Collide?
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3.5 Binding Energy and Formation of Galaxies

The total energy E of a galaxy is

E = K + W = −K = 1/2W

• Bound galaxies have negative energy - cannot fall
apart and dissolve into a very large homogeneous
distribution

• A galaxy cannot just form from an unbound, ex-
tended smooth distribution −> Etotal = Estart ≈
0, Egal = −K, so energy must be lost or the
structure keeps oscillating:

Possible energy losses through
• Ejection of stars
• Radiation (before stars would form)
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3.6. Scaling Relations (not in BT)

Consider a steady state galaxy with particles mi at lo-
cation xi(t).
Can the galaxy be rescaled to other physical galaxies?

• scaled particle mass m̂i=ammi

• scaled particle location x̂i = axxi(att)
• am, ax, at are scaling parameters

In the ’rescaled’ galaxy we have

ˆ⃗
Fi = ammi

d2

dt2
axx⃗(att) = amaxa2

t F⃗i,orig

The gravitational force is equal to

ˆ⃗
FG =

∑
j ̸=i

axx⃗j−axx⃗i

|axx⃗j−axx⃗i|3
Gammiammj = a2

m

a2
x

F⃗G,orig

Equilibrium is satisfied if the two terms above are equal

ˆ⃗
Fi =

ˆ⃗
FG

Since we have equilibrium when all scaling parameters
are equal to 1, we obtain

amaxa2
t =

a2
m

a2
x

,

or
am = a3

xa2
t .
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Galactic Dynamics - Continued

3.6 Time scales (BT 4 to start 4.1)

dynamical timescale, particle interaction timescale

Is gravitational force dominated by short or long range
encounters? (N.B. in a gas, only short range forces are
relevant).

In a galaxy, the situation is different.
Consider force with which stars in cone attract star in
apex of cone.

Force ∼ 1/r2, with r the distance from apex. If ρ is
almost constant, then the mass in a shell with width dr
increases as r2dr.

Hence differential force is constant at each r, and we
have to integrate all the way out to obtain the total
force.
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Realistic densities decrease after some radius, so that
the force will be determined by the density distribu-
tion on a galactic scale (characterized by the half mass
radius).

3.7 Relaxation time

Short range encounters do not dominate →
Approximate force field with a smooth density ρ(x)
instead of point masses.

• Contrary of situation in gas: only consider long
range encounters (long range ∼ scale of the galaxy)

Assume all stars have mass m. Analyze perturbations
due to the fact that density is not smooth, but consists
of individual stars. Simplify, and look first at single
star-star encounter.

What is effect of a single encounter with point mass on
motion of star?
• Exact: BT §7.1: hyperbolic Keplerian encounter
• Estimate: straight line trajectory past stationary

perturber

Key Point #9 from Bachelor Course:  Interactions with Other 
Stars Not Especially Important
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The perpendicular force F⃗⊥ gives perturbation δv⃗⊥:

F⃗⊥=
Gm2cos θ

r2
=

Gm2cos θ

(b2+x2)
=

Gm2b

(b2+x2)3/2

∼
Gm2

b2[1+(vt/b)2]3/2

Newton:
d

dt
δv⃗⊥ =

F⃗⊥

m
⇒

δv⃗⊥=

∫

dt
F⃗⊥

m
=

∫

Gm

b2[1 + (vt/b)2]3/2
dt

=
Gm

bv

∞
∫

−∞

ds

(1 + s2)3/2
=

Gm

bv

s√
1 + s2

∣

∣

∣

∣

∞

−∞

=
2Gm

bv

Note: approximation fails when

δv⃗⊥ > v ⇒ b < Gm/v2 = bmin

Galaxy has characteristic radius R.
Define crossing time tc as the time it takes a star to

move through the galaxy tc = R/v
Calculate number of perturbing encounters per crossing

time tc
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In a crossing time, the star has 1 “encounter” with
each other star in the galaxy

The impact parameter of each encounter can be de-
rived by projecting each star onto a plane perpendic-
ular to the unperturbed motion of the star

Hence “flatten” the galaxy in the plane perpendicular
to the motion of the star, and assume that the stars
are homogeneously distributed in that plane, out to
a radius R, and no stars outside R. This is obviously
a simplifying assumption, but it is reasonably accu-
rate.

This can be used to derive the distribution of impact
parameters:

N stars in total in Galaxy, distributed over total surface
πR2

# per unit area:
N

πR2

In a crossing time, the star has δn encounters with
impact parameter between b and b + db. δn is given
by the area of the annulus 2πbdb times the density of
stars on the surface, which is N/(πR2):

δn = N
πR2 2πbdb = 2N

R2 b db

Result: ⟨δv⃗⊥⟩ ≡ 0
as the perturbations are randomly distributed, and will
not change the average velocity
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⟨δv2
⊥⟩ =

(2Gm

bv

)2 2Nb

R2
db = 8N

(Gm

Rv

)2 db

b
as each perturbation adds to ⟨δv2

⊥
⟩ by an equal amount

(2Gm/bv)2.
The encounters do not produce an average perpendic-
ular velocity, but they do produce an average (perpen-
dicular velocity)2. Hence, on average, the stars still
follow their average path, but they tend to “diffuse”
around it.

The total increase in rms perpendicular velocity can be
calculated by integrating over all impact parameters
from bmin to infinity:
Total rms increase:

⟨∆v2
⊥⟩=

R
∫

bmin

⟨δv2
⊥⟩ db =

R
∫

bmin

8N

(

Gm

Rv

)2

db/b =

=8N
(Gm

Rv

)2

lnΛ

with lnΛ = Coulomb logarithm = ln
R

bmin

We can rewrite this equation. Use
bmin = Gm/v2

From virial theorem
v2 = GM/R = GNm/R

Hence bmin = Gm/(GNm/R) = R/N

ln Λ = lnR/bmin = ln
R

R/N
= lnN
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Furthermore from virial theorem:

GM2

R
= Mv2 →

GM

R
= v2 →

GNm

R
= v2 → N =

v2R

Gm

so that:
⟨∆v2

⊥
⟩

v2
=

8 lnN

N

This last number is the fractional change in energy per
crossing time. Hence we need the inverse number of
crossings N/(8 lnN) to get ⟨∆v2

⊥
⟩ ∼ v2

The timescale trelax is defined as the time it takes to
deflect each star significantly by two body encounters,
and it is therefore equal to

trelax =
N

8 lnN
tc

Conclusions

• effect of point mass perturbations decreases as N
increases

• even for low N=50, ⟨∆v2
⊥
⟩/v2 = 0.6, hence deflec-

tions play a moderate role.

• for larger systems the effect of encounters become
even less important
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Notice: one derives the same equation when the exact
formulas for the encounters are used. Put in another
way, the encounters with b < bmin do not dominate.

3.8 Relaxation time for large systems

trelax =
0.1N

lnN
tc

System N tc (yr) trelax (yr)

globular cluster 105 105 2 × 108

galaxy 1011 108 1017

galaxy cluster 103 109 3 × 1010

Age of Universe ∼ Hubble time ∼ 1.5 × 1010 yr

⇒ Galaxies are collisionless systems

• motion of a star accurately described by single
particle orbit in smooth gravitational field of galaxy
• no need to solve N -body problem with N = 1011

(!)
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Homework Assignment:

1) What is the relaxation time for our solar system ac-
cording to the formula above. Why is this calculation
incorrect ?

2) Take typical sizes, velocities, number of particles for
globular clusters, galaxies, and galaxy clusters. Calcu-
late the crossing times and relaxation times.

Some more typical questions that can be asked at
exam: (not homework assignments)

What is the virial theorem ?
How can we use it to scale galaxies ?
Do galaxies have a main sequence like stars ?
How is relaxation time defined ? What is the approx-

imate expression ? What is the typical relaxation
time for a galaxy ? How does the long relaxation
time make it easier to produce models for galaxies ?


