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Galaxies: Structure, Dynamics, and Evolution

6 EC course

“Galaxies are the basic building blocks of the universe, and we use them to 
trace the evolution of the universe. Fundamental processes such as star 
formation, recycling and enrichment of gas, formation of planets etc. all 
take place in galaxies. 

The course describes the structure of the galaxies, including dark matter, 
stars, and gas as well as the large scale structure in which galaxies are 
embedded. It discusses ongoing surveys of the nearby and distant universe. 
A special focus will be on the evolution of galaxies. The course builds on the 
bachelor lecture course “Galaxies and Cosmology” (Sterrenstelsels en 
Kosmologie), and assumes that the material in this course is known to the 
student. A very brief recapitulation will be given of the most important 
material.”

(from website)



Galaxies: Structure, Dynamics, and Evolution

The approach we take in this course will be very empirical / observational. 

We find these interesting physical objects called galaxies nearby with 
observations.     In this course, we will outline their properties and try to 
explain them using various physical ideas. 

This contrasts with the approach taken in the galaxy formation course 
originally taught by Joop Schaye -- where one tries to form galaxies ab initio 
just from theory.

(from website)



Lectures

Rychard Bouwens
BW.3.44

bouwens@strw.leidenuniv.nl

Course Website:
http://www.strw.leidenuniv.nl/~bouwens/galstrdyn/

Lecture Hours:
BW.0.05

Monday 9:00-10:45

mailto:bouwens@strw.leidenuniv.nl
http://www.strw.leidenuniv.nl


Textbook?
Useful Textbooks for the course will be

“Galaxy Formation and Evolution” by Houjun Mo, Frank van 
den Bosch, and Simon White

“Galaxy Dynamics” by James Binney & Scott Tremaine

“Galactic Astronomy” by James Binney & Michael Merrifield

The textbook includes a useful discussion of the material, but the 
course will not be organized to follow the presentation in the 

book.

However, I will advise you as to where you can find the relevant 
material in the textbook.



Teaching Assistant

Wout will also be available by appointment to 
answer your questions, and he also may hold 

office hours

Wout Goesart
BW.3.21

goesaert@strw.leidenuniv.nl

Wout is pursuing a PhD thesis, with some 
guidance from Mariska Kriek, so he also has 

considerable expertise in the subject matter of 
this course.

mailto:goesaert@strw.leidenuniv.nl


Layout of the Course

Feb 2:  Course Introduction, Overview, and Galaxy Formation Basics
Feb 9:  Disk Galaxies (I)
Feb 12:  Disk Galaxies (II)
Feb 16:  Disk Galaxies (III) / Collisionless Stellar Dynamics
Feb 23:  Collisionless Stellar Dynamics + Vlasov/Jeans Equations
Feb 26:  Vlasov/Jeans Equations / Elliptical Galaxies (I)
Mar 9:  Elliptical Galaxies (II)
Mar 23:  Elliptical Galaxies (III)
Mar 30:  Dark Matter Halos
Apr 13:  Large Scale Structure
Apr 20: Galaxy Stellar Populations
Apr 23: Lessons from Large Galaxy Samples at z<0.2
May 4: Evolution of Galaxies with Redshift
May 11: Galaxy Evolution at z>1.5 / Review for Final Exam

Lectures 



Layout of the Course

Feb 19:  Board Work + Problem Set 1
Mar 12:  Board Work + Problem Set 2
Mar 26: Problem Set 3 / Paper Presentations (4 slots)
Apr 2: Paper Presentations (7 slots)
Apr 16: Problem Set 4 / Paper Presentations (4 slots)
Apr 30: Problem Set 5 / Paper Presentations (4 slots)
May 7: Problem Set 6 / Paper Presentations (4 slots) 

Practical Sessions

Exams
June 4:  Written Exam
June 26: Retake Exam



How will this class be taught?

70% Powerpoint....

30% Derivations on the blackboard...



Who am I?

My name is Rychard Bouwens
(studied in the United States: University of 

California, Berkeley & Santa Cruz)

A strong understanding of galaxies is very 
important for my research, especially leveraging 

the observations



Bouwens et al. 2011 (Nature, January 27, 2011)

Discovery of Plausible Galaxy just ~400-450 Myr  
after Big Bang

Candidate for the most distant galaxy ever 
discovered by 2011!



What Happened with That Source?

z = 11.122 According to a spectrum 
taken by JWST (390 Myr after the Big Bang)

Curtis-Lake+2023

Most Galaxy Ever Seen with HST !!!



How will you be evaluated?
Final Exam (Written) — 60%

Problem Sets — 25%
Paper Presentation — 15%



Problem Sets?
You will have ~6 problem sets.

During the practical sessions, there will be an 
opportunity to further discuss the most challenging 

problems from the sets.

Will ask you to vote on which problems you want to 
discuss in advance.

Teams of ~3-4 students will be assigned to present a 
solution to these problems in the practical sessions, 

with hints from the TA and me.



What about the Paper Presentations?
To connect with the material from the course with a more 

contemporary, in-depth analysis, part of your grade will be based on a 
10-minute presentation on manuscript from the literature.

I will provide a list of 40 papers from which to choose 
to present — which will be extensions of the material covered in 

this course.    

Depending on the paper you choose, it will be suggested that you 
give a presentations towards the mid or end point of the course.

It will be first come, first serve, for papers, so by choosing early, 
you will have more choice regarding the paper/topic to cover.
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Practical Sessions — What will we do?

* Derivations on the Blackboard (by me)

* Solutions Presented to Hardest Homework Problems 
(mostly by teams of 3-4 students chosen a week in advance)

* Paper Presentations
 (During the last 2 months of the course, there will be paper presentations 

given by a few students in each session)

The purpose of these presentations will be to show observational 
studies of galaxies has evolved over the past 10-15 years.

Your performance in presenting both papers and the solution to ~1-2 
homework problems will impact your grade.
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Who are you?

Could I see a show of hands?

Physics or Astronomy?
Master’s Student?

First or Second Year?



Please ask questions

This is *your* course.   It is your opportunity to learn.

By asking questions, you allow me to clarify issues



It is assumed that you all are familiar with the following 
material from the Bachelor course here.   

7-2-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c01-5

Background (assumed known)

Brief content of the course Galaxies and Cos-
moly (Bachelors)

1) Introduction

What is a galaxy ?
Classifications
Photometry, exponentials, r1/4 profiles, luminosity
function

2) Keeping a galaxy together: Gravity
Potentials for spherical systems

3) Galactic Dynamics
Equilibrium
collisions, Virial Theorem

4) Galactic Dynamics continued
Timescales
Orbits

5) Collisionless Boltzmann Equation
equilibrium, phase mixing
derivation of distribution function

6) Velocity Moments
Jeans equations
comparison to observations

7) Mass distribution and dark matter
Evidence for dark matter from rotation curves
Solar neighborhood, Oort limit
Elliptical galaxies and hot gas

7-2-12see http://www.strw.leidenuniv.nl/˜ franx/college/galaxies12 12-c01-6

Clusters of galaxies, the universe
Candidate dark matter particles

8) Galaxy formation
Universe expansion
Growth of galaxies by gravity
Galaxy scaling relations

9) Galaxy formation - forming the stars
Gas cooling and star formation
formation of disks
dynamical friction and mergers
tidal tails in mergers

10) Observing galaxy formation
High redshift galaxies from HST
Fair samples of galaxies at high redshift



13-9-07 see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c2-1

2 Gravitational force and potential (BT 2 -
2.1)

The matter in galaxies (whether stars, gas, dark mat-
ter, etc) is kept from escaping by gravity. Before we
study the motions of individual particles, we show how
we can calculate the gravitation force and potential
from an extended density distribution.

The gravitational force caused by a point mass M at
x⃗0 on a unit mass at position x⃗ is

F⃗ (x⃗) = GM
x⃗0 − x⃗

|x⃗0 − x⃗|3

In general, the gravitational force is related to the po-
tential Φ by

F⃗ (x⃗) = −∇⃗Φ(x⃗)

so that

Φ(x⃗) = −
GM

|x⃗0 − x⃗|

The gravitational potential for extended density dis-
tribution ρ(x⃗) can be obtained by integrating over the
density distribution

Φ(x⃗) = −G

∫∫∫

ρ(x⃗0)d3x⃗0

|x⃗0 − x⃗|

Note:
The triple integration is often expensive
Easier for special geometries, mass stratifications

13-9-07 see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c2-2

• Sphere ρ = ρ(r)

• Classical ellipsoid ρ = ρ(m2) where m2 = x2

a2 +
y2

b2 + z2

c2

• Thin disk

The density follows from the potential by Poisson’s
equation:

4πGρ(x⃗) = ∇⃗2Φ(x⃗)

The mass in some volume can easily be derived from
the force field: Integrate both sides of Poisson’s equa-
tion over the volume enclosing a total mass M.
For the left hand side we obtain:

4πG

∫

V
ρdx⃗ = 4πGM

Using the divergence theorem, we obtain for the right
hand side:

∫

V
∇2Φdx⃗ =

∫

S
∇⃗Φ · d2S

Combining left and right side gives Gauss’s theorem:

4πGM =

∫

∇⃗Φ · d2S

→the integral of the normal component of ∇⃗Φ over
any closed surface equals 4πG times the mass con-
tained within that surface

The potential energy can be shown to be:
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Generalizing



It is assumed that you all are familiar with the following 
material from the Bachelor course here.   

For a spherically symmetric distribution, the potential can be calculated much more simply. 

13-9-07 see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c2-3

W = 1/2

∫

ρ(x⃗)Φ(x⃗)dx⃗

We derive this as follows. Assume that we “build” up
the galaxy slowly. We have a galaxy with a density fρ,
with 0 < f < 1. We add a tiny bit of density δfρ,
taking the mass from infinity to the galaxy. Ignoring
the change in the potential, this costs an energy

∫

δfρ(x⃗) fΦ(x⃗)dx⃗

where fΦ is simply the potential of density fρ, and the
integral is the integral over the full galaxy volume.
We now have to add all the contributions together to
derive the full energy needed to “build” the full galaxy

W =

∫ 1

0

∫

ρ(x⃗) fΦ(x⃗)dx⃗ df

=

∫

ρ(x⃗)Φ(x⃗)dx⃗

∫ 1

0

fdf

= 1/2

∫

ρ(x⃗)Φ(x⃗)dx⃗

13-9-07 see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c2-4

3.1 Potential for spherical systems (BT 2.1,
2.2)

Newton’s Theorems:

• First Theorem:
A body inside an infinitesimally thin spherical shell
of matter experiences no net gravitational force
from that shell

Consider contributions to the force at point r⃗, due to the

matter in the shell in a very narrow cone dΩ. The intersec-

tion angles at 1 and 2, Θ1 and Θ2, are equal for infinitely

small dΩ. The relative masses in the cone δm1 and δm2 sat-

isfy δm1/δm2 = (r1/r2)2. The gravitational forces are
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matter in the shell in a very narrow cone dΩ. The intersec-

tion angles at 1 and 2, Θ1 and Θ2, are equal for infinitely

small dΩ. The relative masses in the cone δm1 and δm2 sat-
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Newton’s First Theorem

Why?   Looking at the forces on a particle inside the 
sphere from the mass on the shell over the solid angle 

dΩ in either direction.   

F1 = Gmσr12 / r12

F2 = Gmσr22 / r22

We see that F1 = F2, so the force from the mass 
in the shell at either end of the sphere offset 

each other perfectly.
No net gravitational 
forces inside sphere Given the lack of force, the gravitational potential is 

constant and for the center, Φ = −GM/R,
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proportional to δm1/r2
1 and δm2/r2

2 , and therefore equal,

but of opposite sign. Hence the matter in the cone does not

contribute any net force at the location r⃗. If we sum over all

cones, we find no net force !

• Newton’s Second Theorem:
The gravitational force on a body outside a closed
spherical shell of matter is the same as it would be
if all the shell’s matter were concentrated into a
point at its center.

Calculate the potential at point p⃗ at radius r from the center

of an infinitesimally thin shell with mass M and radius a. Con-

sider the contribution from the portion of the sphere with solid

angle δΩ at q′:

δΦ1 = −
GM

|p⃗ − q⃗′|
δΩ

4π

Now take an infinitesimally thin shell with the same mass M,

but radius r. Scale p⃗ down to p⃗′ , so that it lies at a radius a
inside the shell. Scale q⃗′ up, so that it lies on the shell. Calcu-

late the potential at p⃗′. The contribution of the matter near q⃗

13-9-07 see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c2-6

with the same solid angle δΩ is:

δΦ2 = −
GM

|p⃗′ − q⃗|
δΩ

4π

Since |p⃗ − q⃗′| = |p⃗′ − q⃗| , δΦ1 = δΦ2. Sum over all solid

angles to obtain

Φ1 = Φ2

Since Φ2 is the potential inside a sphere with mass M and

radius r, it is equal to Φ2 = −GM/r, and this is equal to

Φ1. This is the same as the potential at r if all the mass is

concentrated at the center.

We can now calculate potential of spherical system
with density ρ(r). Divide system up into shells, and
add contribution from each shell. Distinguish between
shells with radius r′ , r′ < r and shells with r′ > r:
r′ < r : δΦ = −GδM/r,
r′ > r : δΦ = −GδM/r′.

Hence total potential:

Φ = −4πG

[

1

r

∫ r

0

ρ(r′)r′2dr′ +

∫ ∞

r
ρ(r′)r′dr′

]

.

Hence only single integration ! The force on the unit
mass at radius r is determined by mass interior to r:

F⃗ (r) = −
dΦ

dr
e⃗r = −

GM(r)

r2
e⃗r,

where
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spherical shell of matter is the same as it would be
if all the shell’s matter were concentrated into a
point at its center.

Calculate the potential at point p⃗ at radius r from the center

of an infinitesimally thin shell with mass M and radius a. Con-

sider the contribution from the portion of the sphere with solid

angle δΩ at q′:

δΦ1 = −
GM

|p⃗ − q⃗′|
δΩ

4π

Now take an infinitesimally thin shell with the same mass M,

but radius r. Scale p⃗ down to p⃗′ , so that it lies at a radius a
inside the shell. Scale q⃗′ up, so that it lies on the shell. Calcu-

late the potential at p⃗′. The contribution of the matter near q⃗
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with the same solid angle δΩ is:

δΦ2 = −
GM

|p⃗′ − q⃗|
δΩ

4π

Since |p⃗ − q⃗′| = |p⃗′ − q⃗| , δΦ1 = δΦ2. Sum over all solid

angles to obtain

Φ1 = Φ2

Since Φ2 is the potential inside a sphere with mass M and

radius r, it is equal to Φ2 = −GM/r, and this is equal to

Φ1. This is the same as the potential at r if all the mass is

concentrated at the center.

We can now calculate potential of spherical system
with density ρ(r). Divide system up into shells, and
add contribution from each shell. Distinguish between
shells with radius r′ , r′ < r and shells with r′ > r:
r′ < r : δΦ = −GδM/r,
r′ > r : δΦ = −GδM/r′.

Hence total potential:

Φ = −4πG

[

1

r

∫ r

0

ρ(r′)r′2dr′ +

∫ ∞

r
ρ(r′)r′dr′

]

.

Hence only single integration ! The force on the unit
mass at radius r is determined by mass interior to r:

F⃗ (r) = −
dΦ

dr
e⃗r = −

GM(r)

r2
e⃗r,

where

Given Newton’s theorems, it is very easy to calculate the potential 
for a mass with spherical symmetry.

In calculating the potential at a given point in space from a spherical mass, one must 
distinguish the mass in shells at radii greater than the given point in space.

1) For mass in shells at smaller radius r (than radius r’ where the potential is being 
evaluated), treat the mass as if it were concentrated at the center of the sphere

2) For mass in shells at larger radius (than radius r’ where the potential is being evaluated), 
treat the mass as if it were concentrated at the center of the sphere but viewed from a 

distance r’ the radius of the shell.

It is assumed that you all are familiar with the following 
material from the Bachelor course here.   



Galaxies have many different morphologies



Think for a moment about what 
complex entities galaxies are:

Sombrero Galaxy
 Messier104

Elliptical Galaxy
 ESO 325-G004Whirlpool Galaxy

 Messier51

Note:
(1) the remarkable spiral structure.

(2) prominent nucleus



Think for a moment about what 
complex entities galaxies are:

Sombrero Galaxy
 Messier104

Whirlpool Galaxy
 Messier51

Elliptical Galaxy
 ESO 325-G004

Note:
(1) how homogeneous this galaxy 

looks



Think for a moment about what 
complex entities galaxies are:

Whirlpool Galaxy
 Messier51

Elliptical Galaxy
 ESO 325-G004

Sombrero Galaxy
 Messier104

Note:
(1) the faint disk for this mostly spherical 

galaxy
(2) notice the dark band (dust lane)



To illustrate how differently a galaxy can look on different 
scales, note these are different views of the same galaxy!



Galaxies have many different morphologies

In this course, we will focus on many of these mechanisms, 
as we aim to understand galaxy formation and evolution.

Not surprisingly, these different morphologies reflect 
different formation mechanisms.



Layout of the Course

Feb 2:  Course Introduction, Overview, and Galaxy Formation Basics
Feb 9:  Disk Galaxies (I)
Feb 12:  Disk Galaxies (II) — shorter class
Feb 16:  Disk Galaxies (III)
Feb 23:  Collisionless Stellar Dynamics
Feb 26:  Vlasov/Jeans Equations
Mar 9:  Elliptical Galaxies (I)
Mar 23:  Elliptical Galaxies (II)
Mar 30:  Elliptical Galaxies (III) / Dark Matter Halos
Apr 13:  Large Scale Structure
Apr 20: Galaxy Stellar Populations
Apr 27: Lessons from Large Galaxy Samples at z<0.2
May 4: Evolution of Galaxies with Redshift
May 11: Galaxy Evolution at z>1.5 / Review for Final Exam

Lectures 



Galaxy Formation:  Major Steps

Virialized 
Overdensity

Gravitational 
Collapse

Overdense 
Region
In Early

Universe

Disk Galaxy 
(Supported by Angular 

Momentum)

Gas 
Cooling

Spheroid Galaxy 
(Random Motion 

Supported)

Merger
Violent 

Relaxation
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The universe is not so smooth today (galaxies, galaxy 
clusters)...

From the cosmic microwave background, we can see 
that the universe is exceedingly uniform at early times 

(fluctuations ~ 10−5) 

Galaxies form by gravitational forces through the 
growth of small overdensities in early universe...

FIRST STEP:  Gravitational Collapse

Galaxy formation is driven by the impact of gravity in 
forming collapsed, virtualized halos, consistently primarily 

of dark matter.



Galaxy formation is driven by the impact of gravity in forming 
collapsed, virtualized halos, consistently primarily of dark matter.

FIRST STEP:  Gravitational Collapse



Let us first consider the expansion of the universe as a whole...   Let us 
consider a small region of the universe which we will assume to spherically 

symmetric.    Let us assume this region has mass M and radius r.

FIRST STEP:  Gravitational Collapse

r

Space



Let us first consider the expansion of the universe as a whole...   Let us 
consider a small region of the universe which we will assume to spherically 

symmetric.    Let us assume this region has mass M and radius r.
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HOW DO GALAXIES FORM ?

We know that

• Universe was very smooth at z=1000 from the
Cosmic Background Radiation (fluctuations ∝

10−5)

• Universe is not so smooth now: galaxies, clusters,
large scale structure

Where does this come from ?

SIMPLEST HYPOTHESIS:

gravitational collapse of very small density en-
hancements
• We start with a homogeneous universe, with a

very small section at slightly higher density
• we notice that the relative density contrast

δ = δρ/ρ grows with time.
this is easy to derive using simple equations, and
we will show this below
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The expanding universe

it is observed that the universe expands

• nearby: v = H0D
• v=velocity , D = distance, H0= 100 h km/s/Mpc

h=0.73 ± 0.03

What are the equations of motion ?

• The complete answer follows from General Relativ-
ity

• the correct answer can also be derived from basic,
Newtonian physics

Consider a homogeneous sphere, with density ρ, and
uniformly expanding

Consider the force on a shell of the sphere, at radius r,
and velocity ṙ:

r̈ = −
GM(< r)

r2

As the sphere expands, the mass is conserved. Multiply
both sides with ṙ

ṙr̈ = −
GMṙ

r2

Integrate once:

The acceleration the outer shell of this spherical region will feel can be 
described by the following equation:

Multiplying both sides of the equation by dr/dt and then integrating both sides 
of the equation:
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1
2 (ṙ)2 =

GM

r
+ c

The terms here can be easily identified: on the left is
the kinetic energy, on the right is the gravitational
energy, and the integration constant. The total en-
ergy is given by

E = 1
2 (ṙ)2 −

GM

r
= c

Now write M = 4
3πr3ρ

1
2 (ṙ)2 =

G 4
3πr3ρ

r
+ c

= G 4
3πρr2 + c

(

ṙ

r

)2

= 8
3πGρ +

c

r2

This is the final equation of motion. Remember, how-
ever, that ρ is not a constant, it varies like ∝ r−3

The left term is special, since it is equal to H, the
Hubble “constant”. The consequence is, that the
hubble constant is not constant !
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Universe models

Notice that E is the energy of the sphere, normalized
to r = ∞. The value of E will determine the evolu-
tion of the sphere. The equations above imply that

E = c

We have different types of models:

• E = c = 0. The total energy is zero. The gravita-
tional and kinetic energy compensate each other.
The expansion halts at t = ∞. Require that
r = tα, we find for α: α = 2/3. Hence, the
solution is r = t2/3

• E = c < 0 Gravitational energy dominates. The
universe will halt, and collapse again !

• E = c > 0 Kinetic energy dominates. The universe
will keep expanding. Gravitational energy will be-
come less and less important, and at some phase
expansion will be at a constant rate.

We can rewrite the Energy criterium as a density cri-
terium. If c = E = 0, we define a critical density ρc
from the last equation:

H2 = 8
3πGρc

which can be rewritten as

FIRST STEP:  Gravitational Collapse



We can manipulate this to derive the energy E of the sphere which will 
determine its long term evolution:
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1
2 (ṙ)2 =

GM

r
+ c

The terms here can be easily identified: on the left is
the kinetic energy, on the right is the gravitational
energy, and the integration constant. The total en-
ergy is given by

E = 1
2 (ṙ)2 −

GM

r
= c

Now write M = 4
3πr3ρ

1
2 (ṙ)2 =

G 4
3πr3ρ

r
+ c

= G 4
3πρr2 + c

(

ṙ

r

)2

= 8
3πGρ +

c

r2

This is the final equation of motion. Remember, how-
ever, that ρ is not a constant, it varies like ∝ r−3

The left term is special, since it is equal to H, the
Hubble “constant”. The consequence is, that the
hubble constant is not constant !
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Universe models

Notice that E is the energy of the sphere, normalized
to r = ∞. The value of E will determine the evolu-
tion of the sphere. The equations above imply that

E = c

We have different types of models:

• E = c = 0. The total energy is zero. The gravita-
tional and kinetic energy compensate each other.
The expansion halts at t = ∞. Require that
r = tα, we find for α: α = 2/3. Hence, the
solution is r = t2/3

• E = c < 0 Gravitational energy dominates. The
universe will halt, and collapse again !

• E = c > 0 Kinetic energy dominates. The universe
will keep expanding. Gravitational energy will be-
come less and less important, and at some phase
expansion will be at a constant rate.

We can rewrite the Energy criterium as a density cri-
terium. If c = E = 0, we define a critical density ρc
from the last equation:

H2 = 8
3πGρc

which can be rewritten as

If E < 0, the sphere will eventually collapse.

If E >= 0, the sphere will expand forever.

For energy E = 0, the density of the sphere can be said to have a critical 
density, since any lower density would result in an eventual collapse.

FIRST STEP:  Gravitational Collapse



Inserting M = ρ(4π/3)r3 into this equation, one can easily show that
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1
2 (ṙ)2 =

GM

r
+ c

The terms here can be easily identified: on the left is
the kinetic energy, on the right is the gravitational
energy, and the integration constant. The total en-
ergy is given by

E = 1
2 (ṙ)2 −

GM

r
= c

Now write M = 4
3πr3ρ

1
2 (ṙ)2 =

G 4
3πr3ρ

r
+ c

= G 4
3πρr2 + c

(

ṙ

r

)2

= 8
3πGρ +

c

r2

This is the final equation of motion. Remember, how-
ever, that ρ is not a constant, it varies like ∝ r−3

The left term is special, since it is equal to H, the
Hubble “constant”. The consequence is, that the
hubble constant is not constant !
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Universe models

Notice that E is the energy of the sphere, normalized
to r = ∞. The value of E will determine the evolu-
tion of the sphere. The equations above imply that

E = c

We have different types of models:

• E = c = 0. The total energy is zero. The gravita-
tional and kinetic energy compensate each other.
The expansion halts at t = ∞. Require that
r = tα, we find for α: α = 2/3. Hence, the
solution is r = t2/3

• E = c < 0 Gravitational energy dominates. The
universe will halt, and collapse again !

• E = c > 0 Kinetic energy dominates. The universe
will keep expanding. Gravitational energy will be-
come less and less important, and at some phase
expansion will be at a constant rate.

We can rewrite the Energy criterium as a density cri-
terium. If c = E = 0, we define a critical density ρc
from the last equation:

H2 = 8
3πGρc

which can be rewritten as

What is this critical density ρc?

0

H2  

(Hubble constant 
squared)
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ρc =
H2

8
3πG

=
3H2

8πG

This density has the property that it would halt the
expansion at infinity.

The true density of the universe is usually expressed as
Ω

Ω = ρ/ρc =
8πGρ

3H2

If Ω = 1, then the expansion stops at infinity. If Ω <
1, the expansion continues forever. If Ω > 1, the
expansion halts and reverses.

Looking back in time

The remarkable thing is, that as the universe expands,
the photon “expands” as well.

first consider objects close to each other

v = H0D

where D is the distance between the 2 objects.
Hence the light will be shifted in wavelength by (simple

Doppler)

δλ

λ
=

v

c
=

H0D

c

But now compare this to the expansion of the universe
in the time it took for the photon to travel from the
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moment of emission temit to the moment of detection
tobs

δD = vexpand × (temit − tobs)

= H0 × D × (temit − tobs)

It follows what

δD

D
= H0 × (temit − tobs)

But since (temit − tobs) = D
c

δD

D
=

H0 × D

c

and we obtain

δλ

λ
=

δD

D

Hence the wavelength of the photons expand like the
distance between objects ! In short

λ ∝ r

where r is the radius which we introduced earlier. This
leads us to introduce the “redshift” z:

1 + z =
λ(observed)

λ(emitted)
=

r(t(observed))

r(t(emitted))

The redshift is easily measured for galaxies from emis-
sion lines, absorption lines, etc. For nearby galaxies

v = cz

Then…

FIRST STEP:  Gravitational Collapse

c = 0 is the dividing line 
between collapse and 

expanding forever



The Extragalactic Distance Scale
In 1929, Hubble showed that the velocities and distances are linearly 

correlated, and satisfy

v = H0 d

where v is the recessional velocity (km/s) and d is the distance (Mpc).  H0 is a 
constant, “Hubble’s Constant” and has units of km s-1  Mpc-1.

Tuesday, March 9, 2010

The expansion rate of the universe

“apparent Doppler 
shift” (from emission 
or absorption lines 

in spectra)

(from Cepheids / other 
things in Distance Ladder)



Actual density of the universe is often expressed in relation to this critical 
density as Ω:
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ρc =
H2

8
3πG

=
3H2

8πG

This density has the property that it would halt the
expansion at infinity.

The true density of the universe is usually expressed as
Ω

Ω = ρ/ρc =
8πGρ

3H2

If Ω = 1, then the expansion stops at infinity. If Ω <
1, the expansion continues forever. If Ω > 1, the
expansion halts and reverses.

Looking back in time

The remarkable thing is, that as the universe expands,
the photon “expands” as well.

first consider objects close to each other

v = H0D

where D is the distance between the 2 objects.
Hence the light will be shifted in wavelength by (simple

Doppler)

δλ

λ
=

v

c
=

H0D

c

But now compare this to the expansion of the universe
in the time it took for the photon to travel from the
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moment of emission temit to the moment of detection
tobs

δD = vexpand × (temit − tobs)

= H0 × D × (temit − tobs)

It follows what

δD

D
= H0 × (temit − tobs)

But since (temit − tobs) = D
c

δD

D
=

H0 × D

c

and we obtain

δλ

λ
=

δD

D

Hence the wavelength of the photons expand like the
distance between objects ! In short

λ ∝ r

where r is the radius which we introduced earlier. This
leads us to introduce the “redshift” z:

1 + z =
λ(observed)

λ(emitted)
=

r(t(observed))

r(t(emitted))

The redshift is easily measured for galaxies from emis-
sion lines, absorption lines, etc. For nearby galaxies

v = cz

How does Ω evolve with redshift?   

We can manipulate previous expressions such that
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How does Ω evolve with redshift ?

Take the equation

(

ṙ

r

)2

= 8
3πGρ +

c

r2

• if Ω = 1, the total energy is zero, and remains zero
- hence Ω remains 1

• if Ω < 1, the energy was defined as:

E = c = 1
2 (ṙ)2 −

GM

r

and ṙ increases at increasing redshift (i.e., decreases
with increasing time). Since

Ω =
8πGρ

3H2

we can rewrite the energy equation

E

r2
= 1

2

(

ṙ

r

)2

−
G 4

3πρr3

r3

= 1
2 (H2 − 8

3πGρ)
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Now devide both sides by 4/3πGρ:

3E

4πGρr2
=

3H2

8πGρ
− 1

or

3E

4πG

1

ρr2
=

1

Ω
− 1

Now we know that ρ ∝ r−3, hence ρr2 ∝ r−1 ∝ 1 + z
In short, the left term is proportional to 1/(1 + z),
and gets smaller and smaller with increasing redshift
z. Hence the term on the right also gets smaller as
1/(1 + z). Now write Ω = 1 + δΩ. Hence

1

Ω
− 1 = −δΩ

And since 1
Ω − 1 evolves like (1/(1 + z))

δΩ ∝ 1/(1 + z)

Hence, with increasing redshift, Ω gets closer and closer
to 1
As a consequence, Ω was very, very close to 1 at
high redshifts, independent of the current value !

How do we now form a galaxy ?

Answer: look back in the distant past (very high red-
shift). Ω was very close to 1 at that time. Assume
that in some volume, the density ρ was enhanced
by a minute fraction δρ. Since Ω was almost 1 ,
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How does Ω evolve with redshift ?

Take the equation
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ṙ
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3πGρ +
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• if Ω = 1, the total energy is zero, and remains zero
- hence Ω remains 1

• if Ω < 1, the energy was defined as:
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2 (ṙ)2 −

GM

r

and ṙ increases at increasing redshift (i.e., decreases
with increasing time). Since

Ω =
8πGρ

3H2

we can rewrite the energy equation
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ṙ

r
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−
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3πρr3
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= 1
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Now devide both sides by 4/3πGρ:

3E

4πGρr2
=

3H2

8πGρ
− 1

or

3E

4πG

1

ρr2
=

1

Ω
− 1

Now we know that ρ ∝ r−3, hence ρr2 ∝ r−1 ∝ 1 + z
In short, the left term is proportional to 1/(1 + z),
and gets smaller and smaller with increasing redshift
z. Hence the term on the right also gets smaller as
1/(1 + z). Now write Ω = 1 + δΩ. Hence

1

Ω
− 1 = −δΩ

And since 1
Ω − 1 evolves like (1/(1 + z))

δΩ ∝ 1/(1 + z)

Hence, with increasing redshift, Ω gets closer and closer
to 1
As a consequence, Ω was very, very close to 1 at
high redshifts, independent of the current value !

How do we now form a galaxy ?

Answer: look back in the distant past (very high red-
shift). Ω was very close to 1 at that time. Assume
that in some volume, the density ρ was enhanced
by a minute fraction δρ. Since Ω was almost 1 ,

FIRST STEP:  Gravitational Collapse



Let us first consider the expansion of the universe as a whole...   Let us 
consider a small region of the universe which we will assume to spherically 

symmetric.    Let us assume this region has mass M and radius r.

FIRST STEP:  Gravitational Collapse

r

Cosmic Time

λobs proportional to r (scale factor of universe)

r = r0

Today

r
(0.5r0)

z=1

λobs = λrest (1+z)

r/r0 = 1/(1+z)



Actual density of the universe is often expressed in relation to this critical 
density as Ω:
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ρc =
H2

8
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=
3H2
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This density has the property that it would halt the
expansion at infinity.

The true density of the universe is usually expressed as
Ω

Ω = ρ/ρc =
8πGρ

3H2

If Ω = 1, then the expansion stops at infinity. If Ω <
1, the expansion continues forever. If Ω > 1, the
expansion halts and reverses.

Looking back in time

The remarkable thing is, that as the universe expands,
the photon “expands” as well.

first consider objects close to each other

v = H0D

where D is the distance between the 2 objects.
Hence the light will be shifted in wavelength by (simple

Doppler)
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=

v

c
=

H0D

c

But now compare this to the expansion of the universe
in the time it took for the photon to travel from the
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tobs
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where r is the radius which we introduced earlier. This
leads us to introduce the “redshift” z:
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=
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r(t(emitted))

The redshift is easily measured for galaxies from emis-
sion lines, absorption lines, etc. For nearby galaxies
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We can manipulate previous expressions such that
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• if Ω = 1, the total energy is zero, and remains zero
- hence Ω remains 1

• if Ω < 1, the energy was defined as:

E = c = 1
2 (ṙ)2 −

GM

r

and ṙ increases at increasing redshift (i.e., decreases
with increasing time). Since

Ω =
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Now devide both sides by 4/3πGρ:

3E

4πGρr2
=

3H2

8πGρ
− 1

or

3E

4πG

1

ρr2
=

1

Ω
− 1

Now we know that ρ ∝ r−3, hence ρr2 ∝ r−1 ∝ 1 + z
In short, the left term is proportional to 1/(1 + z),
and gets smaller and smaller with increasing redshift
z. Hence the term on the right also gets smaller as
1/(1 + z). Now write Ω = 1 + δΩ. Hence

1

Ω
− 1 = −δΩ

And since 1
Ω − 1 evolves like (1/(1 + z))

δΩ ∝ 1/(1 + z)

Hence, with increasing redshift, Ω gets closer and closer
to 1
As a consequence, Ω was very, very close to 1 at
high redshifts, independent of the current value !

How do we now form a galaxy ?

Answer: look back in the distant past (very high red-
shift). Ω was very close to 1 at that time. Assume
that in some volume, the density ρ was enhanced
by a minute fraction δρ. Since Ω was almost 1 ,
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Note that 1/ρr2  =  r3/(r2ρ0) = r/ρ0 = 1/(1+z)/ρ0
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FIRST STEP:  Gravitational Collapse
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the smallest δρ is high enough to push the local Ω
above 1. This local volume has Ω higher than 1, and
the total energy is lower than 0. In short, it will not
keep expanding like the rest would (if, e.g., Ω ≤ 1).
Hence it will collapse at some time, and will form a
galaxy. Or a cluster...
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Evolution of a overdense region

Ω will be close to 1 in the distant past of our universe,
independent of the current value. This is put graphi-
cally below
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Now, take the universe at a nominal redshift of say,
z = 106. We know that Ω is very close to 1. As-
sume that for some reason or another, density fluctu-
ations are present in this universe:

δ = ρ/ρ̄ − 1

where ρ̄ is the mean density of the universe at that
epoch, which we take to be the critical density.

We now wish to understand how a overdensity δ > 0
evolves with time.

It turns out that the overdensity grows with expansion
like

The above equation implies that Ω reverts to 1 at early times....

Independent of its current value, Ω is very close to 1 at early times!

FIRST STEP:  Gravitational Collapse



Due to the proximity of Ω to 1 at early times, a small amount of extra matter 
could cause various regions of the universe to have a density ρ > ρc

How would spherically symmetric regions of the universe at supercritical 
density ρ > ρc evolve?
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δ ∝ r ∝ t2/3

We can prove this by considering a homogeneous sphere
at z = 106 with overdensity δ. The sphere is embed-
ded in a Ω = 1 universe.

The particles in the sphere do not feel anything from
the outside universe. Hence the sphere will evolve
like it is a “separate universe”, with Ω = (1 + δ).
Since a universe with Ω > 1 will collapse at some
time, the sphere will collapse at some time tcollapse.
Before that, the density of the sphere will evolve like

1

Ω(t)
− 1 =

1
Ω0

− 1

1 + z(t)
=

1
Ω0

− 1

1/r(t)
= (

1

Ω0
− 1)r(t)

where r is the “radius” of the universe (expansion pa-
rameter). Take at z = 106 : Ω0 = 1 + δ0, then we
find

1

Ω0
− 1 =

1

1 + δ0
− 1 = 1 − δ0 − 1 = −δ0
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Hence, the equation results into

δ(t) = δ0 ×
r(t)

r0
= δ0 ∗

(

t

t0

)2/3

Hence, the density contrast of the sphere increases lin-
early with expansion radius. As a result, if a fluctua-
tion was present of 10−6 at z = 106, it would have
grown to a fluctuation of δ = 1 at z = 0 under its
own gravity.

This mechanism is the basic mechanism to
form galaxies

In detail, what happens is the following:

The sphere will collapse, and start oscillating (if we ig-
nore the material just outside of the sphere). In reality,
the sphere will have internal density fluctuations, and it
will settle to an equilibrium structure, with a radius of
about half the “maximum expansion ” radius.

δ  = ρ/ρc − 1

δ = Overdensity 
relative to critical...

Because of spherical symmetries, can analyze force on outside of spherically 
symmetric region using only mass internal to it.

Can analyze the evolution of this region of the universe as if it were a 
“separate universe” with its own Ω.   If Ω for this region is > 1, then the 

region will eventually collapse.

FIRST STEP:  Gravitational Collapse
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and ṙ increases at increasing redshift (i.e., decreases
with increasing time). Since

Ω =
8πGρ

3H2

we can rewrite the energy equation

E

r2
= 1

2

(

ṙ
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As a consequence, Ω was very, very close to 1 at
high redshifts, independent of the current value !

How do we now form a galaxy ?

Answer: look back in the distant past (very high red-
shift). Ω was very close to 1 at that time. Assume
that in some volume, the density ρ was enhanced
by a minute fraction δρ. Since Ω was almost 1 ,

= const/(1+z)

The time evolution of the effective Ω in the overdense sphere should evolve 
as we previously found:

Substituting Ω = 1 + δ, we find that 

δ = const / (1+z) = const (t / t0)2/3

This is known as the spherical collapse model!
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δ ∝ r ∝ t2/3

We can prove this by considering a homogeneous sphere
at z = 106 with overdensity δ. The sphere is embed-
ded in a Ω = 1 universe.

The particles in the sphere do not feel anything from
the outside universe. Hence the sphere will evolve
like it is a “separate universe”, with Ω = (1 + δ).
Since a universe with Ω > 1 will collapse at some
time, the sphere will collapse at some time tcollapse.
Before that, the density of the sphere will evolve like
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where r is the “radius” of the universe (expansion pa-
rameter). Take at z = 106 : Ω0 = 1 + δ0, then we
find
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Hence, the equation results into

δ(t) = δ0 ×
r(t)

r0
= δ0 ∗

(

t

t0

)2/3

Hence, the density contrast of the sphere increases lin-
early with expansion radius. As a result, if a fluctua-
tion was present of 10−6 at z = 106, it would have
grown to a fluctuation of δ = 1 at z = 0 under its
own gravity.

This mechanism is the basic mechanism to
form galaxies

In detail, what happens is the following:

The sphere will collapse, and start oscillating (if we ig-
nore the material just outside of the sphere). In reality,
the sphere will have internal density fluctuations, and it
will settle to an equilibrium structure, with a radius of
about half the “maximum expansion ” radius.

The expected time evolution of the collapsed sphere is as follows:

FIRST STEP:  Gravitational Collapse



Substituting r = A(1-cos θ), t = B(θ - sin θ) in the differential equation for the 
outer spherical shell, i.e., 

FIRST STEP:  Gravitational Collapse
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HOW DO GALAXIES FORM ?

We know that

• Universe was very smooth at z=1000 from the
Cosmic Background Radiation (fluctuations ∝

10−5)

• Universe is not so smooth now: galaxies, clusters,
large scale structure

Where does this come from ?

SIMPLEST HYPOTHESIS:

gravitational collapse of very small density en-
hancements
• We start with a homogeneous universe, with a

very small section at slightly higher density
• we notice that the relative density contrast

δ = δρ/ρ grows with time.
this is easy to derive using simple equations, and
we will show this below
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The expanding universe

it is observed that the universe expands

• nearby: v = H0D
• v=velocity , D = distance, H0= 100 h km/s/Mpc

h=0.73 ± 0.03

What are the equations of motion ?

• The complete answer follows from General Relativ-
ity

• the correct answer can also be derived from basic,
Newtonian physics

Consider a homogeneous sphere, with density ρ, and
uniformly expanding

Consider the force on a shell of the sphere, at radius r,
and velocity ṙ:

r̈ = −
GM(< r)

r2

As the sphere expands, the mass is conserved. Multiply
both sides with ṙ

ṙr̈ = −
GMṙ

r2

Integrate once:
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This radius is often called the “virialization radius” ,
rvir. The sphere will obtain this radius at the first col-
lapse time, which is also called the “virialization time”
(or “formation time”)
By comparing the maximum expansion radius of the
sphere to the “normal expansion” radius of the uni-
verse (with Ω = 1) at the virialization time, we can
derive:

rmax =
1

1
4 (12π)2/3

rΩ=1(tcollapse) (≈ 0.36rΩ=1(tcollapse))

This is derived using analytical solutions for the expan-
sion of the universe. Since rvir = 1/2rmax

rvir =
1

1
2 (12π)2/3

rΩ=1

The relative density of the sphere, compared to the
rest of the universe, is simply given by the ratio
(rΩ=1/rvir)3, since the mass of the sphere is con-
served, but the density is increased compared to the
Ω = 1 universe since the mass is put in a smaller den-
sity structure.
Hence

ρvir

ρ(universe)(z = zvir)
= (rΩ=1/rvir)

3

= (1/2(12π)2/3)3 = 18π2 = 178

This makes a very specific prediction for the density of
objects (galaxies, clusters, etc : If a galaxy forms at a
redshift zform, it will have a density which is 178 times
higher the density of the universe at zform.
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After the galaxy has formed, it will remain the same,
whereas the universe will keep expanding. Hence, the
density contrast will increase with time

ρvir

ρ(universe)
= 178 ∗ (r/rform)3

= 178 ∗ ((1 + zform)/(1 + z))3 = 178 ∗ (t/tform)2

This can be used as a simple recipe: we now measure
that galaxies have an overdensity of about 105 inside
the optical radius. This part would be formed at a
redshift of

(1 + zform) = (105/178)1/3 = 8

The galaxy is much bigger, however, than the optical
radius. The halo has a density profile which goes like
ρ ∝ r−2. The average density goes down like r−2, and
the density contrast will be a lot smaller if we take the
halo into account. If we assume that the halo extends
to 100 kpc (10 times further), the density will be lower
by a factor of 100, and the formation redshift will be

(1 + zform) = (103/178)1/3 = 1.8

Hence, the fact galaxies have halos has a very impor-
tant consequence for galaxy formation: it makes them
bigger, have lower mean density, and thereby form
much later !
At maximum expansion, the region has an overdensity
of about 5, this increases very rapidly to 178 in the
next half of the total collapse time.
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Since a universe with Ω > 1 will collapse at some
time, the sphere will collapse at some time tcollapse.
Before that, the density of the sphere will evolve like

1

Ω(t)
− 1 =

1
Ω0

− 1

1 + z(t)
=

1
Ω0

− 1

1/r(t)
= (

1

Ω0
− 1)r(t)

where r is the “radius” of the universe (expansion pa-
rameter). Take at z = 106 : Ω0 = 1 + δ0, then we
find

1

Ω0
− 1 =

1

1 + δ0
− 1 = 1 − δ0 − 1 = −δ0
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Hence, the equation results into

δ(t) = δ0 ×
r(t)

r0
= δ0 ∗

(

t

t0

)2/3

Hence, the density contrast of the sphere increases lin-
early with expansion radius. As a result, if a fluctua-
tion was present of 10−6 at z = 106, it would have
grown to a fluctuation of δ = 1 at z = 0 under its
own gravity.

This mechanism is the basic mechanism to
form galaxies

In detail, what happens is the following:

The sphere will collapse, and start oscillating (if we ig-
nore the material just outside of the sphere). In reality,
the sphere will have internal density fluctuations, and it
will settle to an equilibrium structure, with a radius of
about half the “maximum expansion ” radius.

rmax rvir
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This radius is often called the “virialization radius” ,
rvir. The sphere will obtain this radius at the first col-
lapse time, which is also called the “virialization time”
(or “formation time”)
By comparing the maximum expansion radius of the
sphere to the “normal expansion” radius of the uni-
verse (with Ω = 1) at the virialization time, we can
derive:

rmax =
1

1
4 (12π)2/3

rΩ=1(tcollapse) (≈ 0.36rΩ=1(tcollapse))

This is derived using analytical solutions for the expan-
sion of the universe. Since rvir = 1/2rmax

rvir =
1

1
2 (12π)2/3

rΩ=1

The relative density of the sphere, compared to the
rest of the universe, is simply given by the ratio
(rΩ=1/rvir)3, since the mass of the sphere is con-
served, but the density is increased compared to the
Ω = 1 universe since the mass is put in a smaller den-
sity structure.
Hence

ρvir

ρ(universe)(z = zvir)
= (rΩ=1/rvir)

3

= (1/2(12π)2/3)3 = 18π2 = 178

This makes a very specific prediction for the density of
objects (galaxies, clusters, etc : If a galaxy forms at a
redshift zform, it will have a density which is 178 times
higher the density of the universe at zform.
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After the galaxy has formed, it will remain the same,
whereas the universe will keep expanding. Hence, the
density contrast will increase with time

ρvir

ρ(universe)
= 178 ∗ (r/rform)3

= 178 ∗ ((1 + zform)/(1 + z))3 = 178 ∗ (t/tform)2

This can be used as a simple recipe: we now measure
that galaxies have an overdensity of about 105 inside
the optical radius. This part would be formed at a
redshift of

(1 + zform) = (105/178)1/3 = 8

The galaxy is much bigger, however, than the optical
radius. The halo has a density profile which goes like
ρ ∝ r−2. The average density goes down like r−2, and
the density contrast will be a lot smaller if we take the
halo into account. If we assume that the halo extends
to 100 kpc (10 times further), the density will be lower
by a factor of 100, and the formation redshift will be

(1 + zform) = (103/178)1/3 = 1.8

Hence, the fact galaxies have halos has a very impor-
tant consequence for galaxy formation: it makes them
bigger, have lower mean density, and thereby form
much later !
At maximum expansion, the region has an overdensity
of about 5, this increases very rapidly to 178 in the
next half of the total collapse time.



FIRST STEP:  Gravitational Collapse

Of course, there exist 
overdensities on a wide variety 
of scales and masses, each of 
which can collapse and form 
virtualized objects.

Halo Mass Function

One can quantify the density 
of these collapsed halos on 
different mass scales with the 
halo mass function

But on which scales do these 
halos turn into galaxies?



m*= am m
v* = av v

x* (t*) = ax x(at t)

We will consider the substitutions:

“new” “existing”

In a system where gravity is the only important force:

F = m d2x/dt2  = Σi Gmmi / (x - xi)2

Given that the equations of motions for self-gravitating systems are 
simple and can be scaled by an arbitrary factor, gravity itself cannot 

set a scale for galaxy formation.



F = m d2x/dt2  = Σi Gmmi / (x - xi)2

am ax  at2 (m d2x/dt2) = am2 ax-2 (Σi Gmmi / (x - xi)2)
am ax  at2 (Σi Gmmi / (x - xi)2) = am2 ax-2 (Σi Gmmi / (x - xi)2)

am ax  at2 = am2 ax-2 

ax3  at2 = am

v* = dx*/dt = d(axx(at t))/dt = axat dx(at t)/dt
avv = axat dx(at t)/dt

avv = axat v
av = axat 

This means it is always possible to scale the masses, spatial 
positions, and velocities of particles in a system and have it behave 

in the same manner

ax3  at2 = am

av/ax = at 

ax3 (av/ax)2 = am
ax av2 = am



FIRST STEP:  Gravitational Collapse

Halo Mass Function

Of course, there exist 
overdensities on a wide variety 
of scales and masses, each of 
which can collapse and form 
virtualized objects.

One can quantify the density 
of these collapsed halos on 
different mass scales with the 
halo mass function

But on which scales do these 
halos turn into galaxies?



The second essential step in the formation of galaxies is the need for baryons 
to be able to cool to the center of the collapsed halo.

During the initial gravitational collapse of an overdensity, we would expect the 
baryons to be distributed in a very similar way to the dark matter.

Both matter distributions are supported by the random motions of the particles.

Baryonic gas particles can lose energy through radiative processes, but dark matter 
cannot.

However, in favorable conditions, baryons sink to the center of the gravitational 
potential, but dark matter remains where it is.

SECOND STEP:  Gas cooling



Dark Matter Halo

Disk Galaxy

Schematic Picture of a Galaxy



When are conditions favorable to the baryons cooling to 
the center of a collapsed halo?

SECOND STEP:  Gas cooling
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Galaxy Formation

Leading questions for today
• How do visible galaxies form inside halos ?
• Why do galaxies/halos merge so easily ?

How do visible galaxies form inside halos ?

density fluctuations and gravity produce:
dark matter halos

• halos much bigger than visible part of galaxy
• halos rotate slowly < v > /σ ≈ 0.3

Halos entirely UNLIKE visible galaxies
So what happens ?
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dark matter

gas

When new halo just formed: gas is distributed like dark
matter
• gas supported by pressure
• dark matter supported by random motions

Gas can cool by radiation, and can collapse to the cen-
ter if cooling efficient

Dark matter cannot cool ! Will not collapse to center

Gas cooling is expressed as:

cooling rate = n2Λ(T )

cooling rate is cooling per unit volume element
n is number density of gas
Λ(T ) is cooling function

The cooling rate can be expressed as

where n is the gas volume density and Λ(T) is the temperature dependent 
cooling rate.

3-12-07 see http://www.strw.leidenuniv.nl/˜ franx/college/ mf-sts-07-c9-3

Cooling mechanisms: bound-bound, bound-free, free-
free, electron scattering

• 104 = ionization/recombination hydrogen
• 105 = ionization/recombination helium

T > 106K : thermal bremsstrahlung and Compton
scattering

Now take a halo with gas inside. Two options:
• Tcool < Tdyn, then cooling is efficient, and the gas

will collect in the center
• Tcool > Tdyn, then cooling is inefficient, and the

gas will NOT collect in the center
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Draw figure of nlum, the number density in luminous
material (in units of particles/cm3), versus temper-
ature T . Draw the line of tcool = tdyn, and put in
astronomical objects:
• galaxies
• groups and clusters of galaxies

We find
• gas in galaxies cools efficiently
• gas in clusters does not !

Ionization /
Recombination 

Hydrogen

Ionization /
Recombination 

Helium

Thermal 
Bremsstrahlung

SECOND STEP:  Gas cooling



There are two time scales of interest in thinking about galaxy formation:

(1) dynamical time scale tdyn

(2) cooling time scale  tcool

(∝ n-1/2)
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Cooling mechanisms: bound-bound, bound-free, free-
free, electron scattering

• 104 = ionization/recombination hydrogen
• 105 = ionization/recombination helium

T > 106K : thermal bremsstrahlung and Compton
scattering

Now take a halo with gas inside. Two options:
• Tcool < Tdyn, then cooling is efficient, and the gas

will collect in the center
• Tcool > Tdyn, then cooling is inefficient, and the

gas will NOT collect in the center
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Draw figure of nlum, the number density in luminous
material (in units of particles/cm3), versus temper-
ature T . Draw the line of tcool = tdyn, and put in
astronomical objects:
• galaxies
• groups and clusters of galaxies

We find
• gas in galaxies cools efficiently
• gas in clusters does not !

constant mass lines

For sources with galaxy-sized masses 
(1010 Msol), cooling is efficient...

 
However for cluster-scale masses (1014 

Msol), cooling is not efficient... and have 
lots of hot gas.

SECOND STEP:  Gas cooling

For cooling to have any impact,  tcool << tdyn

How do these time scales compare for various mass halos?


