

# **Galaxy Kinematics as a Function of Environment** within the ORELSE Survey

# Debora Pelliccia UC Davis → UCO/UC Santa Cruz (just moved!)

#### **COLLABORATORS:**

Lori Lubin, Brian Lemaux, Adam Tomczak, Roy Gal, Lu Shen, Benoît Epinat, Laurence Tresse



S14: Quenching Galaxiesin the Cosmic Middle Ages30 June - 1 July 2020



#### EAS 2020 - S14d — Debora Pelliccia - Galaxy Kinematics as a Function of Environment



Fraternali et al 2002 52 36 65°20 - HPBW14"  $7^{\rm h}39^{
m m}0^{
m s}$  $36^{\mathrm{m}}0^{\mathrm{s}}$ 

(J2000)

Dec

### **Galaxy Kinematics**





EAS 2020 - S14d — Debora Pelliccia - Galaxy Kinematics as a Function of Environment

## **Galaxy Kinematics**





EAS 2020 - S14d — Debora Pelliccia - Galaxy Kinematics as a Function of Environment

Dec (J2000)

### **Galaxy Kinematics**

## $\mathbb{R}V^2$ G





EAS 2020 - S14d — Debora Pelliccia - Galaxy Kinematics as a Function of Environment

Dec (J2000)

1





► Intensity profile: *Exponential disk* **Notation velocity profile:** *Freeman disk* > Velocity disperison profile: *constant with radius* 

EAS 2020 - S14d — Debora Pelliccia - Galaxy Kinematics as a Function of Environment

## **Kinematic Models**







► Intensity profile: *Exponential disk* **Notation velocity profile:** *Freeman disk* 

> Velocity disperison profile: *constant with radius* 

EAS 2020 - S14d — Debora Pelliccia - Galaxy Kinematics as a Function of Environment

## **Kinematic Models**









- Re-binning to match observations' sampling

> Intensity profile: *Exponential disk* **Notation velocity profile:** *Freeman disk* > Velocity disperison profile: *constant with radius* 

EAS 2020 - S14d — Debora Pelliccia - Galaxy Kinematics as a Function of Environment

### **Kinematic Models**









- Re-binning to match observations' sampling

► Intensity profile: Exponential disk **Notation velocity profile:** *Freeman disk* > Velocity disperison profile: *constant with radius* 

EAS 2020 - S14d — Debora Pelliccia - Galaxy Kinematics as a Function of Environment

## **Kinematic Models**

axis mai position











- Re-binning to match observations' sampling

► Intensity profile: *Exponential disk* **Notation velocity profile:** *Freeman disk* > Velocity disperison profile: *constant with radius* 

EAS 2020 - S14d — Debora Pelliccia - Galaxy Kinematics as a Function of Environment

## **Kinematic Models**

axis maior positio



Comparison with the observations  $\chi^2$  minimization







EAS 2020 - S14d — Debora Pelliccia - Galaxy Kinematics as a Function of Environment

## **Kinematic Models**

λ





#### **Galaxy-Galaxy Interactions** Merger - Harassment

## **Tidal interactions**

### Ram pressure stripping

EAS 2020 - S14d — Debora Pelliccia - Galaxy Kinematics as a Function of Environment

## Environment















### **The ORELSE Survey**

#### **Observations of Redshift Evolution in Large Scale Environments** (P.I. Lori Lubin)



EAS 2020 - S14d — Debora Pelliccia - Galaxy Kinematics as a Function of Environment

Mapping and characterizing galaxy properties in ~16 fields which contain LSSs at 0.6 < z < 1.3.

#### Wealth of information:

• Deep >10-band optical/near-IR and multi-wavelength (Spitzer/Chandra/VLA/Herschel) imaging. • Keck/DEIMOS high-resolution (R=5000) spectroscopy (500–2500 spectra per field).

✓ 100-500 spectroscopically confirmed LSS members per field. ✓ A total of 50 clusters and groups identified across all fields.









## The ORELSE Survey



EAS 2020 - S14d — Debora Pelliccia - Galaxy Kinematics as a Function of Environment

nd characterizing galaxy es in ~16 fields which LSSs at 0.6 < z < 1.3.

wavelength

spectroscopy

s members per field. d across all fields.









## The ORELSE-SC1604 Kinematic Sample

#### **144 star-forming galaxies**

#### at 0.6<z<1.3:

 $\times$  [OII]/[OIII]/Hβ emission line

**X**HST/ACS imaging

X Incl & PA optimal for kinematic extraction

X Local environment measurements  $log(1+\delta_{gal})$ 

**X** Global environment measurements  $\eta = (R_{proj}/R_{200}) \times (|\Delta v|/\sigma_v)$ 







Pelliccia et al. 2019



Pelliccia et al. 2019

### **The ORELSE-SC1604 B-band Tully-Fisher**

HR-COSMOS (Pelliccia+2017) 82 star-forming galaxies at z~0.9 in COSMOS XVLT/VIMOS spectra **X**HST/ACS imaging

![](_page_18_Figure_3.jpeg)

| ۰.                |    |
|-------------------|----|
| -                 |    |
|                   | 71 |
|                   |    |
|                   |    |
|                   |    |
|                   | -  |
|                   | -  |
|                   |    |
|                   |    |
|                   |    |
|                   |    |
| •                 |    |
| •                 | -  |
|                   | -  |
|                   |    |
|                   |    |
|                   |    |
|                   |    |
|                   |    |
|                   | -  |
|                   | -  |
|                   |    |
|                   |    |
|                   |    |
|                   |    |
|                   | -  |
| $3 \pm 1.63$      |    |
| $6 \pm 3.35$      |    |
| $_{\rm B}$ = 1.56 |    |
| $_{\rm V}$ = 0.18 | 1  |
|                   | ┛┃ |
|                   |    |
|                   |    |

![](_page_18_Picture_7.jpeg)

#### **Stellar-to-Dynamical Mass Ratio**

![](_page_19_Figure_1.jpeg)

Pelliccia et al. 2019

![](_page_19_Picture_5.jpeg)

![](_page_20_Figure_1.jpeg)

Pelliccia et al. 2019

EAS 2020 - S14d — Debora Pelliccia - Galaxy Kinematics as a Function of Environment

Theory  $\lambda = \frac{J_{DM} \, |E|^{1/2}}{G \, M_{DM}^{5/2}}$  $\langle\lambda
angle=0.035$  (Maccio+2008)  $j_{DM} \propto \lambda M_{DM}^{2/3}$   $(j_{DM} = J_{DM}/M_{DM})$ 

 $\frac{j_*}{km \, s^{-1} kpc} \propto \lambda \, f_j \, (f_b f_*)^{-2/3} \left(\frac{H(z)}{H_0}\right)^{-1/3} \left(\frac{M_*}{10^{11} M_{\odot}}\right)^{2/3}$ 

# $j_* = 2 \times r_s \times V_{2,2}$

![](_page_20_Picture_8.jpeg)

![](_page_21_Figure_1.jpeg)

Pelliccia et al. 2019

EAS 2020 - S14d — Debora Pelliccia - Galaxy Kinematics as a Function of Environment

Theory  $\lambda = \frac{J_{DM} \, |E|^{1/2}}{G \, M_{DM}^{5/2}}$  $\langle\lambda
angle=0.035$  (Maccio+2008)  $j_{DM} \propto \lambda M_{DM}^{2/3}$  $(j_{DM} = J_{DM}/M_{DM})$ 

 $\frac{j_*}{km \, s^{-1} kpc} \propto \lambda \, f_j \, (f_b f_*)^{-2/3} \left(\frac{H(z)}{H_0}\right)^{-1/3} \left(\frac{M_*}{10^{11} M_\odot}\right)^{2/3}$ 

# $j_* = 2 \times r_s \times V_{2,2}$

![](_page_21_Picture_8.jpeg)

![](_page_22_Figure_1.jpeg)

Pelliccia et al. 2019

EAS 2020 - S14d — Debora Pelliccia - Galaxy Kinematics as a Function of Environment

Theory  $\lambda = \frac{J_{DM} \, |E|^{1/2}}{G \, M_{DM}^{5/2}}$  $\langle\lambda
angle=0.035$  (Maccio+2008)  $j_{DM} \propto \lambda M_{DM}^{2/3}$   $(j_{DM} = J_{DM}/M_{DM})$ 

 $\frac{j_*}{km \, s^{-1} kpc} \propto \lambda \, f_j \, (f_b f_*)^{-2/3} \left(\frac{H(z)}{H_0}\right)^{-1/3} \left(\frac{M_*}{10^{11} M_\odot}\right)^{2/3}$ 

# $j_* = 2 \times r_s \times V_{2,2}$

![](_page_22_Picture_8.jpeg)

![](_page_23_Figure_1.jpeg)

Pelliccia et al. 2019

EAS 2020 - S14d — Debora Pelliccia - Galaxy Kinematics as a Function of Environment

 $f_j = fraction \ of \ retained \ j_*$ 

 $\overline{km \, s^{-1} kpc}$ 

 $j_{DM} \propto \lambda M_{DM}^{2/3}$ 

Theory /2 $\langle \lambda \rangle = 0.035$  (Maccio+2008)

 $(j_{DM} = J_{DM}/M_{DM})$ 

 $j_* = 2 \times r_s \times V_{2.2}$ 

![](_page_23_Picture_9.jpeg)

![](_page_24_Figure_1.jpeg)

EAS 2020 - S14d — Debora Pelliccia - Galaxy Kinematics as a Function of Environment

.

.

![](_page_24_Figure_3.jpeg)

![](_page_25_Figure_1.jpeg)

EAS 2020 - S14d — Debora Pelliccia - Galaxy Kinematics as a Function of Environment

.

.

![](_page_25_Figure_3.jpeg)

![](_page_26_Figure_1.jpeg)

![](_page_26_Picture_3.jpeg)

![](_page_26_Picture_5.jpeg)

![](_page_27_Figure_1.jpeg)

j\* loss per merger of any kind: ~20% (major), ~2% (minor) j\* loss per GAS-POOR merger: ~40% (major), ~20% (minor)

~4x more major mergers in Med/High density vs low density ~ 3x more minor mergers in Med/High density vs low density

EAS 2020 - S14d — Debora Pelliccia - Galaxy Kinematics as a Function of Environment

![](_page_27_Picture_5.jpeg)

**EAGLE simulations** Lagos+218

Semi-empirical model Tomczak+2017

![](_page_27_Figure_8.jpeg)

![](_page_27_Picture_9.jpeg)

![](_page_28_Figure_1.jpeg)

j\* loss per merger of any kind: ~20% (major), ~2% (minor) j\* loss per GAS-POOR merger: ~40% (major), ~20% (minor)

~4x more major mergers in Med/High density vs low density ~ 3x more minor mergers in Med/High density vs low density

EAS 2020 - S14d — Debora Pelliccia - Galaxy Kinematics as a Function of Environment

SC1604 med/high density **HR-COSMOS** low density SC1604 med/high density corrected for mergers 600  $f_{i}=0.76 \pm 0.10$  $f_i = 0.96 \pm 0.04$ 500 400 Ζ 300 200 100 0.8 1.0 1.20.6 1.40.4*median* f<sub>i</sub>

Pelliccia et al. 2019

**EAGLE simulations** Lagos+218

Semi-empirical model Tomczak+2017

![](_page_28_Picture_10.jpeg)

![](_page_29_Figure_1.jpeg)

j\* loss per merger of any kind: ~20% (major), ~2% (minor) j\* loss per GAS-POOR merger: ~40% (major), ~20% (minor)

~4x more major mergers in Med/High density vs low density ~ 3x more minor mergers in Med/High density vs low density

✓ Galaxies in higher density local environments have larger stellar-to-dynamical mass ratio.

✓ Galaxies in higher density local environments have lost ~20% of their original specific angular momentum. Mergers may explain this loss, but more data are needed to better investigate it.

EAS 2020 - S14d — Debora Pelliccia - Galaxy Kinematics as a Function of Environment

✓ No clear sign of environmental effect on the Stellar-Mass/B-Band Tully-Fisher relation.

![](_page_30_Picture_8.jpeg)

![](_page_31_Picture_0.jpeg)

EAS 2020 - S14d — Debora Pelliccia - Galaxy Kinematics as a Function of Environment

![](_page_31_Picture_3.jpeg)