

K-CLASH: Disc strangulation and rampressure stripping in cluster galaxies at 0.3 < z < 0.6

Dr. Sam Vaughan **University of Sydney**

Alfred Tiley, Roger L. Davies, John Stott, Laura Prichard & the K-CLASH team

Dr. Sam Vaughan

sam.vaughan@sydney.edu.au

Dr. Sam Vaughan

Key Points:

<u>sam.vaughan@sydney.edu.au</u>

Dr. Sam Vaughan

- **Key Points**:
- Use KMOS to observe galaxies in 4 CLASH fields at z=0.313, 0.352, 0.494 & 0.589

Dr. Sam Vaughan

Key Points:

- Use KMOS to observe galaxies in 4 CLASH fields at z=0.313, 0.352, 0.494 & 0.589
- I remove AGN using ancillary photometry & emission line ratio cuts

<u>sam.vaughan@sydney.edu.au</u>

Dr. Sam Vaughan

Key Points:

- Use **KMOS** to observe galaxies in 4 CLASH fields at z=0.313, 0.352, 0.494 & 0.589
- I remove AGN using ancillary photometry & emission line ratio cuts
- I'm left with **40 star-forming** galaxies in the clusters themselves, with **120** in a **mass**matched field sample

<u>sam.vaughan@sydney.edu.au</u>

Dr. Sam Vaughan

Key Points:

- Use **KMOS** to observe galaxies in 4 CLASH fields at z=0.313, 0.352, 0.494 & 0.589
- I remove AGN using ancillary photometry & emission line ratio cuts
- I'm left with **40 star-forming** galaxies in the clusters themselves, with **120** in a **mass**matched field sample
- See Tiley, SPV et al (2020) arxiv: 2005.12471

sam.vaughan@sydney.edu.au

Dr. Sam Vaughan

sam.vaughan@sydney.edu.au

 Fit surface brightness profiles to Hα emission-line maps & R band images to measure **intrinsic** half-light radii

Dr. Sam Vaughan

sam.vaughan@sydney.edu.au

- Fit surface brightness profiles to Hα emission-line maps & R band images to measure **intrinsic** half-light radii
- The average $r_e(H\alpha)/r_e(R-band)$ ratio in the cluster sample is **smaller** than the average $r_e(H\alpha)/r_e(R-band)$ ratio in the field sample- 0.96 ±0.09 compared to 1.22 ± 0.08

Dr. Sam Vaughan

sam.vaughan@sydney.edu.au

- Fit surface brightness profiles to Hα emission-line maps & R band images to measure **intrinsic** half-light radii
- The average $r_e(H\alpha)/r_e(R-band)$ ratio in the cluster sample is **smaller** than the average $r_e(H\alpha)/r_e(R-band)$ ratio in the field sample- 0.96 ±0.09 compared to 1.22 ± 0.08
- Difference = -0.26 ± 0.12 . The **98%** confidence interval **excludes 0**

Dr. Sam Vaughan

<u>sam.vaughan@sydney.edu.au</u>

...and slightly fainter central H α surface brightnesses

Dr. Sam Vaughan

sam.vaughan@sydney.edu.au

...and slightly fainter central H α surface brightnesses

Dr. Sam Vaughan

• We measure the average $H\alpha$ surfacebrightness in an aperture of diameter 0.6 arcseconds centred on the peak flux

<u>sam.vaughan@sydney.edu.au</u>

\dots and slightly fainter central H α surface brightnesses

Dr. Sam Vaughan

- We measure the average $H\alpha$ surfacebrightness in an aperture of diameter 0.6 arcseconds centred on the peak flux
- The average central SB in the **cluster** sample is marginally smaller than in the field sample by 0.06 dex

<u>sam.vaughan@sydney.edu.au</u>

Dr. Sam Vaughan

<u>sam.vaughan@sydney.edu.au</u>

 Get gas-phase metallicity from [NII]/Hα ratio

10.09.59.0 $+ \log(O/H)$ 8.5 8.(127.57.06.5

Dr. Sam Vaughan

sam.vaughan@sydney.edu.au

- Get gas-phase metallicity from [NII]/H α ratio
- Stellar mass measurements come from **SED fitting** (see Tiley, SPV et al. 2020)

Dr. Sam Vaughan

<u>sam.vaughan@sydney.edu.au</u>

- Get gas-phase metallicity from [NII]/H α ratio
- Stellar mass measurements come from **SED fitting** (see Tiley, SPV et al. 2020)
- The mass-metallicity relations are indistinguishable for our cluster and field samples

Dr. Sam Vaughan

<u>sam.vaughan@sydney.edu.au</u>

...we see a correlation between M-Z **residual** and cluster-centric distance

Dr. Sam Vaughan

sam.vaughan@sydney.edu.au

...we see a correlation between M-Z **residual** and cluster-centric distance

Dr. Sam Vaughan

...but there's a correlation between the **residuals around** the M-Z relation and projected distance from the cluster centre

sam.vaughan@sydney.edu.au

...we see a correlation between M-Z **residual** and cluster-centric distance

Dr. Sam Vaughan

<u>sam.vaughan@sydney.edu.au</u>

- ...but there's a correlation between the **residuals around** the M-Z relation and projected distance from the cluster centre
- Galaxies closer to the cluster centre have **higher** metallicities than predicted by the M-Z relation

Dr. Sam Vaughan

<u>sam.vaughan@sydney.edu.au</u>

Key Points:

Dr. Sam Vaughan

<u>sam.vaughan@sydney.edu.au</u>

Key Points:

Has sizes in comparison to their stellar size than the field sample

Dr. Sam Vaughan

• We find that, on average, galaxies in our cluster sample have smaller

<u>sam.vaughan@sydney.edu.au</u>

Key Points:

- We find that, on average, galaxies in our cluster sample have smaller Has sizes in comparison to their stellar size than the field sample
- We find that, on average, galaxies in our cluster sample have marginally fainter central surface brightnesses than the field sample

Dr. Sam Vaughan

<u>sam.vaughan@sydney.edu.au</u>

Key Points:

- We find that, on average, galaxies in our cluster sample have smaller **H**α sizes in comparison to their stellar size than the field sample
- We find that, on average, galaxies in our cluster sample have marginally fainter central surface brightnesses than the field sample
- For the cluster sample, galaxies closer to the cluster centre are more metal-enriched than you'd expect for their mass

Dr. Sam Vaughan

<u>sam.vaughan@sydney.edu.au</u>

Dr. Sam Vaughan

<u>sam.vaughan@sydney.edu.au</u>

Dr. Sam Vaughan

Lilly et al (2013) and Peng & Maiolino (2014)

<u>sam.vaughan@sydney.edu.au</u>

Inflow of low-metallicity gas

Dr. Sam Vaughan

Lilly et al (2013) and Peng & Maiolino (2014)

sam.vaughan@sydney.edu.au

Inflow of low-metallicity gas

Dr. Sam Vaughan

Lilly et al (2013) and Peng & Maiolino (2014)

sam.vaughan@sydney.edu.au

Inflow of low-metallicity gas

Dr. Sam Vaughan

• Lilly et al (2013) and Peng & Maiolino (2014)

<u>sam.vaughan@sydney.edu.au</u>

Inflow of low-metallicity gas

Dr. Sam Vaughan

Lilly et al (2013) and Peng & Maiolino (2014)

<u>sam.vaughan@sydney.edu.au</u>

Inflow of low-metallicity gas

Dr. Sam Vaughan

- Lilly et al (2013) and Peng & Maiolino (2014)
- The average gas phase metallicity increases as stars age/recycle their metals and **decreases** through accretion of pristine gas

<u>sam.vaughan@sydney.edu.au</u>

Inflow of low-metallicity gas

Dr. Sam Vaughan

- Lilly et al (2013) and Peng & Maiolino (2014)
- The average gas phase metallicity increases as stars age/recycle their metals and **decreases** through accretion of pristine gas
- Gas supply is replenished

<u>sam.vaughan@sydney.edu.au</u>

Inflow of low-metallicity gas

Dr. Sam Vaughan

<u>sam.vaughan@sydney.edu.au</u>

Inflow of low-metallicity gas

Dr. Sam Vaughan

• When a galaxy enters the cluster potential, we can model it as being cut off from its supply of **pristine** cold gas

<u>sam.vaughan@sydney.edu.au</u>

Dr. Sam Vaughan

 When a galaxy enters the cluster potential, we can model it as being cut off from its supply of **pristine** cold gas

<u>sam.vaughan@sydney.edu.au</u>

Dr. Sam Vaughan

- When a galaxy enters the cluster potential, we can model it as being cut off from its supply of **pristine** cold gas
- Gas phase metallicity **increases** as before, but is now **no longer** diluted

<u>sam.vaughan@sydney.edu.au</u>

Dr. Sam Vaughan

- When a galaxy enters the cluster potential, we can model it as being cut off from its supply of **pristine** cold gas
- Gas phase metallicity **increases** as before, but is now **no longer** diluted
- Gas supply is no longer replenished

sam.vaughan@sydney.edu.au

How long have our galaxies been in the cluster?

Dr. Sam Vaughan

sam.vaughan@sydney.edu.au

How long have our galaxies been in the cluster?

 Using cluster phase-space diagrams and simulations from Rhee et al. 2017, we estimate most of our cluster galaxies entered the cluster between 1-5 Ogg Sivu

Dr. Sam Vaughan

<u>sam.vaughan@sydney.edu.au</u>

Dr. Sam Vaughan

<u>sam.vaughan@sydney.edu.au</u>

• This model predicts the **gas-phase metallicity** we'd measure at a time **t** after entering the cluster potential

Dr. Sam Vaughan

<u>sam.vaughan@sydney.edu.au</u>

- This model predicts the **gas-phase metallicity** we'd measure at a time **t** after entering the cluster potential
- The total gas mass decreases exponentially. If we **assume** that the gas follows an exponential surface brightness profile, we can also model the evolution of surface brightness we'd measure in a 0.6 arcsecond aperture

Dr. Sam Vaughan

<u>sam.vaughan@sydney.edu.au</u>

- This model predicts the **gas-phase metallicity** we'd measure at a time **t** after entering the cluster potential
- The total gas mass decreases exponentially. If we **assume** that the gas follows an exponential surface brightness profile, we can also model the evolution of surface brightness we'd measure in a 0.6 arcsecond aperture

Dr. Sam Vaughan

log(r/arcsec)

arxiv: 2006.12802

<u>sam.vaughan@sydney.edu.au</u>

- This model predicts the **gas-phase metallicity** we'd measure at a time **t** after entering the cluster potential
- The total gas mass decreases exponentially. If we **assume** that the gas follows an exponential surface brightness profile, we can also model the evolution of surface brightness we'd measure in a 0.6 arcsecond aperture

Dr. Sam Vaughan

log(r/arcsec)

<u>sam.vaughan@sydney.edu.au</u>

- This model predicts the **gas-phase metallicity** we'd measure at a time **t** after entering the cluster potential
- The total gas mass decreases exponentially. If we **assume** that the gas follows an exponential surface brightness profile, we can also model the evolution of surface brightness we'd measure in a 0.6 arcsecond aperture

Dr. Sam Vaughan

log(r/arcsec)

arxiv: 2006.12802

<u>sam.vaughan@sydney.edu.au</u>

- This model predicts the **gas-phase metallicity** we'd measure at a time **t** after entering the cluster potential
- The total gas mass decreases exponentially. If we **assume** that the gas follows an exponential surface brightness profile, we can also model the evolution of surface brightness we'd measure in a 0.6 arcsecond aperture

Dr. Sam Vaughan

log(r/arcsec)

arxiv: 2006.12802

<u>sam.vaughan@sydney.edu.au</u>

But we need ram pressure stripping on top of it

Dr. Sam Vaughan

log(r/arcsec)

arxiv: 2006.12802

sam.vaughan@sydney.edu.au

But we need ram pressure stripping on top of it

• After 1 (3) Gyr of strangulation, we'd see a **decrease in average SB** of 0.05 (0.15) dex and an **increase in metallicity** of 0.1 (0.2) dex- which match our measurements

log(r/arcsec)

arxiv: 2006.12802

<u>sam.vaughan@sydney.edu.au</u>

But we need ram pressure stripping on top of it

- After 1 (3) Gyr of strangulation, we'd see a **decrease in average SB** of 0.05 (0.15) dex and an **increase in metallicity** of 0.1 (0.2) dex- which match our measurements
- But this **disc strangulation** on its own • wouldn't change the intrinsic H halflight radius we measure. The most likely culprit to do that is **ram**pressure stripping (e.g. see simulations by **Bekki 2014**)

Dr. Sam Vaughan

log(r/arcsec)

arxiv: 2006.12802

<u>sam.vaughan@sydney.edu.au</u>

Conclusions

- K-CLASH has observed galaxy cluster members at 0.3<z<0.6, as well as a matched "field" sample
- On average, the cluster galaxies have smaller $r_e(H\alpha)/r_e(R-band)$ ratios & fainter average H α central surface brightnesses than the field galaxies. Those with a projected distance closer to the cluster centre also have **higher metallicity** than predicted by the M-Z relation
- **Ram-pressure stripping** can account for these observations

Dr. Sam Vaughan

<u>sam.vaughan@sydney.edu.au</u>

