Modeling with ALMA

G.S. Mathews

While ALMA observations are revealing many new details of the millime-
ter universe, the interpretation of these data are still dependent on compar-
isons with models. In order to compare data with models, one must first have
an idea of what information can be extracted from your data, and have a good
route for extracting the same type of information from your models. This
second step usually involves some approach to simulating an observation.

This document provides a walkthrough to the full process of comparing a
model to an observation, starting with extraction of information from data,
simulating an observation of a model, and then practicing a few methods of
comparison between the two. This document does not address the production
of a model in the first place.

As much as possible, we will use commands in CASA. However, there
are some functions which are not yet enabled, and in these cases I present
example code in IDL. I attempt to explain this code in a thorough enough
fashion that it could be replicated in other languages.

1 Preparations

There are several items of data and sample models which are to be down-
loaded and used with this walkthrough. In addition, there are two custom
CASA packages that have been developed by Attila Juhdsz, with the Allegro
Alma Regional Center node. These are as follows:

e Observation: HD163296.spw2.CO32.split.ms

— This is made from spw 2 from HD163296_Band7_concat.ms, in the
publicly released data. Channels 1000 to 2600 selected for faster
operations



— Note that the central velocity of the source is at 7.01 km/s LSRK
in this data set, rather than the actual central velocity of 5.8 km//s.
This error is noted in a footnote in Rosenfeld et al. 2013.

e Model: image0.fits (J=3-2 image generated by Lime with 0.05” pixels,
for a source at 122 pc)

e Script: simobs_custom
e Script: visbin

e Script: getBaselineLengths and buildConfigurationFile from ALMA
analysisTools
download here: http://casaguides.nrao.edu/index.php?title=Analysis_Utilities
more documentation here: https://safe.nrao.edu/wiki/bin/view/Main/CasaExtensions

e IDL codes:

— atv - http://www.physics.uci.edu/ barth/atv/instructions.html

— mrdfits, from the Goddard library - http://idlastro.gsfc.nasa.gov

— hist_nd, from the Coyote library - http: //www.idlcoyote.com/documents/programs.php
— uvfits.pro, by G. Mathews

1.1 Installing simobs_custom and visbin

1. place the script in a folder for holding new CASA commands (e.g.
"~ /home/scripts/CASA /)

2. follow the instructions in the README (summarized here)

(a) cd to the directory containing the script

(b) load CASA

(c) os.system(’buildmytasks’)

(d) Add the file mytasks.py, with path, to your /.casa/init.py file



2 Brief introduction to interferometer data

The raw data from an interferometer are wvisibilities. Briefly, these are data
describing how much emission is present at a particular angular scale on sky.
The angular scale and direction is given by the (u,v) position of the data
point. The angular scale is inversely proportional to the uv-distance from
the origin, and each axis corresponds to a direction on sky (u - east west, v
- north south). At a given uv point, the interferometer reports a complex
number. The amplitude corresponds to the flux at that particular size scale
and direction, and the phase reflects shifts from being centered at the target
of the observation.

For more overview, see the ALMA primer at http://almatelescope.ca/ ALMA-
ESPrimer.pdf.

For more in-depth information, see the notes from Allegro workshops, at
http://www.alma-allegro.nl/allegroworkshops. In particular, see:

e The June 2012 workshop has a talk by Markus on proposal prepa-
ration, submission, and review that has a nice stepthrough on some
interferometry basics. In particular, there is a nice sequence of images
showing the build up of the response pattern as you add more and more
antennae (his is the example case of filling in more and more of a giant
antenna, but same idea)

e Dec. 2011 - Pam’s talk on mm interferometry (first talk) gives a thor-
ough presentation of the mathematics behind interferometry

e Dec. 2011 - Markus’ talk on calibration and imaging theory does a
step-through showing what happens with CLEAN, the most common
algorithm for inverting data from the visibility to the image plane.

e Dec. 2011 - Markus gave a nice talk on Inversion & Imaging, including
a full walkthrough of the self-calibration procedure for improving image
quality

e Dec. 2011 - Pam gave a nice talk on how specific errors can be detected,
”"What would happen if.”



2.1 Manual illustration of visibilities <+ image

To briefly illustrate the concept behind visibilities and the reconstruction
of an image, here is a simple set of IDL commands that generate a set of
visibilities and do a simple step by step reconstruction of an image.

1. create a pair of 2-dimensional arrays containing X and Y values. These
are analogous to values of ARA and ADeclination in an astronomical
image.

x = reverse((findgen(1001) - 500) / 10)

v = (findgen(1001) - 500) / 10

ones = make_array(1001, value=1.0)

s now generate a 1001 x 1001 array where each element contains the
X wvalue, from 50 to -50

xa = X # ones

s now generate a 1001 x 1001 array where each element contains the
Y value, from -50 to 50

ya = ones # y

;inspect by eye the structure arrays to ensure they show values from
east-to-west, and north-to-south

atv, xa

2. generate a single (u,v) point and see what structure it corresponds to
in the image plane.

uva = [2, 0.1, 1]
iml = uval[2] * COS(xa*uval[O] + yaxuval[l])
atv, iml

This shows that the object on sky has some structure about 15 units
wide, angled just north of east-west. In this example, the phases are all
set to zero indicating that the interferometer was aimed at the center of
the structure, and that the emission was symmetric about the center.

3. Add a second point. Using ‘&’ allows you to place multiple commands
on the same line - I do that here to save space.



uva = [0.5,1.0,1] & im2 = uva[2] * COS(xa*uval[0] + yaxuval[1])
& atv, im2

This shows that the object also has an ~25 unit wide structure an-
gles along a direction about 30 degrees west of north.

. Examine several more features.

uva = [-1.0,2.0,1] & im3
& atv, im3

uva[2] * COS(xa*uval[0] + yaxuvall])

uva = [-4.0,2.0,1] & im4
& atv, imé4

uva[2] * COS(xaxuval[O0] + yaxuval[l])

uva = [-0.2,0.5,1] & imb
& atv, imb

uva[2] * COS(xa*uval[0] + yaxuvall])

Notice that larger uv-distances (1, = vV u? + v?) correspond to smaller
physical scales.

. Try making a few of your own sample (u,v) points. The variable uva
contains the u, v, and amplitude, respectively.

. Phase can be added by giving uva a fourth element, and changing the
expression for the image to:

im5 = uva[2] * COS(xa*uva[O] + ya*uval[l] + uva[3] * !PI / 180)
(where the term !PI / 180 converts a phase from degrees to radians)

. Few astronomical objects actually look like stripes across the sky, how-
ever. These points all represent structures that were detected by par-
ticular pairs of antennae at particular times (we use the rotation of the
earth itself to have each pair of detectors in the interferometer sweep
through u,v space). Summing these images, however, will begin to give
a representation of how the object looks on sky. Notice that the spatial

cosine functions have begun to interfere, leaving a bright point at the
middle.



im = iml + im2 + im3 + im4 + imb
atv, im

Of course, a typical observation will have much more than 5 u,v points.
You can simulate having an approximately uniform u,v coverage with a sim-
ple function such as this:

ruv = (findgen(500)+1) / 10

theta = (findgen(500)+1) / 10

u = ruv * COS(theta)

v = ruv *x SIN(theta)

a = make_array (500, value=1)

plot, u, v, psym=2 ; plot the u,v coverage

im[*] = 0.0

for n=0,499 do im = im + a[n] * COS((xa*u[n] + yaxv[n]))
atv, im

Notice that the u,v points in this example have a uniform amplitude. In
lectures on interpreting interferometer data, we’re often told that a point
source will have a constant amplitude in u,v space. Here we see why that is
- all the cosine functions are maximized at a position of 0,0 but elsewhere
they destructively interfere. Try writing a function to make the amplitude,
a, a function of v and v, and see how that changes the resulting image.

eg.a=1.0/ (ruv 0.1) * cos(ruv * 1.0 / 5)

3 Information extraction

This tutorial will start with an overview of different pieces of information
which can be extracted directly from ALMA observations. If the same types
of data are then extracted from models, then the two may be quantitatively
compared, as with the calculation of x? as part of a parameter search algo-
rithm.



3.1 Preparation for analysis

With line data, you should work with a dataset that has been placed in a
common reference frame, and which has had the continuum subtracted. This
can be accomplished with the following tasks:

1. Check that data from multiple nights is in the same restframe. If you
see the line at multiple frequencies, then use cvel to place the data into
LSRK

plotms(vis="HD163296.spw2.C032.split.ms’, xaxis=’channel’, yaxis=’amp’,
averagedata = True, avgchannel = ’’, avgtime = ’100000s’)

cvel(vis = ’HD163296.spw2.C032.split.ms’, outputvis =
’HD163296.C032.split.LSRK.ms’, outframe = ’lsrk’)

2. Select a subset of the data around the line frequency to speed up op-
erations. In a sense, this tutorial is cheating on this step because the
original data file has already been split from the full observation.

split(vis="HD163296.C032.split.LSRK.ms’, outputvis=’HD163296.C032.LSRK.ms’,
spw="0:50071200’, datacolumn=’data’)

3. identify line free channels for the continuum subtraction. If the line is
not clearly present, make a best-guess to channels that lie off of the
line frequency.

plotms(vis="HD163296.C032.LSRK.ms’, xaxis=’channel’, yaxis=’amp’,
averagedata = True, avgchannel = ’’, avgtime = ’100000s’)

4. Subtract the continuum

uvcontsub(vis=’HD163296.C032.LSRK.ms’, fitspw=’0:507200;4807680",
fitorder=1)

This generates a new file, HD163296.CO32.LSRK.ms.contsub

5. Use plotms to examine the new dataset, setting the axes to Amplitude
vs. channel. If the continuum region now has a rising slope or weird
bend, try the following corrections to the preceding steps:

7



(a) expand the regions used in the continuum fits. If necessary, carry
out continuum subtraction on the data set prior to the split com-
mand

(b) try setting fitorder = 0 (but only if you are highly certain there is
no continuum slope)

6. Convert from the visibility plane to the image plane. This will also
make a mask that will be useful in later analysis. A common algorithm
for converting a visibility dataset to the image plane is CLEAN. While
the details of this process are beyond the scope of this workshop, here
is a sample CLEAN command for CASA:

clean(vis="HD163296.C032.LSRK.ms.contsub’, imagename = ’HD163296.C032’,
mode=’velocity’, nchan = 150, start=’-10km/s’, width=’0.20km/s’,
outframe="LSRK’, imsize=[300,300], cell=[’0.larcsec’], restfreq=
?345.7959899GHz’, stokes=’I’, threshold=’150mJy’, interactive=True)

It is also possible to first CLEAN the cvel corrected .ms, and then use
imcontsub to subtract the continuum.

3.2 (u,v) coverage

Lay, Carlstrom, and Hills (1997, ApJ, 489, 917) has a nice illustration of the
transform between the image and visibility planes.

Within CASA, plotms is a primary tool for directly examining visibility
datasets. Opening a visibility dataset (.ms folder) and examining the distri-
bution of points in u,v space will give you a qualitative idea as to whether
your observation will have resolution and sensitivity differences along differ-
ent axes. The r,, extent along a given direction gives a sense of the resolution
in that direction - greater r,, indicates finer resolution. The density of points
will somewhat reflect the fidelity of the image reconstruction, reflecting the
ability to detect structure on many different size scales.

Open the sample observation in plotms and set the x and y axes to show
the u and v values.

plotms(vis=’HD163296.C032.LSRK.ms.contsub’, xaxis=’u’, yaxis=’v’,
averagedata = True, avgchannel = ’’, avgtime = ’100000s’, plotrange=[400,-400,
-400, 400])



Qualitatively, you can see that there is relatively uniform coverage at
baselines up to about 200 k\. At longer baselines (i.e. smaller physical
scales) image fidelity may start to drop. Coverage extends to longer baselines
in along the north-south direction (v), which will correspond to having a
smaller beamsize, or better resolution, along that direction.

If you want to make a figure of (u,v)-coverage using a different set of
tools, you will need to export the visibilities as a uvfits file. For example:

exportuvfits(vis=’HD163296.C032.LSRK.ms.contsub’, fitsfile=
’HD163296.C032.vis.fits’, datacolumn=’data’)

In the Appendix, I describe the structure of the resulting .fits file.

3.3 Size scales

To examine issues of image fidelity more quantitatively, the minimum re-
solvable size scales and largest observable scale can be calculated. These
functions are taken from the ALMA Primenl]

e Determine the shortest and longest baseline lengths using:
au.getBaselineLengths (’HD163296.C032.LSRK.ms.contsub’, sort=True)

In this case, the shortest and longest wavelengths are 13.1 and 402.3 m

e The smallest resolvable size scale is based on the longest baseline in the
observation (i.e. the longest distance between antennas in the array).

Omin = 0.2" x (300/v[GHz]) x (1[km]/max baseline) (1)

e The largest observable size scale (beyond which flux is negligible due
to interferometric filtering) is

QLOS ~ 0.6" x ()\/bshort) X (180/7T) x 3600 (2)

thttps://almascience.nrao.edu/documents-and-tools/cycle-1/alma-es-primer



3.4 Simple model fits

Some tools are available for fitting basic morphology of the observed object.
Such fits are most useful for identifying the center of emission, which is in
turn useful for some comparisons of models to data. Within CASA, the
uvmodelfit task allows you to fit a single point, elliptical Gaussian, or ellipti-
cal uniform disk model to the visibilities. This can take several minutes. e.g.,

uvmodelfit (vis="HD163296.C032.LSRK.ms.contsub’, spw=’0:2507400",
comptype=’G’, sourcepar = [1.0, 0.0, 0.0, 2.0, 0.5, 45.0], varypar
= [T,T,T,T,T,T])

In addition to providing an estimate of the source flux, this can give an esti-
mate of the source central position. However, remember that under ALMA’s
sharp-eyed gaze, fewer and fewer objects will look like simple gaussians or
point sources. For example, the sample data resolves the three-dimensional
structure of the CO emitting surface in the disk, including seeing the back
side of the disk. A gaussian fit to such a structure will lead to an offset from
the true central position. For more on this, see Rosenfeld et al. 2013.

An alternate way to use fits to line data may be to emulate the modeling
approach of D. Harsono (REF) in finding the center of emission, channel by
channel, to then construct a PV diagram, e.g.:

uvmodelfit (vis="HD163296.C032.LSRK.ms.contsub’, spw=’0:3007301",
comptype=’G’, sourcepar = [1.0, 0.0, 0.0, 2.0, 0.5, 45.0], varypar
= [T,T,T,T,T,T])

For a ring morphology, or to fit a multi-component morphology, you will
need to export the visibilities and fit in another code, e.g. MIRIAD.

3.5 Images and data cubes

In the image plane, an astronomer can carry out flux measurements and mor-
phology analysis. The data must first be converted, however, from visibilities
to the image plane. This should have already been done as part of the earlier
preparations (§3.1).

10



3.5.1 Noise

Perhaps the most important statistic for describing a dataset is the noise
level. This then places limits on what else is achievable with the data. Within
CASA, load the cleaned .image dataset into the viewer, where you can then
use built in tools to measure the noise.

1.

scroll through the channels in the data cube. Find a channel that is
relatively free of line emission.

. left click on one of the region selection icons on the toolbar. Select a

region that is also away from where the source lies.

Double-click on that region. The statistics for the region will appear
in the terminal.

4. record the RMS noise (most commonly reported in units of Jy / beam)

In addition to visual inspection, this can be scripted using imstat

3.5.2 Flux measurement

There are several approaches to measuring the flux of the source.

e Make a Oth moment map, and do standard photometry.

Use immoment with either a threshold (via includepix, set to 2 or 3o,
e.g., includepix = "15mJy’) for selecting x, y, v points to include, or a
channel-by-channel mask. Such a mask can be manually constructed
in the viewer (this is a bit laborious) or by using the prototype boxit
command. If one made a channel-by-channel mask at the CLEAN step
in processing the observation, then this mask could be reused here.

Then, in viewer, select a region and double click. Among other statis-
tics, the total flux is reported. As an alternative, use immath to sum
all the pixels within a target region.

use the line fit feature in the spectra viewer

Select a region in the image viewer that contains all the emission. Open
the spectra viewer, and use the line fit feature. The integrated emission
will be displayed among many other statistics in the terminal.

e export the spatially integrated spectrum and integrate.

11



4 Simulating observations

4.1 Files used
e HD 163296 CO 3-2 visibilities (HD163296.C0O32.LSRK.ms.contsub)

e Sample Lime model of HD 163296 CO 3-2 line emission (image0.fits)

4.2 Approximating the uv-coverage with simobserve

1. Ensure the input model has the needed header information:

RESTFREQ (in Hz), RADESYS = FK5, SPECSYS = LSRK, CRVALL1
(central RA, in degrees), CRVAL2 (central Dec, in degrees), CRVAL3
(in m/s), CUNIT3 = "M/S’

Example IDL code:

im = mrdfits(’image0.fits’, 0, hd)

sxaddpar, hd, ’RESTFREQ’, 345.7959899E9
sxaddpar, hd, ’RADESYS’, ’FK5’

sxaddpar, hd, ’SPECSYS’, ’LSRK’

sxaddpar, hd, ’CRVAL1’, ten(’17:56:21.2704°)%15
sxaddpar, hd, ’CRVAL2’, ten(’-21:57:22.205’)
sxaddpar, hd, ’CRVAL3’, 7010.0

sxaddpar, hd, ’CUNIT3’, ’M/S’

writefits, ’model.simobserve.fits’, im, hd

2. Extract the antenna positions of the observations.

au.buildConfigurationFile(vis="HD163296.C032.LSRK.ms.contsub’,
dropTPpads=True) s

This creates a file HD163296.C0O32.LSRK.ms.contsub.cfg which should
contain most of the antenna positions.

3. Determine the time on source

au.timeOnSource(’HD163296.C032.LSRK.ms.contsub’)

12



Load the model image into CASA format.

importfits(fitsimage=’"model.simobserve.fits’, imagename=’C032.model’,
zeroblanks=False)

. Simulate observation.

simobserve(project=’sim’, skymodel = ’../model/C032.model’,
indirection = ’J2000 17h56m21.2704 -21d57m22.205°’, antennalist

’HD163296.C032.LSRK.ms.contsub.cfg’, hourangle = ’-2:30:00’,
totaltime = ’4400s’, direction = 2J2000 17h56m21.2704 -21d57m22.205°)

. After CLEANing the resulting .ms, you might adjust hourangle in or-

der to better match the beam of the observation. Adjust date and
start time to approximate uv coverage of the actual observations. For
later comparison with the observation, you will need to subtract the
continuum, as well.

One can improve the approximation by running simobserve several
times, matching the several dates and times of actual observations.
The resulting .ms files can then be catenated together.

Matching the exact uv-coverage using simobs_custom

1. Convert model .fits image to have the necessary features for simobs_custom:

e Units: Intensity in Jy/px

e Header: RA and Declination (CTYPE1, CRPIX1, CRVAL1, CDELT1,
CUNIT1, and 2)

e Header: frequency or velocity axis (CTYPE3, CRPIX3, CRVAL3,
CDELT3, CUNIT3)

e Header: Stokes axis (CTYPE4)

If your data lacks velocity data (as with a continuum image) or stokes
data (e.g. Lime models lack polarization), you will need to add ” dummy”
dimensions to your data. E.g.

13



IDL: Many functions and procedures, including the popular mwrfits,
reform arrays to remove dimensions with a depth of 1. Therefore,
if exporting a model from IDL, use something like the following:

im = mrdfits(’image0.fits’, 0, hd)

sxaddpar, hd, ’RESTFREQ’, 345.7959899E9
sxaddpar, hd, ’RADESYS’, ’FK5’

sxaddpar, hd, ’SPECSYS’, ’LSRK’

sxaddpar, hd, ’CRVAL1’, ten(’17:56:21.2704°)*15
sxaddpar, hd, ’CRVAL2’, ten(’-21:57:22.205°)
sxaddpar, hd, ’CRVAL3’, 7010.0

sxaddpar, hd, ’CUNIT3’, ’M/S’

sz = size(im,/dim)

fits_write, ’model.simobs_custom.fits’, reform(im, [sz[0],
sz[1], sz[2], 1]), hd

where image is the variable name for the image, and sz is a three
dimensional array with the size of each dimension in the x and y
directions and the velocity axis, respectively.

CASA: T attempted to force my model .fits image to have the proper
format by importing the image to CASA and then exporting to
fits. This did not work, unfortunately - it did not add a Stokes
dimension to the data. There may be a way to add a dummy
Stokes dimension in CASA, but for now, we can just use a simple
IDL script.

2. Create a simulated uv-dataset
Simobs_custom will create a new .ms with two columns: ‘data’ will
contain the original observation, while ‘model” will contain the model
observations. It was setup this way to allow for the further creation of
a residual uv data set, if so desired (this is discussed below, in Section
REF). Here is an example call:

simobs_custom(vis=’../observation/HD163296.C032.LSRK.ms.contsub’,
project = ’sim’, skymodel = ’../model/model.simobs_custom.fits’,
mode = ’line’)

To examine the simulated visibilities, open the new .ms in plotms.

14



Under Axes, select the Data Column: 'model’. Notice that the .ms con-
tains the parent continuum-subtracted observation in the 'data’ Data
Column.

3. Make a continuum subtracted model dataset.

(a) Extract the simulated observations of the model.

split(vis=’sim/sim.ms’, outputvis=’sim/modelOnly.ms’, datacolumn=’model’)

(b) Use plotms to identify continuum channels
e.g. 0:1107150,4507525

(c) carry out the continuum subtraction. If the continuum regions are
short (as in this case) it may be better to use fitorder = 0. With
observations, where there may be an actual continuum slope, it is
best to use fitorder =1

uvcontsub(vis=’sim/modelOnly.ms’, fitspw=’0:1107150;4507525",
fitorder=0)

this makes a new .ms (in this case, sim/modelOnly.ms.contsub)
with the continuum subtracted model visibilities in the DATA
column

(d) As usual, check the resulting .ms using plotms.

4. Make a line image (data cube)
Ideally, this will be done using the same clean mask used to make the
final image of the observations. e.g.

clean(vis=’sim/modelOnly.ms.contsub’, imagename=’sim.C032’,
mode=’velocity’, nchan = 150, start=’-10km/s’, width=’0.20km/s’,
outframe=’LSRK’, imsize=[300,300], cell=[’0.l1larcsec’],
restfreq="345.7959899GHz’, stokes=’I’, threshold=’150mJy’,
interactive=False, mask = ’../observation/HD163296.C032.mask’)

15



5 Comparing simulated model observations
to actual observations

5.1 Generate the visibility residuals

In order to create a uv-residual data set, you can do the following:

1. outside of CASA, copy the observation and simulated observation to a
new .ms

cp -r sim/sim.ms sim/resid.ms

2. replace the MODEL column in the new .ms with the continuum sub-
tracted model.

tb.open(’sim/modelOnly.ms. contsub’)
tb.colnames

model = tb.getcol (’DATA’)

tb.close

tb.open(’sim/resid.ms’, nomodify=False)
tb.colnames

tb.putcol (’MODEL_DATA’ ,model)

tb.flush

tb.close

3. Examine the DATA, CORRECTED, and MODEL columns of resid.ms
in plotms. 'DATA’ should match the continuum subtracted observa-
tion, 'MODEL’ should match the continuum subtracted model, and
"CORRECTED’ should be empty.

4. wvsub will calculate the residual, placing it in the CORRECTED_DATA
column of resid.ms

uvsub(vis=’sim/resid.ms’)

It is common to show the CLEAN image of the residual of the bestfit
model.

clean(vis=’sim/resid.ms’, imagename=’resid.C032’, mode=’velocity’,

16



nchan = 150, start=’-10km/s’, width=’0.20km/s’, outframe=’LSRK’,
imsize=[300,300], cell=[’0.larcsec’], restfreq=’345.7959899GHz’,
stokes=’I’, threshold=’150mJy’, interactive=False,

mask = ’../observation/HD163296.C032.mask’)

5.2 unbinned, point-by-point comparison

Ideally, one would compare the least-processed data to the model on a point-
by-point basis. The previous section has shown how to use CASA’s uvsub
command to generate the residual. With the large number of uv points in
an observation (furthermore multiplied by the number of frequencies com-
pared!), the reduced-x? of the best-possible fit converges to 1, which can in
some ways ease interpretation. On the other hand, if this data is combined
with any other data set, it will overwhelm that other data’s contribution (and
hence swamp the ability to constrain parameters that primarily influence the
other data set).

Unfortunately, it is unclear to me how to properly convert the weights
that are assigned to each data point to an uncertainty. I have not been
able to find documentation describing how the weights are calculated - as-
suming something along the lines of ¢ = 1/w? should work, at least for a
minimization, but the resulting x? contours will not necessarily map onto
uncertainties (though that is generally not formally the case anyway with
this sort of work).

Furthermore, there are no built-in functions for doing arbitrary math
on visibility datasets, so this calculation will require doing calculations in
Python or exporting to work with other languages e.g. IDL. To export the
visibilities:

exportuvfits(vis = ’sim/sim.ms’, fitsfile = ’observation.uv.fits’,
datacolumn = ’data’)

exportuvfits(vis = ’sim/resid.ms’, fitsfile = ’residual.uv.fits’,
datacolumn = ’corrected’)

exportuvfits(vis = ’sim/modelOnly.ms.contsub’, fitsfile = ’model.uv.fits’,
datacolumn = ’data’)

I have written an IDL function to load the visibility data from ALMA,
wvfits_read_ALMA in the file wvfits.pro. There are then two followup proce-
dures to deproject the visibilities, and to shift the phase center if necessary

17



(uvfits_deProject and uvfits_shiftPhaseCenter). To load the data, use e.g.,

obs =1 & obshd = ’1’ & resid = 1 & residhd = ’1’ & stokes =1 &
freq=1&u0=1&v0=1& vels =1

uvfits_read_ALMA, ’observation.uv.fits’, visstruc = obs, vishd =
obshd, stokes = stokes, freq = freq, u0 = u0, v0 = v0, vels = vels

uvfits_read_ALMA, ’residual.uv.fits’, visstruc = resid, vishd = residhd

The variables stokes, freq, u0, v0, and vels will be filled with linear arrays
of those parameters. The variables obs and resid will be arrays of structures,
as described in the Appendix.

5.3 slightly binned, still capturing full (u,v) range

NOTE: This is the only code example where the coding approach is better
in IDL than what I know can be achieved in Python. This is due to the
hist_nd function used in the gridding, which includes a reverse indices that
dramatically speeds up the calculation of the real and imaginary components
in each bin by avoiding some degree of looping. Perhaps something clever
can be written in Python (e.g., use a 2D histogram, then iterate through
each occupied bin and use the Python equivalent of IDL’s where function to
speed the calculation).

This provides a solution to the problem of error estimation for the calcula-
tion of y2. It also eases the combination with other data sets by reducing the
number of points (though additional relative weighting may still be needed),
and allows for conceptually simpler estimation of uncertainties. 1kA x 1k
bins will easily reduce a dataset to a few hundred points, while retaining
coverage of the full (u,v) range of the observation. This cannot currently be
done within CASA. Within IDL, the steps to use this would be:

1. load the observation
uvfits_read_ALMA, ’observation.uv.fits’, visstruc = obs, vishd

= obshd, stokes = stokes, freq = freq, u0 = u0, vO = v0, vels
vels

2. Create an array with the indices of the channels with line emission.

18



channels = findgen(110)+260

3. Grid the data in uv space, calculating the mean real and imaginary
value as well as their uncertainty. wuvfits.make_gridded_uv will by de-
fault split the uvspace into bins with a mean number of 20 integrations
per bin. This can be changed by supplying a parameter nbins, which
is the number of bins in both u and v. The ranges can also be set with
2-element arrays urange and vrange.

gridded = uvfits_make gridded_uv(obs, channels = channels)
4. The output will consist of a structure containing several arrays:

e npts -

e uArray -
e vArray -
e real -

e real Err -
e imag -

e imag_err -

5. Examine the arrays using atv, e.g.:

atv, gridded.real
atv, gridded.real / gridded.real_err
atv, gridded.imag / gridded.imag err
atv, gridded.npts

5.4 a few bins in R,,, good for azimuthally symmetric
data

Visibilities for an azimuthally symmetric source should have imaginary com-
ponents of zero, in the case of the phase center being at the center of emission.
In such a case, visibility profiles can be constructed in which the real and
imaginary components are calculated as a function of r,, = Vu? + v?, as well
as calculating the uncertainty in the mean in each bin.

19



These 1-dimensional profiles of the real component can then be inter-
preted in terms of simple gaussians or point sources. There has also been
work dealing with the analytic interpretation of visibilities for rings (e.g.
Hughes et al. 2007, ApJ, 664, 536). Non-zero values in the imaginary com-
ponent reflect azimuthal asymmetries, and shifting the phase center to match
the center of emission should minimize the imaginary components. Hughes
et al. also outlines the transformations to deproject a set of visibilities (i.e.,
from inclined to face on, suitable for binning). Lay, Carlstrom, and Hills
(1997, ApJ, 489, 917) Figure 3 is also a useful reference.

Attila has written a task called visbin to examine radial visibility profiles
in CASA. This uses the information in the data column; therefore, to look
at the profile of the model or residual, use split to place them in their own
.ms files. e.g.

split(vis = ’sim/sim.ms’, outputvis = ’observation.ms’, datacolumn

= ’data’)

split(vis = ’sim/resid.ms’, outputvis = ’residual.ms’, datacolumn

= ’corrected’)

split(vis = ’sim/modelOnly.ms.contsub’, outputvis = ’model.ms’, datacolumn
= ’data’)

The following is an example of the use of visbin to deproject in inclination
and position angle, and bin the channels containing line emission.

visbin(vis=’observation.ms’, spw=’0:2607370’, incl = 44.0, posang=133.0,
binwidth = 10000, nbins = 40, binfreq=True, fit_phasecenter=False,
outfile=’observation’, overwrite=True)

visbin(vis=’model.ms’, spw=’0:260"370’, incl = 44.0, posang=133.0,
binwidth = 10000, nbins = 40, binfreq=True, fit_phasecenter=False,
outfile=’model’, overwrite=True)

visbin(vis=’residual.ms’, spw=’0:2607370’, incl = 44.0, posang=133.0,
binwidth = 10000, nbins = 40, binfreq=True, fit_phasecenter=False,

outfile=’residual’, overwrite=True)

derotates the observation from a position angle of 133 degrees, and de-inclines
the visibilities from an inclination on sky of 44 degrees (which happen to be

20



the values from the literature for this particular disk). If there is a known
position offset, it may be better to have a preceding step using fizvis to com-
pensate (Note: visbin has an internal phaseshift capacity. However, I have
not yet tested it, and therefore recommend for the moment the use of fizvis).

Otherwise, set fit_phasecenter to True. Note that the fitting routine will
take a long time, and scales as the multiple of the number of offset points to
test in RA and in Declination.

visbin will output a text file which contains the visibility profile, which
can then be used for further calculations.

NOTE that program looks for multiple spws, and may display error mes-
sages if none are found. These can be safely ignored.

5.5 1image plane comparisons

5.5.1 Multi-channel

The simplest way to make comparisons in the image plane is to use the viewer
to overlay model contours on a raster map of your data. In order for this
to work properly, you need to have CLEANed the simulated observation of
the model with the same settings as the observations. It is also helpful to
show contours for the observation (in a different color) and scale both sets
of contours to show the same multiples of the uncertainty in the observation
(e.g., 2,3,6,90).

The comparison can be quantified and automated using immath, after
using immoments with moments=6 to construct a noise map.

immoments (imagename=’"myData.image’, moments=6, axis=’spectral’,
chans=’10740;1207150’, outfile=’myData.noise’)

immath(imagename = [’myData.image’, ’myModel.image’, myData.noise’],
mode=evalexpr, expr=’((IMO - IM1)*(IMO - IIM1)) / (IM2 * IM2)’, outfile
= ’chisqContribs’)

imcollapse(imagename=’chisqContribs’, function=’sum’, axis = 1, outfile=’temp’)

chisq = imcollapse(imagename=’temp’, function=’sum’, axis = 1, outfile=’temp2’)

21



5.5.2 Spatially integrated spectra

With both datacubes being displayed in the viewer, the spectrum viewer will
also display both lines simultaneously. The line fitting function will not fit
both, however. It will fit the first one loaded first. You should then hide that
image to fit the other. The properties of the fit will display in your terminal
window. There may be a way to access those values programmatically, but I
do not know it.

Also note that by default, the mean intensity is displayed in the spectrum
viewer. There is a toggle under the display to change to showing the summed
flux. Unfortunately, you will need to reset this everytime you open a new
spectral viewer.

5.5.3 Position-velocity diagram

Position-velocity diagrams are common tools for examining kinematic in-
formation from data cubes. The ARTIST package includes a GUI tool for
investigating PV diagrams, IVAN. CASA has a built in task, impv. With the
center of emission and object position angle identified, one may examine the
velocity profile to test e.g., Keplerian motion. This can provide additional
constraints on e.g. the inclination of a disk determined using elliptical fits
to the continuum or, if the inclination is assumed correct, constraints on the
stellar mass.
To interactively examine the PV diagrams, use IVAN (a subset of ARTIST).

On a Sterrewacht computer, do the following;:

source /software/ARTIST/artisrc.csh (or .sh if using bash)
ivan

The final position-velocity diagram can be saved as a .fits file for other
calculations, if desired.
The generation of a PV diagram can also be scripted, e.g.:

impv(imagename=’myModel.image’, outfile=’myModel.pv’, start= [200,195],
end=[318, 317])

Once PV diagrams are generated for both data and model, they can be
compared as described above using immath.

22



6 Strategies for using and interpreting mod-
els

6.1 By-hand fits

At first, one should probably generate models and make comparisons man-
ually, developing some intuitions for how different parameters of the models
affect the resulting simulated observations and continually improving the
steps in the process. There are many pieces that go into this sort of work,
from the codes used to develop the models, to the processing of them and
comparisons to data. Examining the output from each step is essential.

However, once one has finalized the approach to simulating observations
and extracting metrics, and has developed a sense of the interesting parame-
ters in the models, one should develop an automated way of exploring many
models. There are two primary approaches to this task - a grid, and a param-
eter search algorithm. Below, I briefly discuss each, and outline an example
approach.

6.2 A grid

With a grid, one predetermines a set of values to explore for the parameters
of interest. Then, models are generated and examined. If the models change
slowly enough across the grid, then intermediate values may be interpolated
- this is, however, rare and risky.

The models that are produced by a grid can be examined by eye or by
the calculation of metrics. Ideally, you will do both! Grids also provide
the opportunity for uniform sampling of the parameter space, which can be
useful for simplifying statistical analysis of the parameter uncertainties.

6.3 Parameter search algorithm

Numerous algorithms exist for automatically exploring a parameter space.
These require that you develop a scriptable metric calculation which the
algorithm will use in determining the parameter combinations for which it
generates models.

One of the more easy-to-use extant tools is the MPFIT package for IDL
(Markwardt, C.B., 20009, PASP 411, 251). To use this, one must first write
a function that will generate a model given a set of parameters and calculate

23



it’s x2 value. The MPFIT code then systematically varies the parameters
and follows Vx? down to a minimum.

In order to avoid the possibility of settling on a local rather than globabl
x? minimum, one should run the search several times, starting in different
regions of the parameter space. This has the added benefit of making the
search more uniform, which is important for examining e.g. 2D x? plots.

The user function may contain any number of operations. It is typical to
write the function to facilitate later exploration of the models. For example,
a code running with the goal of identifying the primary gas parameters of a
circumstellar disk, the gas mass, scale height, and characteristic radius (Mgas,
H¢, and R¢, may have the following outline:

1. Load previously determined dust structure (pqust(R,h) and Thuse(R,h))
and opacity information (Kqust)

2. Create a new folder to save diagnostics and intermediate products
3. Calculate pgas(R.h) using My,s, He, and Rc

4. Use pgas(R,h) to calculate the hydrogen column depth from infinity and
from the star (g, ), an important constraint on the formation of other
molecules

5. Adopt Taust(R,h)) as a reasonable approximation of the gas temper-
ature, Ty.s(R,h)). Save a diagnostic figure showing the gas density,
temperature, and hydrogen column depth as a function of radius and
height.

6. Use the hydrogen column depth and the gas temperature to determine
the region in which CO is present (e.g. at Ny, > 1.5 x 10?! ecm™2 and
Tyas > 20 K)

7. Output the gas density and temperature in a format for loading to a
radiative transfer code, e.g. LIME

8. Run the radiative transfer code for several lines and/or isotopologues

of CO

9. Simulate observations of these models (see Section 4, or ALMA CASA
documentation of simobserve)

24



10. Calculate a x? value for each model. If several techniques are used (e.g.
1k x 1kA binned visibilities for CO J=3-2, for which an interferometer
observation is available, but just an integrated line flux for CO J=2-1,
for which only a single dish spectrum is available in the literature),
then each contribution to the x? needs to be weighted (in this example
case, perhaps the y? from the binned visibilities, which have 100 times
as many points as the 1D spectrum, is down weighted by a factor of
100). This is all that is necessary for the search algorithm, but perhaps
the code also includes:

11. Create a CLEAN image of the model and generate a channel map show-
ing the model overlain on the observation, to ease later examination of
the models and parameter space. This can add time to the search and
take up extra disk space.

It is usually best to follow-up such an automated parameter search with
the production of a small uniform grid around the best-fit parameter, in
order to provide a better estimate of the uncertainties that avoids biases in
sampling that occur with automated searches.

A Structure of uv fits files from CASA

When a uvfits file output from CASA is read with the mrdfits function in
the Goddard IDL library, a structure will be created. This will actually be
a one-dimensional array of structures, each with two substructures. Each
of the structures is a single integration. Below, I list the elements in these
subarrays as well as the items added by my various functions and procedures.

array 0 X 3 X 2 X Nepanner X 1 X 1 X 1 array. The 0 and 1 element dimensions
are reformed by most reader programs, leave a 3 X 2 X Ncpanner array.
Each of these remaining columns selects for:

1. first column, with the elements selecting for:

(a) The real component,

(b) imaginary component, and

(c) the weight.

(d) amplitude (added by uuvfits_read_ALMA)
(e) phase (added by uvfits_read_ALMA )

25



2.

(f) real components for the data with the phasecenter shifted.
(added by wuvfits_shiftPhaseCenter)

(g) imaginary components for the data with the phasecenter shifted.
(added by wuvfits_shiftPhaseCenter)

The second column selects between the XX and YY polarization
components (which together add to twice Stokes I, e.g. see Syn-
thesis Imaging in Radio Astronomy II, pg. 311).

. The last column selects for the channel (frequency or velocity).

Actually generating the frequencies or velocities requires the use of
the corresponding header values (CRPIX4, CRVAL4, & CDELT4)

params contains the following information, in a 1D array:

e e e e e
Tt s WY = O

© 2 NS oW

UU - in seconds. SIN projection (i.e. along North)
VV - in seconds. SIN projection (i.e. along East)
WW - in seconds

DATE - day number

DATA - day fraction

BASELINE - baseline number

FREQSEL - frequency setup ID?

SOURCE - source ID number

INTTIM - integration time in seconds

. u-in kX (added by wvfits_.read_ ALMA )

. v - in kX (added by wvfits_read_ALMA )

. R -in kX (added by wvfits_deProject )

. PHI - radian (added by uvfits_deProject )
. DMAJ - (added by uvfits_deProject )

. DMIN - (added by wuuvfits_deProject )

16.

RUV - (added by wuvfits_deProject )

The procedure uvfits_.read_ALMA adds two dimensions to array - ampli-
tude and phase, the alternative representation of the complex numbers. It
also adds two new elements

26



wvfits_deProject adds 5 new elements to params - the original uv radius
and angle on sky, Ryy raw and ¢, as well as the deprojected uv distance along
the major and minor axes and the deprojected uv-radius, dyqj, dmin, and
Ryy.

wvfits_shiftPhaseCenter adds two more elements to the first column of
array, the real and imaginary components for the data with the phasecenter
shifted.

Here are some examples of plotting data that has been loaded into IDL
with uvfits_read_ALMA.

e Initialize variables and read the observations

obs =1 & obshd = ’1’ & model = 1 & modelhd = ’1’ & resid
1 & residhd = ’1’ & stokes =1 & freq =1 & u0 =1 & v0 =
& vels = 1

1

uvfits_read_ALMA, ’observation.uv.fits’, visstruc = obs, vishd
= obshd, stokes = stokes, freq = freq, u0 = u0, vO = v0, vels
= vels

e Also read in the model and residuals.

uvfits_read_ALMA, ’model.uv.fits’, visstruc = model, vishd =
modelhd

uvfits_read_ALMA, ’residual.uv.fits’, visstruc = resid, vishd
= residhd

e Display the u,v coverage

plot, obs[*].params([9], obs[*].params[10], psym=3

e display amplitudes of the XX components as a function of velocity
; make an array of velocities to match the dimensions of the nVis by

nkreq array ones nUV = make array(n_elements(obs))
plot, vels # ones nUV, obs[*].array[3,0,*], psym=3

27



To see what I did here with the # operation, examine the variables:

help, vels, ones nUV, vels # ones nUV, obs[*].array[3,0,*]

Show the weighted mean scalar-average amplitude as a function of ve-

locity weights = obs[*].arrayl[2,*,*]

amps = obs[*].arrayl[3,*,x*]

stokes_I = REFORM(TOTAL(weights * amps, 2, /double) / TOTAL(weights,
2, /double)) / 2

weight I = REFORM(1.0 / SQRT((1.0 / weights[*,0,*,x])"2 + (1.0

/ weights[*,1,%,%])"2))

avg = TOTAL(weight_I * stokes_I, 2, /double) / TOTAL(weight_I,

2, /double)

plot, vels, avg

Show the weighted mean scalar-average amplitude as a function of ve-
locity, for baselines longer than 200 kA

use = where(SQRT(obs[*].params[9]~2 + obs[*].params[10]~2) LT
200)

weights = obs[use] .array[2,*,x*]

amps = obs[use].array[3,*,*]

stokes_I = REFORM(TOTAL(weights * amps, 2, /double) / TOTAL(weights,
2, /double)) / 2

weight I = REFORM(1.0 / SQRT((1.0 / weights[*,0,*,x])"2 + (1.0
/ weights[*,1,%,%])"2))

avg = TOTAL(weight_I * stokes_I, 2, /double) / TOTAL(weight_I,
2, /double)

plot, vels, avg

Show the weighted mean scalar-average amplitude as a function of ve-
locity, for baselines longer than 200 kA and for velocities from -15 to
15 km/s

useUV = where(SQRT (obs[*] .params[9] "2 + obs[*].params[10]~2)
GT 200)

useChan = where(vels GT -15 and vels LT 15)

weights = obs[useUV].array[2,*,useChan]

amps = obs[use] .array[3,*,useChan]

28



stokes_I = REFORM(TOTAL(weights * amps, 2, /double) / TOTAL(weights,
2, /double)) / 2

weight I = REFORM(1.0 / SQRT((1.0 / weights[*,0,*,%¥])"2 + (1.0

/ weights[*,1,%,%])"2))

avg = TOTAL(weight I * stokes_I, 2, /double) / TOTAL(weight I,

2, /double)

plot, vels, avg

e Show the weighted mean vector-average amplitude as a function of ve-
locity, for baselines longer than 200 kA and for velocities from -15 to

15 km/s

useUV = where(SQRT (obs[*] .params[9] "2 + obs[*].params[10]~2)
GT 200)

useChan = where(vels GT -15 and vels LT 15)

weights = obs[useUV].array[2,*,useChan]

reals = obs[use].array[0,*,useChan]
imags obs[use] .array[1,*,useChan]

stokes_I real = REFORM(TOTAL(weights * reals, 2, /double) /

TOTAL (weights, 2, /double)) / 2

stokes_I_imag = REFORM(TOTAL(weights * imags, 2, /double) /
TOTAL(weights, 2, /double)) / 2

weight I = REFORM(1.0 / SQRT((1.0 / weights[*,0,*,%x])"2 + (1.0

/ weights[*,1,*,%])72))

avg_real = TOTAL(weight I * stokes_I_real, 2, /double) / TOTAL(weight_I,
2, /double)

avg_imag = TOTAL(weight I * stokes_I_imag, 2, /double) / TOTAL(weight_I,
2, /double)

amp = SQRT(avg.-real”™2 + avg_imag~2)

plot, vels[useChan], avg

B Script outline

Either of the modeling approaches discussed in the main text, model grid
or parameter search, will benefit from having your operations running from
a script. In the following, I describe an example set of files and scripts for

29



generating a grid of models.

1. Model parameters file
Define the parameters of the models that will be generated

2. Model iteration file
This is the script that is called to create the models. This
may be combined with the ’Model parameters file’.

(a) Load observation metrics
Load metrics from the observations, to use repeatedly in
calculating fit metrics for the models (e.g. the radial
visibility profile of the observed object)

(b) Iterate through the models (grid), or calculate the parameters of
the next model to run (algorithmic parameter search)

i. Setup basic file structure
Make a folder for the new model, with subfolders for
models, simulated observations, fit-metrics, and diagnostic
figures

ii. Setup subsidiary parameter files
Each modeling code has its own formats for taking input.
An example of this would be changing parameters in RADMCs
problem params.pro

iii. Save a list of the varied parameters in plain text in the model
folder

iv. Generate the model
Call a script to run the modeling code, e.g. from IDL,
calling ’.r problem_setup.pro’ to generate a RADMC continuum
model from dust emission

v. Simulate observation of the model
Call a script which has the simulation commands as shown
in the main body of this document.

vi. Extract information
Call a script, or several scripts, to extract information
from the simulated observation. It is a good idea for
these scripts to also save figures for later examination.

30



vii. Calculate metrics
Use the extracted information from the model and the

pre-loaded information from the observation to calculate

e.g. X°.

(c) Generate summaries
Compiling the y? of the generated models in a single table,
or creating a file with diagnostic figures from all models
(e.g. SEDs for dust modeling) can make later examination
easier.

C Shifting the phase-center

In the document, we recommend using fizvis to adjust the phasecenter when
carrying out an analysis that requires centered data (e.g. visibility profiles
for azimuthally symmetric sources). The underlying math for this operation
can be seen in the function wufits_shiftPhaseCenter, and the derivation is
carried out below courtesy of Markus Schmalzl.

31



