

An Overview of Exocomets

Daniela Iglesias¹ · Isabel Rebollido² · Azib Norazman^{3,4} · Colin Snodgrass⁵ ·
Darryl Z. Seligman⁶ · Siyi Xu⁷ (许偲艺) · H. Jens Hoeijmakers⁸ · Matthew Kenworthy⁹ ·
Alain Lecavelier des Etangs¹⁰ · Michele Bannister¹¹ · Bin Yang¹²

Received: 18 February 2025 / Accepted: 18 November 2025 / Published online: 2 December 2025
© Crown 2025

Abstract

We give a general overview of what the scientific community refers to as “exocomets”. The general definition of exocomets, as presented in this work, is discussed and compared with Solar System comets and interstellar objects, addressing their detection around main-sequence stars as well as orbiting white dwarfs. We introduce the different types of exocomet observations, highlighting the difference between exocometary ‘bodies’ and exocometary ‘material’. We provide a census of all exocometary system candidates detected so far, both via spectroscopy and photometry, including detections around white dwarfs.

Keywords Exocomets · Comets · Interstellar objects · Circumstellar material

1 Introduction

Small bodies in the Solar System are considered fossils of the planet formation process, holding key information about the chemistry and dynamics of its early stages. They are compact reservoirs of solid material that can be transported throughout planetary systems, particularly volatiles, as well as the delivery of ices to the inner system (O’Brien et al. 2018). Their role in collisional processing is crucial to understanding both the age and evolution of surfaces throughout the Solar System, and the history of life on Earth (Alvarez and Muller 1984).

Small bodies in other stellar systems should therefore provide similarly useful information for planet formation and evolution throughout the Galaxy. The astronomical community has detected extrasolar small body material in the form of exocomets (Kiefer et al. 2014b) — which form the main focus of our discussion —, exocometary residuals (such as gas and dust leftover from former exocomets; Dent et al. 2014), interstellar objects (Fitzsimmons et al. 2024), and interplanetary dust (Sterken et al. 2019).

Nowadays, the word ‘exoplanet’ is widely accepted in the astronomical community and familiar to the general public. With over 6000¹ confirmed exoplanets as of October 2025 (and counting), their number has increased dramatically during the decade 2010–2020.

¹ <https://science.nasa.gov/exoplanets/> 6028 confirmed exoplanets, accessed on 17 October 2025.

Darryl Z. Seligman is NSF Astronomy and Astrophysics Postdoctoral Fellow.

Extended author information available on the last page of the article

However, their discovery is fairly recent in the history of astronomical research, with the first discovery of an exoplanet around a solar-type star occurring in 1995 (51 Pegasi b; Mayor and Queloz 1995). Often overlooked is that the discovery of small bodies orbiting other stars predated that of extrasolar planets. In 1987, Ferlet et al. reported variations in the Ca II K line of β Pictoris and proposed to explain them by cometary-like objects transiting the star. Many studies followed, confirming the observed variations in the Ca II K (and H) line of β Pic, also observed in other ionised lines such as Mg II, Fe II, and Al III (e.g. Lagrange et al. 1987, Lagrange-Henri et al. 1988, Beust et al. 1991, Deleuil et al. 1993, Vidal-Madjar et al. 1994, Lagrange et al. 1996, Kiefer et al. 2014b, Tobin et al. 2019). The term ‘FEBs’ (Falling Evaporating Bodies) was used in some works since Beust et al. (1990) to refer to these infalling planetesimals (which in reality are sublimating rather than evaporating). Today, these are more frequently termed ‘exocomets’, analogous to ‘exoplanets’: ‘comets’ around other stars. However, the exact meaning of the term ‘exocomet’ is not yet well defined, and in Sect. 2 we address its definition.

Exoplanets are expected to be as common as stars; population studies show that the average number of planets per star is close to one (Mann et al. 2017; Livingston et al. 2018; Kruse et al. 2019; Schulte et al. 2024). Small bodies, including exocometary nuclei, should therefore also be common given that they are a natural by-product of the planetary formation process. However, our understanding of exocomets is limited to a handful of detections. Most of what we know is based on observations and modelling of a single system: β Pictoris. This system is an A6V-type star hosting two planets; $b \sim 12 M_{\text{Jup}}$ and $c \sim 10 M_{\text{Jup}}$ (Lagrange et al. 2009, 2019) and surrounded by an edge-on debris disc (Smith and Terrile 1984). β Pictoris is considered to be the canonical exocometary host system and has provided thousands of exocomet detections at different wavelengths. This system is quite young, with an estimated age of 23 ± 3 Myr (Mamajek and Bell 2014), and bright; $V_{\text{mag}} = 3.86$ (Ducati 2002), and is located at only 19.63 pc from our Solar System (Gaia Collaboration 2020). Spectroscopic observations show that exocometary transits occur almost daily in β Pictoris and these transits have been confirmed with photometric observations (Kiefer et al. 2014b; Tobin et al. 2019; Zieba et al. 2019). This system has also yielded the largest number of chemical species detected in exocomets. The distinctiveness of this system may arise from the rarity of bright and young edge-on systems. For a more comprehensive review of β Pictoris we refer the reader to Lu et al. (submitted). We provide this brief overview because β Pictoris will be frequently mentioned as the reference case in these series due to its uniqueness.

The study of exocomets has also expanded the search for circumstellar gas around main-sequence stars as, in some cases, this gas is believed to originate from exocomets (e.g. Matrà et al. 2017a; Kral et al. 2019). Most protoplanetary disc material should be depleted at the main-sequence stage, and dust would be generated by collisional cascades (Wyatt 2008). In addition to the early detections of CO through UV spectroscopy (Vidal-Madjar et al. 1994; Jolly et al. 1998; Roberge et al. 2000), the advent of the Atacama Large Millimeter Array (ALMA) and other interferometric facilities provide evidence that there are non-negligible gas reservoirs at the main-sequence stage. It is currently unclear whether this is primordial gas left over from the protoplanetary disc stage, or secondary gas released by collisions and/or sublimating bodies (e.g. Moór et al. 2017; Matrà et al. 2017b; Marino et al. 2020; Nakatani et al. 2021). There are convincing arguments and inconsistencies for both origin theories. However, in the case the gas is proven to be secondary, then observations of this gas would provide an indirect method to study the composition of icy and rocky bodies in planetary systems. Moreover, other studies have expanded to post-main sequence stages, where the compositions of rocky bodies are investigated through the pollution on white dwarfs (Rogers et al. 2024) and their circumstellar dust and gas (Dennihy et al. 2020).

This introductory work sets the scene for a series of publications about exocomets, their origin, evolution, and relevance in the study of planetary systems. A list of these manuscripts and a brief description is provided at the end of this work.

2 Comets in Extra-Solar Systems

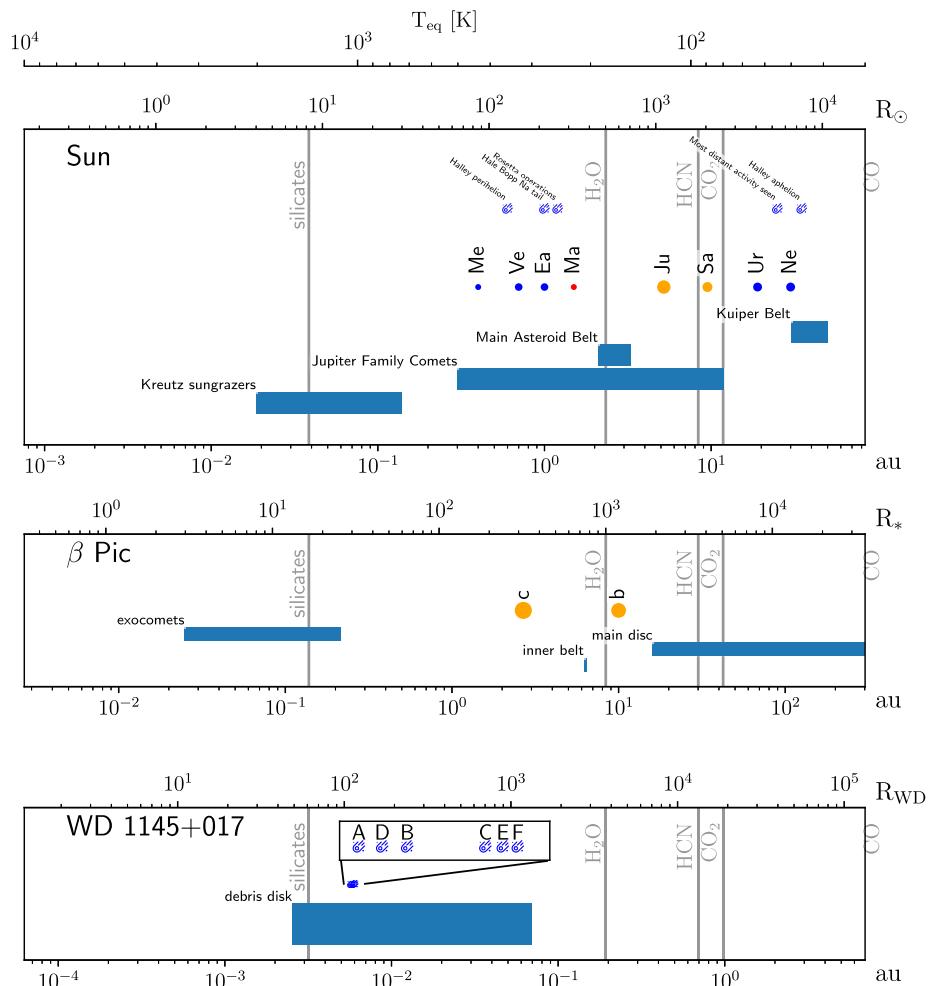
In this section, we define what we mean by the term ‘exocomet’ for the purposes of this work and others that are part of this collection. To begin with, it is worth noting that the term ‘comet’ does not have a rigid definition within studies of our own Solar System, and consequently the word ‘exocomet’ has been used quite broadly in the literature. Therefore, we start this section by discussing the definition of Solar System comets, followed by interstellar objects, to finally address the definition of exocomets.

2.1 Solar System Comets

Recent studies of Solar System minor bodies increasingly show that there is a continuum from rocky asteroids through to icy comets, and populations do not simply divide into one category or the other. Active asteroids and Main Belt comets are bodies on $\sim 1 \leq a \leq 5$ au orbits that show comet-like activity, normally in the form of a dust tail. Initial disagreement about which of these terms to use has developed into a general consensus that ‘active asteroids’ is the more general term, meaning any body in an asteroid-like orbit that shows evidence for mass loss, while ‘Main Belt comets’ are the subset of these that have orbits within the main asteroid belt between Mars and Jupiter, and activity suspected to be driven by sublimation of ices (Snodgrass et al. 2017; Jewitt and Hsieh 2024). Active asteroids include those whose tails are debris trails resulting from collisions, or other non-sublimation-driven mass loss (e.g., rotational disruption). The distinction between active asteroid and Main Belt comets is often difficult: the outgassing levels of these weakly active comets are so low that direct detection of the gas coma has only recently become possible using JWST (Kelley et al. 2023), and the categorisation generally depends on circumstantial evidence, such as repeated activity from orbit-to-orbit, or models suggesting long-duration activity rather than dust release in a single event.

Other observations that muddy the definition of comet vs asteroid in the Solar System include a number of apparently asteroidal bodies on comet-like orbits, as defined by Vaghi (1973) and Levison (1996), which have been discovered in recent years (Jewitt and Hsieh 2024), and meteor streams with apparently asteroidal parent bodies (Ye and Jenniskens 2024). The limits of what can be described as cometary activity have been stretched by improved observation technology, revealing weak outgassing or dust release in objects previously thought to be inert. Examples of these include the asteroid Bennu, which was seen to be ejecting \sim cm-sized particles in *in situ* images obtained by the OSIRIS-Rex spacecraft, at an ‘activity’ level that could never be detected remotely (Lauretta et al. 2019). Others, which have been called ‘dark comets’, have shown no detectable activity by photometric or spectroscopic methods, but require non-gravitational acceleration that is best explained by the force of comet-like outgassing – these include various near-Earth asteroids (Seligman et al. 2023; Farnocchia et al. 2023), and potentially the interstellar object 1I/‘Oumuamua (Micheli et al. 2018).

Finally, while the word ‘comet’ is generally used in reference to activity driven by sublimation of ices, it is important to remember that different chemical species sublime at different temperatures: cometary activity near 1 au from the Sun is generally thought to be


driven primarily by sublimation of water ice, but this is inefficient beyond 3 to 5 au heliocentric distance. Activity at larger distances is now regularly observed, with C/2014 UN271 and C/2017 K2 showing evidence for activity at 25–35 au (Jewitt et al. 2021; Bernardinelli et al. 2021). In addition to these two well-known distant comets, C/2010 U3 and C/2019 E3 have also been observed showing activity beyond the orbit of Uranus (i.e. beyond 19 au, Hui et al. 2019, 2024). At these distances, activity is expected to be driven by more volatile ices, such as CO and/or CO₂ (Meech and Svoren 2004).

At the other extreme, it is worth noting that any solid body will sublimate if heated strongly enough in a vacuum, and mass loss very close to the Sun does not require an icy composition. Asteroid (3200) Phaethon has been called a ‘rock comet’ due to evidence for it losing material at its 0.14 au perihelion, which is not heated enough to sublimate most minerals, but will result in peak temperatures of ~ 1000 K that are sufficient to fracture rock and release dust in this way (Jewitt and Li 2010; Ye et al. 2021). It is likely that most of the Kreutz group of Sun-grazing comets, which are seen in coronagraphic observations, fragment/disintegrate/sublimate at temperatures high enough to sublimate silicate rocks, at distances around 10 Solar radii (Jones et al. 2018). Few near-Sun comets discovered by the Solar and Heliospheric Observatory (SOHO) actually survive perihelion; some of those that have been observed (when further from the Sun) have properties more typical of asteroids than ‘typical’ icy comets (Knight et al. 2016). In β Pic and WD 1145+017, (systems observed to host exocomets) temperatures at the distances these comets are observed are comparable to the regime where Kreutz group comets are observed in our Solar System (see Fig. 1). We must therefore be careful not to interpret the term ‘exocomet’ as necessarily implying ice-driven sublimation or the presence of any icy component.

2.2 Interstellar Objects

An interstellar object is a macroscopic planetesimal from an extrasolar system observed passing through the Solar System on a hyperbolic trajectory. Three definitive interstellar objects have been detected to date: 1I/‘Oumuamua in 2017 (originally 2017 U1 in Williams et al. 2017), 2I/Borisov in 2019, and 3I/ATLAS in 2025. In this section, we provide a brief overview of these three objects and their divergent properties. For more detailed reviews see Fitzsimmons et al. (2024), Jewitt and Seligman (2023), Moro-Martín (2022), Seligman and Moro-Martín (2023).

‘Oumuamua and Borisov had distinctly contrasting properties. 1I/‘Oumuamua displayed a myriad of bizarre properties mirroring both asteroids and comets, while 2I/Borisov displayed distinct cometary activity. 1I/‘Oumuamua displayed no cometary tail in deep stacks of images (Meech et al. 2017; Jewitt et al. 2017; Ye et al. 2017) or CO and CO₂ production (Trilling et al. 2017), but also a comet-like nongravitational acceleration (Micheli et al. 2018). It also displayed a reddened reflection spectrum (i.e. it shows a positive slope toward the red part of the spectrum compared to the Sun’s spectrum, Bannister et al. 2017; Masiero 2017; Fitzsimmons et al. 2018; Bolin et al. 2018), a surprisingly low galactic velocity dispersion (inferred from the incoming trajectory kinematics) and inferred dynamical age (Mamajek 2017; Gaidos et al. 2017b; Hallatt and Wiegert 2020; Hsieh et al. 2021), and an elongated shape (Meech et al. 2017; Bannister et al. 2017; Jewitt et al. 2017; Knight et al. 2017; Bolin et al. 2018; Drahus et al. 2018; Fraser et al. 2018; Belton et al. 2018; Mashchenko 2019). There have been a wide range of hypotheses regarding the provenance of the object, including a fractal aggregate formed from diffusion-limited aggregation in the exterior of a protoplanetary disc, meaning it formed via similar processes observed on Earth that govern dust bunny and snowflake formation (Moro-Martín 2019), to a comet-like

Fig. 1 The distribution of planets, main comet and asteroid belts around the Sun, and the equivalent analogues for Beta Pictoris and WD 1145+017. All distances are logarithmic, scaled such that they all have the same equilibrium temperature for a blackbody, meaning that the various sublimation lines are at the same x-axis locations for comparison. Distances from each star are labelled in stellar radii (upper scale) and astronomical units (lower scale). For the Sun, Solar system comets are shown with notable associated distances, belts and planets. For β Pictoris, the planets and main belts are noted. For the white dwarf WD 1145+017 the locations for the six transiting bodies are indicated, with a zoomed-in panel showing their labelled order from Vanderburg et al. (2015)

object with low dust to gas ratio outgassing hypervolatiles (Füglistaler and Pfenniger 2018; Sekanina 2019; Seligman and Laughlin 2020; Levine et al. 2021; Levine and Laughlin 2021; Desch and Jackson 2021; Jackson and Desch 2021; Desch and Jackson 2022; Bergner and Seligman 2023).

On the contrary, 2I/Borisov displayed definitive cometary activity associated with outgassing of volatiles (Fitzsimmons et al. 2019; Jewitt and Luu 2019; de León et al. 2019; Bolin et al. 2020; Guzik et al. 2020; Hui et al. 2020; Mazzotta Epifani et al. 2021), more in line with the comets native to the Solar System. However, unlike typical Solar System

comets 2I/Borisov was enriched in hypervolatiles, including a greater than unity ratio of CO to H₂O (Cordiner et al. 2020; Bodewits et al. 2020). It also exhibited a somewhat high degree of polarisation in dust in its outflow, implying that the object was more pristine and had not been significantly heated before (Bagnulo et al. 2021; Halder and Sengupta 2023).

A third interstellar object was discovered on July 1 2025 (Denneau et al. 2025) by the Asteroid Terrestrial-impact Last Alert System (ATLAS) survey (Tonry et al. 2018), 3I/ATLAS. Preliminary observations revealed weak cometary activity and a reddened reflectance spectrum (Opitom et al. 2025; Seligman et al. 2025; Alarcon et al. 2025; Jewitt and Luu 2025; Karefa et al. 2025; Belyakov et al. 2025; Chandler et al. 2025; de la Fuente Marcos et al. 2025; Santana-Ros et al. 2025; Frincke et al. 2025; Jewitt et al. 2025; Puzia et al. 2025). Moreover, precovery observations of 3I/ATLAS revealed that it was active in TESS and ZTF for ~ 2 months prior to discovery, exterior to ~ 6 au heliocentric distances (Feinstein et al. 2025; Martinez-Palomera et al. 2025; Ye et al. 2025; Farnham et al. 2025). A variety of volatiles species have been detected actively being produced by the nucleus including CN (Salazar Manzano et al. 2025; Rahatgaonkar et al. 2025), HCN (Coulson et al. 2025), CO₂ (Cordiner et al. 2025; Lisse et al. 2025), H₂O (Xing et al. 2025), and water ice (Yang et al. 2025).

2.3 A Definition of Exocomets

The sporadic detection of transiting gas and dust clouds in the β Pic (and other) system have been called ‘comet-like’ since their discovery (Ferlet et al. 1987). Following this earliest designation, the term ‘exocomet’ to refer to these objects became common in the past decade. Another term found in the literature, *falling evaporating bodies (FEBs)*, is now discouraged as it is misleading (Strøm et al. 2020) – these objects are likely sublimating rather than evaporating, and are not necessarily in-falling.

For the definition of the term “exocomet”, one needs to address the question of what can be designated by the term “comet” in an extrasolar system: the requirement of orbiting a star other than the Sun is a direct consequence of the definition of an exoplanet (Lecavelier des Etangs and Lissauer 2022). Here, we propose to follow what is used in the Solar System since the earliest observations of comets in the sky: we propose restricting the use of the term ‘exocomet’ to minor bodies that show signs of sublimation, along with their surrounding tails composed of dust and gas escaping the nucleus. The signs of a tail and/or a coma produced through sublimation processes can be detected either through their dust component via photometry or their gaseous component via spectroscopy.

Note that this definition is also in agreement with the etymology of the term “comet”, which comes from the Greek word ‘*komêtê̄s*’, meaning ‘hairy star’, which in turn comes from the word ‘*komê̄*’ meaning ‘hair’.

This definition excludes planets that show a signature of atmospheric escape, such as HD209458 b (Vidal-Madjar et al. 2003), as they are not minor bodies. In the same spirit, debris discs can be supplied by exocomets and be mostly composed of remnants of exocometary material, and are therefore of prime interest in the exocomets studies; however, they are not considered as “exocomets” per se as they cannot be directly linked to individual bodies. On the other hand, sublimating bodies observed in the light-curves of polluted white-dwarves, which generally show distinct asymmetry by the transiting cometary tail (e.g. Vanderburg et al. 2015; Vanderbosch et al. 2021) do fall within this definition of an exocomet.

Similarly to comets in the Solar System, the term “exocomet” is thus used in reference to activity driven by sublimation of ices or rock at short distance to the parent star (Sect. 2.1).

Fortunately, in extrasolar systems, we do not face the same difficulties as in the Solar System where the question arises of what can be described as cometary activity in the context of the detection of very weak outgassing or dust release from objects previously classified as asteroids. In fact, in extrasolar systems we do not detect the nuclei but the result of the sublimation process by observing the comae and tails, making the detection and the classification a single joint problem.

In the context of white dwarfs, we use the term exocomets to describe any minor bodies with a tail composed of dust and/or gas, regardless of its period and eccentricity. In those systems, the outgassing mechanism is less clear, and it could be driven by sublimation, collision, tidal disruption, or a combination of several mechanisms.

The eccentricity of the orbit in the definition of the term “exocomet” is irrelevant, as in many cases we are not able to determine their eccentricity and they will be considered exocomets regardless of it. Most of those observed to date have close periastron passages, resulting in temperatures that lead to sublimation of rocky material. Those observed in spectroscopy give access to their radial velocity at the time of the transit. The measured velocities can range from zero up to hundreds of kilometres per second, both blue-shifted and redshifted, indicating motion on a variety of orbits and placing them typically at very short distances to the parent stars. Note here that the comet nucleus does not need to be in-falling (i.e., grazing or hitting the star) to be sublimating. Indeed, we have thousands of observations of Kreutz sungrazers in the Solar System, but have yet to convincingly detect a ‘Sun Diver’ (Jones et al. 2018).

Finally, it is worth mentioning that Strøm et al. (2020) proposed a definition of the term exocomet as: “*In this paper, we use the word ‘exocomet’ to describe comets which orbit other stars than the Sun and which exhibit some form of observable activity such as the release of gas or dust, e.g. through a coma or tails of ions or dust.*” The definition proposed here is in overall agreement with that of Strøm et al. (2020). However, interstellar objects are called ‘exocomets’ in Strøm et al. (2020). This is not consistent with the condition of orbiting stars other than the Sun, and therefore, in this work we do not consider interstellar objects as exocomets. We have expanded on the existing definition by addressing potentially debatable cases such as sublimating exoplanets displaying an asymmetric exocomet-like transit, for instance. This work aims to draw further constraints on what is and what is not considered an exocomet throughout this series of manuscripts on exocomets.

3 Exocomet Observations

In this section, we will first talk about the detection of individual exocometary ‘bodies’, which is what we previously defined as ‘exocomets’. Next, we provide a brief overview of the detection of exocometary ‘material’ attributed to the remnants of exocomet disintegration or sublimation in debris discs and around white dwarfs.

3.1 Detection of Exocometary ‘Bodies’

3.1.1 Spectroscopy

The first observations of exocomets were made in the 1980’s through spectroscopy. Their violent sublimation was observed for the first time close to the exoplanet host star β Pictoris as variations in the Ca II K absorption line (Ferlet et al. 1987). The stellar nature of the variations was ruled out as the variable features appeared superimposed on photospheric lines.

Incidentally, β Pictoris is a rapidly rotating star, with very broad and deep photospheric lines. The features produced by exocomets are instead narrow and often shallow, with small equivalent widths (EW), indicative of the small amount of gas included in the tail and/or coma of the sublimating body. Within estimated distances of $\lesssim 0.1$ au (Beust et al. 1989, 1990), the rocky material sublimates, creating a cloud of atoms that rapidly photo-ionises, including strongly absorbing calcium ions. Strong, stochastic absorption by ionised calcium has since become a land-mark property of exocomets observed through transit spectroscopy in other systems. In β Pictoris, exocomet events are very frequent, and many thousands of events have been observed spectroscopically (e.g. Kiefer et al. 2014b; Tobin et al. 2019). Exocomet transits usually last in the order of hours or days (Kiefer et al. 2014b, Lecavelier des Etangs et al. 2022) and vary over time. However, these events are inherently stochastic. They are not predictable, it is virtually impossible to determine whether any of these exocomets have transited more than once, and their orbits can generally be constrained only poorly. In some cases, gravitational acceleration can be observed for comets during very close periastron passages observed with high-resolution time-series spectra, giving some constraint on their orbital characteristics (Kennedy et al. 2019). Generally, their orbits are assumed to be nearly parabolic, allowing the periastron distance to be constrained together with its orientation (argument of periastron). In β Pictoris, this has pointed to the existence of dynamical families of bodies (Kiefer et al. 2014b), and such exocomet censuses can thus be used to infer properties of the dynamical evolution of exocomet-hosting systems (Beust et al. 2024).

The mechanisms of sublimation of rocky material into atoms and subsequent interactions with the strong radiation field (and/or wind) of the star are complicated physical processes that require both detailed observations and theoretical modelling to allow them to be accurately described (e.g. Karmann et al. 2003; Vrignaud et al. 2025). Although the observed radial velocity of the ionized calcium clouds typically vary between blue and redshifts of several tens of km/s, theory predicts that the lines may be expected to be blueshifted by hundreds of km/s, because calcium ions get efficiently accelerated due to radiation pressure (Beust et al. 1989). The relatively modest observed radial velocities can be reproduced by tracking the dynamics of dust particles sublimating from the nucleus and releasing ions upon sublimation (Beust et al. 1990). The density of ions is greatest at a shock-front that forms between the nucleus and the star. In the shock, the opacity is high enough for self-shielding to occur, tempering the accelerating effect of radiation pressure; and causing the majority of the observed absorption. Collisions with unseen volatiles (that do not feel strong radiation pressure) may also play a role in slowing down the ions (Beust et al. 1990). As the shock is co-moving with the nucleus, the observed Ca II absorption lines effectively trace the orbital velocity of the nucleus.

A crucial property of transiting exocomets is that their clouds are spatially confined close to the sublimating nucleus, which can be observed thanks to the Ca II H & K doublet. In the case of an optically thin cloud ($\tau \lesssim 1$), both lines are unsaturated and the ratio between the line depths tends to the ratio of the oscillator strengths, equal to two. In the case of a moderately optically thick cloud ($\tau \gtrsim 1$), the Ca II doublet lines are partially saturated, making the line ratio approach unity. If the cloud is confined, it does not fill the entire stellar disc, and so the saturated absorption lines will not entirely attenuate the star. This means that the fill-fraction of the transiting cloud can be constrained, providing direct observational evidence of its spatial confinement (Lagrange-Henri et al. 1989; Vidal-Madjar et al. 1994; Kiefer et al. 2014b; Vrignaud et al. 2024). This has been driving evidence for the interpretation that these lines are caused by exocomets in β Pic as well as in other systems (e.g. HD 172555, Grady et al. 2018).

Spectroscopic observations probe the gaseous component of exocomet comae and tails and can provide a unique insight into the composition of exocomets as absorption lines detected during transit can reveal the different species (typically ionized) present in this gas. Although it is not possible to measure the total amount of sublimated refractory material of an exocomet given that we are only able to observe the portion of gas crossing the line of sight of the star, it is possible to obtain the column densities of different species and estimate relative abundances. New methodologies such as a curve of growth (used in interstellar medium studies) adapted to transiting exocomets can also reveal the excitation temperature of the gas tail along with column densities and stellar fraction covered by the transit (Vrignau et al. 2024, 2025).

Such transient and variable features attributed to exocomets have not yet been detected around white dwarfs through spectroscopy. However, spectroscopic studies have uncovered circumstellar gas in orbit around white dwarfs and evidence of exocometary material accreting onto their atmospheres (see Sect. 3.2 for more details).

3.1.2 Photometry

Exocomets also release dust that is lost with the sublimation of volatiles, and this dust can transit the star in the same way as the gas. Because of this, precise long-term photometric monitoring has allowed the identification of broad-band exocomet transits as well (Zieba et al. 2019). Photometric monitoring of transits allows direct detection of the geometrical extent and the optical thickness of the passing dust cloud; therefore, coupled with models of dust production, this allows an estimate of the dust production rate and the size of the comet's nucleus at the origin of the transiting dust tail. In the case of β Pictoris, statistics of photometric exocomet transits point to a nucleus size distribution that is similar to that of small bodies in the Solar system, set by collisional equilibrium (Lecavelier des Etangs et al. 2022).

Detecting exocomets in photometry focuses on the transit shape of the observations. An important characteristic in most of the light curves of an exocomet transit is the asymmetry caused by the cometary tail passing the line of sight after the nucleus. As an exocomet passes the star, the stellar flux will decrease steeply, characteristic of the coma, followed by a slow increase back to the full stellar flux levels due to the optically thinner tail occulting the star (Lecavelier Des Etangs et al. 1999; Lecavelier Des Etangs 1999). Symmetric exocomet transit light curves are possible (i.e.: when the cometary tail is along the line of sight), but in this case it is almost impossible to distinguish them from other symmetric transits such as binaries and exoplanets (Lecavelier Des Etangs et al. 1999). The exact shape of the exocomet transit depends on the properties of the host star, the effects of radiation pressure and stellar winds on the sublimation rate of the exocometary body, and the exocomet body itself i.e: its orbital geometry, size, etc. (Strøm 2026). Variable and asymmetric transits are also the main signature indicating the presence of exocomets around white dwarfs (Vanderburg et al. 2015). In addition, while the periodicity has been determined for some systems, it appears that many of the systems have no periodicity at all (Bhattacharjee et al. 2025). Around main-sequence stars, there are two probable cases of periodic exocomet events in photometry. One is the transit of a string of exocomets in front of KIC 8462852 with potential periods of ~ 2 years or 928 days (Boyajian et al. 2016; Kiefer et al. 2017, respectively). The other one is a possible explanation for the three transits seen in KIC 3542116 that had a periodicity of ~ 92 days, although several expected transits for this system were not observed likely due to differences in transit depth (Rappaport et al. 2018).

Estimating the physical parameters of exocomet bodies just from the transit lightcurve is challenging, as these events are rare, sporadic in nature, and so far observed from space-based instruments (and therefore only observed in a single photometric band), limiting the ability to constrain properties such as dust reddening. However, various modelling approaches have been developed to characterise some physical parameters that can be derived. Lecavelier Des Etangs et al. (1999) first developed numerical exocomet models to infer parameters such as the dust distribution and production rates of cometary nuclei. Further numerical approaches have been developed since, introducing multiple wavelengths (Kálmán et al. 2024), and using Monte Carlo methods (Luk'yanyk et al. 2024) to refine their models. However, numerical models also require detailed knowledge of the host system and rely on assumptions between model parameters that remain uncertain, such as the relationship between dust production and the distance to the star.

A simpler alternative focuses on the key characteristic of exocomet transits: their asymmetric profile. This empirical approach to fitting transit lightcurves is also beneficial for initial detections before attempting detailed physical parameter estimations. Several empirical models have been developed, particularly for recent photometric surveys, and include modified planet transit fits (Zieba et al. 2019), and modified exponential fits to the data to characterise asymmetry (Rappaport et al. 2016; Kennedy et al. 2019; Lecavelier des Etangs et al. 2022; Norazman et al. 2025). While empirical fits do not provide much physical information about the cometary bodies, these are simpler and are valuable for identifying new candidates, which can then be characterised in detail with the numerical models.

3.2 Detection of Exocometary Material

This section refers to the detection of material (gas and dust) attributed to be remnants of exocomets as detected in circumstellar discs, rather than the direct detection of exocomets as previously defined. The presence of dust and gas in mature planetary systems, where the star has reached the main sequence, can in some cases (such as that of β Pictoris; Lecavelier Des Etangs et al. 1996) be attributed to a secondary origin. This material is often referred to as “exocometary”, as one of the hypothesis is that it was generated through sublimation of comets as they approach the central star, although different mechanisms such as collisional cascades (Artymowicz 1997; Wyatt 2008) have been raised, especially to explain the material at longer distances from the star, where sublimation might not be as effective. But the presence of gas even at long distances from the star is hard to explain through collisions, and it requires bodies with a high level of ices. Therefore, outgassing seemed a more likely explanation (Lecavelier Des Etangs et al. 1996; Matrà et al. 2017b; Kral et al. 2019), where cometary-like events are thought to be a major contributor.

Over the years, detections of stable gas components across different wavelengths have been made for various chemical species. Some of the first detections were obtained in CaII and NaI (Hobbs et al. 1985; Vidal-Madjar et al. 1986), and in the FeII lines in UV (Kondo and Bruhweiler 1985). In addition to the detection of a large number of refractory elements around main-sequence stars (e.g., MgII, AlIII, SiIII, CrII, ZnII), the UV spectroscopy allowed also the discovery of molecular CO gas around β Pictoris (Vidal-Madjar et al. 1994; Jolly et al. 1998; Roberge et al. 2000). A detection of H₂ was absent in FUSE far-UV spectroscopic observations (Lecavelier des Etangs et al. 2001), with a CO/H₂ ratio several orders of magnitude larger than that observed in the interstellar medium. In these conditions, the CO is not protected from the destructive interstellar UV radiation field and has a lifetime of about 120 years (Dent et al. 2014), demonstrating its origin from the sublimation of icy bodies. This scenario is strengthened by the measured temperature of CO at \sim 30 K and the

high $^{13}\text{CO}/^{12}\text{CO}$ isotope ratio revealed by UV spectroscopy and likely due to the fractionation during the sublimation process (Jolly et al. 1998). The advent of ALMA² confirmed the presence of CO around β Pictoris (Dent et al. 2014). To date, we know between 20 and 30 main-sequence stars that show evidence of volatile gas, which is attributed to a secondary origin through outgassing of comets (e.g. Rebollido et al. 2022; Moór et al. 2019, and references therein). The expected evolution of stars and their planetary systems, according to current planetary formation theories, implies that as the system settles, the activity of outgassing and colliding bodies decays with time, until the star leaves the main sequence and a second-generation debris disc (i.e. a compact disc assumed to come from collisions or disruption of small bodies) remains (Wyatt et al. 2015).

Exocometary material has been detected around white dwarfs too, via atmospheric pollution and debris disc. Veras et al. (2024) provides a recent review on different processes that bring extrasolar minor bodies close to the tidal radius of the white dwarf. Polluted white dwarfs, which exhibit elements heavier than hydrogen in the atmosphere, are a common occurrence, and they are a result of accretion of exoasteroids and exocomets. Sometimes, it is possible to derive the chemical compositions of the exo-minor bodies because multiple species (both refractory and volatile elements) are detected in the atmosphere of the white dwarf (e.g. Rogers et al. 2024). Spectroscopic observations of polluted white dwarfs uniquely return the chemical composition of the exoplanetary material, the diversity of which is discussed in Xu et al. (2024). The most heavily polluted white dwarfs often display an infrared excess from a debris disc (see Malamud 2026 for a recent review on white dwarf debris discs). Circumstellar absorption and emission lines have been detected around two dozen white dwarfs, and they are typically attributed to ongoing tidal disruption events (e.g. Gänsicke et al. 2006; Debes et al. 2012). These circumstellar lines were first detected in the Sloan Digital Sky Survey (SDSS, Gänsicke et al. 2006). They can be variable on the hourly, weekly, and monthly timescales; some display periodic variations, while others appear to be more stochastic (e.g. Manser et al. 2016; Xu et al. 2019b). The lines are double-peaked, consistent with a rotating gas disc. The strongest lines tend to be the calcium infrared triplet around 8500 Å and the width can be up to 1000 km/s, making them easily detectable with low-resolution spectroscopy. Most of the emission line systems are detected in SDSS and spectroscopic observations of polluted white dwarfs (Dennihy et al. 2020; Gentile Fusillo et al. 2021). On the other hand, circumstellar absorption lines can be much narrower and therefore hard to detect. High-resolution spectroscopy (resolving power $> 10,000$) is often needed to detect those systems.

4 Census of Exocometary Systems

In this section, we provide an inventory of all the reported detections to date of exocometary system candidates. We present all exocomet detections via spectroscopy and photometry, including photometric detections around white dwarfs. For completeness, although they are not technically considered exocomets, we also give an overview of detections of interstellar objects.

4.1 Spectroscopic Detections

Most spectroscopic detections come from individual campaigns targeting stars with evidence of circumstellar material, such as debris discs. In particular, β Pictoris has been inten-

²Atacama Large Millimeter/submillimeter Array www.almaobservatory.org/.

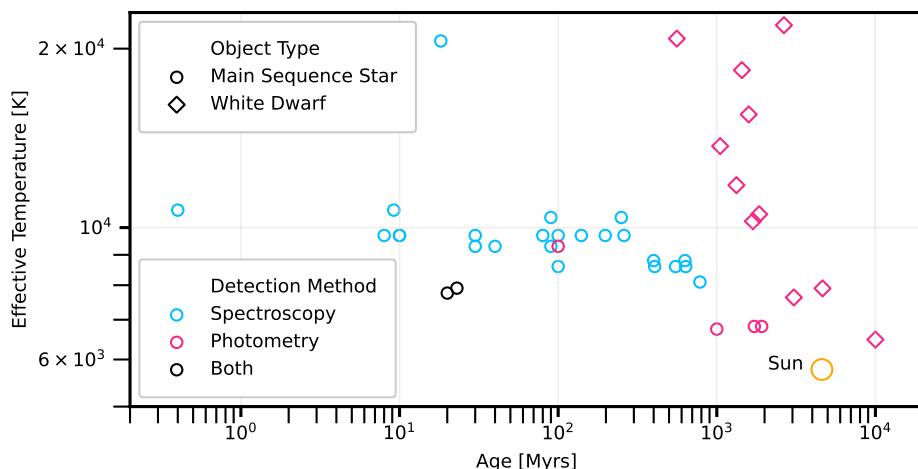
sively studied since the first detection of exocomets around the star. Most of the other discoveries were made in small searches with few targets (e.g. Montgomery and Welsh 2012, 2017), with the exception of three large surveys: (1) Iglesias et al. (2018), which was focused on the gaseous component of debris discs; (2) Rebollido et al. (2020) which included a sample of stars with evidence of previous circumstellar material, and (3) Bendahan-West et al. (2025) which represents so far the only unbiased search for exocomets, with a partially automated analysis of the full HARPS-S archive. To date, variable absorption features attributed to exocomet transits have been reported for 30 systems. Most of these spectroscopic detections have been around A-type stars and a few late B-type stars. This is likely due to their rotationally broadened spectral lines which facilitates the detection of the superimposed narrow absorption features produced by gas transiting the line of sight of the star. However, this observational bias does not imply the lack of exocometary activity in other types of stars as, for instance, we know of the existence of comets around the Sun, a G-type star. Another bias seems to be the systems being observed close to edge-on, as shown by the results of Iglesias et al. (2018) and Rebollido et al. (2020), and the canonical exocomet host β Pictoris.

It is worth noting that we cannot be sure that all detections possibly attributed to exocomet transits are in fact due to exocomets. Cases such as that of β Pictoris and HD 172555 are considered as “confirmed” exocomets as they have been detected in both photometry and spectroscopy and through several different chemical species. On the other hand, there are many cases with a single or few detections which remain unconfirmed so far. Therefore, we refer to them as “candidates” until further confirmation. All candidate and confirmed exocomet-host systems are presented in Table 1 and their ages and T_{eff} distribution are shown in Fig. 2. However, for two of these objects; α Pictoris and HD 138629, the detections were reported as inconclusive and could be either attributable to exocomets or interstellar gas (Hempel and Schmitt 2003; Lagrange-Henri et al. 1990a). Two other cases, that of HD 256 (HR 10) and ϕ Leo, were initially considered as exocometary systems, until further investigation revealed a different scenario. In the case of HR 10, the variations were due to the system being a binary and, in the case of ϕ Leo, the variability was the result of δ Scuti pulsations (Montesinos et al. 2019; Eiroa et al. 2021). Nevertheless, all systems are listed in Table 1 for completeness.

4.2 Photometric Detections

The detection of exocomets with photometry became possible with the *Kepler* space telescope. The first interesting photometric event was pointed out by Boyajian et al. (2016) in the *Kepler* light curve of KIC 8462852. The system exhibits irregular asymmetric transits, where one of the more attractive scenarios may be explained as the sublimation of a string of exocomets with a dust production rate similar to Hale-Bopp (Schleicher et al. 1997; Jewitt and Matthews 1999). A more complete inspection of the *Kepler* data via a visual survey allowed the finding of asymmetric transits around two systems: KIC 3542116 and KIC 11084727 (Rappaport et al. 2018). The light curves matched the predictions of Lecavelier Des Etangs et al. (1999). In addition, an automated search of the same dataset was conducted in Kennedy et al. (2019) to follow up on the two discoveries. They recovered the transits with their pipeline and also identified a potential third system to host exocometary activity; KIC 8027456. They obtained a detection frequency of 3×10^{-5} for transits deeper than 0.1% for the survey consisting of $\sim 150,000$ stars. Furthermore, Kennedy et al. (2019) concluded that, despite an unbiased *Kepler* dataset (compared to the biases faced for spectroscopic surveys), circumstantial evidence suggests that there may be a real tendency of exocomet detections around young, early-type stars.

Table 1 Stars with reports of variable absorption features, most typically in the Ca II K line (among others), attributed to exocometary activity. This Table was built upon Tables 1 and 2 in Strøm et al. (2020)


Name	Other ID	Sp. Type	Age [Myrs]	Species	Reference
β Pic*	HD 39060	A6V	23 ± 3 [1]	Ca, Na, Fe, Mg, S, Al, C, Co, Zn, Ni, Cr, Mn, Si	[2, 3, 4, 46, 47, 51, 48, 49, 50]
HD 172555*	HR 7012	A7V	20 ± 5 [5]	Ca, Si, C, O	[6, 7, 46]
49 Cet	HD 9672	A1V	~ 40 [10]	Ca, C	[8, 9, 10]
HD 21620	HR 1056	A0V	~ 80 [11]	Ca	[12]
HD 32297	HIP 23451	A0V	~ 30 [13]	Na	[14]
HD 37306	HR 1919	A1V	~ 30 [15]	Ca, Fe, Ti	[16]
HD 42111	HR 2174	A3V	406 ± 141 [17]	Ca, Fe	[12, 18]
λ Gem	HD 56537	A3V	~ 550 [19]	Ca	[20]
HD 58647	HIP 36068	B9IV	0.4 ± 0.1 [21]	Ca	[20]
ϕ Gem	HD 64145	A3V	637 ± 111 [17]	Ca	[20]
β Car	HR 3685	A2IV	~ 400 [23]	Ca, Na	[22, 23]
HD 85905	HR 3921	A2V	~ 630 [23]	Ca	[24, 23]
δ Crv	HD 108767	A0IV	~ 260 [19]	Ca	[20]
HD 109573	HR 4796	A0V	~ 8 [20]	Ca	[20, 25]
ρ Vir	HD 110411	A0V	~ 100 [20]	Ca	[12]
κ Cen	HD 132200	B2IV	18.2 ± 3.2 [26]	Ca	[27]
HD 145964	HR 6051	B9V	9.2 [28]	Ca	[12]
HD 148283	HR 6123	A5V	783 ± 229 [17]	Fe	[29]
HD 156623	HIP 84881	A0V	~ 10 [30]	Ca	[27]
5 Vul	HD 182919	A0V	198 [31]	Ca	[8, 32]
c Aql	HD 183324	A0IV	140 [31]	Ca	[33, 25, 32]
2 And	HD 217782	A3V	100 ± 309 [17]	Ca, Fe, Cr, Mn, O	[34, 8, 32]
HD 24966	HIP 18437	A0V	~ 10 [35]	Ca	[36]
HD 38056	HR 1966	B9.5V	~ 250 [37]	Ca	[36]
θ Hya	HD 79469	B9.5V	~ 90 [38]	Ca	[36]
HD 225200	HR 9102	A1V	~ 90 [39]	Ca	[36]
α Pic [†]	HR 2550	A7IV	519 ± 344 [17]	Ca	[22]
HD 138629 [†]	HR 5774	A5V	24.8 [40]	Ca, Na	[41]
HD 256 [‡]	HR 10	A2IV/V	~ 800 [23]	Ca, Fe, Na	[42, 18, 23, 43, 44]
ϕ Leo [‡]	HD 98058	A5V	500-900 [38]	Ca	[43, 45]

References: [1] Mamajek and Bell (2014), [2] Ferlet et al. (1987), [3] Kiefer et al. (2014b), [4] Vidal-Madjar et al. (2017), [5] Kiefer et al. (2023), [6] Kiefer et al. (2014a), [7] Grady et al. (2018), [8] Montgomery and Welsh (2012), [9] Miles et al. (2016), [10] Roberge et al. (2014), [11] Roberge and Weinberger (2008), [12] Welsh and Montgomery (2013), [13] Kalas (2005), [14] Redfield (2007), [15] Torres et al. (2006), [16] Iglesias et al. (2019), [17] Gullikson et al. (2016), [18] Lecavelier Des Etangs et al. (1997), [19] Vican (2012), [20] Welsh and Montgomery (2015), [21] Montesinos et al. (2009), [22] Hempel and Schmitt (2003), [23] Redfield et al. (2007), [24] Welsh et al. (1998), [25] Iglesias et al. (2018), [26] Tetzlaff et al. (2011), [27] Rebollido et al. (2018), [28] Gratton et al. (2023), [29] Grady et al. (1996), [30] Kral et al. (2017), [31] Chen et al. (2014), [32] Rebollido et al. (2020), [33] Montgomery and Welsh (2017), [34] Cheng and Neff (2003), [35] Rhee et al. (2007), [36] Welsh and Montgomery (2018), [37] Morales et al. (2016), [38] David and Hillenbrand (2015), [39] Su et al. (2006), [40] Fouesneau et al. (2022), [41] Lagrange-Henri et al. (1990b), [42] Lagrange-Henri et al. (1990a), [43] Eiroa et al. (2016), [44] Montesinos et al. (2019), [45] Eiroa et al. (2021), [46] Bendahan-West et al. (2025), [47] Deleuil et al. (1993), [48] Vrignaud and Lecavelier des Etangs (2024), [49] Vrignaud et al. (2025), [50] Jolly et al. (1998), [51] Roberge et al. (2000).

* Confirmed exocomet detection.

[†] Unclear detection.

[‡] False positive detection.

Fig. 2 Overview of ages and T_{eff} for stars with reported exocomet detections for main sequence and white dwarf systems. Stellar T_{eff} have been adopted from the spectral types in Tables 1 and 2 using the conversion from Pecaut and Mamajek (2013). Unclear and false positive detections are excluded from the figure. White dwarf objects are also listed in Table 3

The natural extension of the *Kepler* mission was the Transiting Exoplanet Survey Satellite (TESS), where exocomets have been detected around β Pic (Zieba et al. 2019), making it the first star to have exocomet detections in both photometry and spectroscopy. Further analyses of the available TESS data around β Pic have provided multiple more exocomet detections (Pavlenko et al. 2022; Lecavelier des Etangs et al. 2022). With up to 30 exocomet transits identified, a statistical analysis allowed for a size distribution of the cometary nucleus to be estimated (Lecavelier des Etangs et al. 2022). More recently, observations around the extreme debris disc system RZ Psc with TESS also identified 24 exocomet transits, allowing for a second system with sufficient detections to infer their size distribution (Gibson et al. 2025). On a larger scale, statistical searches for exocomets have been conducted to determine their frequency with relation to their host star properties in both *Kepler* and TESS (Kennedy et al. 2019; Norazman et al. 2025), yielding candidates seen in Table 2. While Norazman et al. (2025) recovered the β Pic detection and identified a new F-type main-sequence candidate, they also detected signatures around G-type main-sequence stars and two detections around giant stars. The two detections around G-type main-sequence stars suggest that we could also detect exocomets around later-type stars, and it may be that the young, early-type detections were observational effects. However, the number of overall exocomet detections in photometry is still too low to obtain robust statistics. Other instruments have also been used to search for exocomets, such as CHEOPS (ESA's CHaracterising ExOPlanet Satellite; Benz et al. 2021), which potentially detected a transit around HD 172555 (Kiefer et al. 2023). The key outcome from searches in photometry is that exocomets are rare, and the rarity of these events makes it difficult to characterise them and form strong statistical conclusions. Therefore, more detections of exocomets with high-precision photometry, such as the upcoming PLATO mission, could help address some of these issues, but validating single transits remains a challenge. The exocomet candidates in photometry are shown in Table 2.

The first detection of a transiting exocomet around the white dwarf WD 1145+017 was found using the extended *Kepler* mission (K2, Vanderburg et al. 2015). The K2 data show

Table 2 Stars that show photometric signatures suggestive of an exocomet transit. This Table was based on Tables 1 and 2 in Strøm et al. (2020). For the stars with approximate spectral types, this is after applying reddening corrections with Gaia DR3. Stars missing stellar parameters have not been characterised yet

Name	Other ID	Sp. Type	Age [Myrs]	Reference
β Pic*	HD 39060	A6V	23 ± 3 [1]	[2, 3, 13, 14]
HD 172555*	HR 7012	A7V	20 ± 5 [11]	[11]
KIC 3542116	TYC 3134-1024-1	F2V	1725 ± 100 [4]	[5, 12]
KIC 11084727	BD+48 2901	F2V	1918 ± 106 [4]	[5, 12]
KIC 8462852	Boyajian's Star	F3V	~ 1000 [8]	[6, 7, 8, 9, 10]
KIC 8027456	HD 182952	A1V	~ 100 [12]	[12]
TIC 280832588	2MASS 02591084-6624353	\sim F5V	-	[14]
TIC 73149665	TYC 8705-00361-1	\sim F	-	[14]
TIC 143152957	2MASS 07473854-4234062	\sim G4V	-	[14]
TIC 110969638	2MASS 07390295-2812217	\sim G	-	[14]
TIC 229790952	UCAC4 797-026470	\sim K	-	[14]
RZ Psc	TYC 1753-1498-1	K0V	30 - 50	[15]

References: [1] Mamajek and Bell (2014), [2] Zieba et al. (2019), [3] Pavlenko et al. (2022), [4] Queiroz et al. (2023), [5] Rappaport et al. (2018), [6] Boyajian et al. (2016), [7] Bodman and Quillen (2016), [8] Kiefer et al. (2017), [9] Deeg et al. (2018), [10] Wyatt et al. (2018), [11] Kiefer et al. (2023), [12] Kennedy et al. (2019), [13] Lecavelier des Etangs et al. (2022), [14] Norazman et al. (2025), [15] Gibson et al. (2025)

*Confirmed exocomet detection.

six stable periods between 4.5–4.9 hr, which is within the tidal radius of the white dwarf. Follow-up studies show that the transits are asymmetric, deep, and variable (Rappaport et al. 2016). However, the dust production mechanism is unclear – it could be sublimation, tidal disruption, collision, or a combination of several scenarios. In addition, WD 1145+017 also has a heavily polluted atmosphere, displays variable circumstellar absorption lines, and has an infrared excess from a dust disc. The emerging picture is that WD 1145+017 might represent the early stage of a tidal disruption event, with the exocomets still in the process of actively disintegrating. The WD 1145+017 is shown in Fig. 1 for comparison with the Solar System and β Pictoris. Follow-up analysis considers a sample of 1148 white dwarfs observed by K2 and did not identify any new transiting objects, placing an upper limit of 12% on the presence of disintegrating bodies (van Sluijs and Van Eylen 2018).

The Zwicky Transient Factory (ZTF) has been very successful in finding more transit bodies around white dwarfs due to its long observing baseline and faint magnitude limit. So far, ZTF has identified nine new systems, each displaying unique properties, as summarized in Table 3. These systems are also shown in Fig. 2 along with the main sequence stars candidates. TESS has found quasi-continuous transits around WD 1054-226 with a predominant period of 25.02 hr (Farihi et al. 2022). Otherwise, TESS found no new transiting systems within a sample of 313 polluted white dwarfs (Robert et al. 2024).

4.3 Census of Interstellar Objects

The physical properties of the first two detected interstellar objects, 1I/‘Oumuamua and 2I/Borisov, are summarized in Table 2 of Jewitt and Seligman (2023). The radii of 1I/‘Oumuamua and 2I/Borisov are of order ~ 80 m (Jewitt et al. 2017; Meech et al. 2017; Drahus et al. 2018; Knight et al. 2017) and ~ 400 m (Jewitt et al. 2020). The diameter of

Table 3 White dwarfs showing photometric signatures that could be attributed to exocometary transits

Name	Sp. Type	Total Age [Gyrs]	Period	Pollution	Gas	Dust	Reference
ZTF J0328-129	DBZ	3.1	9.937 hr, 11.2 hr	Ca	Na ^a	N	[1]
WD J0923+7326	DAZ	1.1	-	Mg, Ca	-	-	[2]
WD J1013-0427	DBAZ	2.7	-	Mg, Si, Ca	Ca, O, Mg ^e	-	[2]
ZTF J1039+5245	DAZ	1.9	107.2 day	Ca	Ca(²) ^a	-	[3]
WD 1054-226	DAZ	4.6	25.02 hr	Mg, Al, Ca, Fe	N	N	[4,5]
WD 1145+017	DBAZ	1.6	4.5-4.9 hr	C, O, Mg, Al, Si, P, S, Ca,	C, O, Na, Mg, Al, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ti, Cr, Mn, Fe, Ni ^a	Y	[6, 7]
WD 1232+563	DBAZ	1.3	-	O, Mg, Si, Ca, Ti, Cr, Mn, Fe	N	N	[8, 9]
WD J1237+5937	DAZ	≈ 10	-	Mg, Al, Ca, Fe	-	-	[2]
WD J1302+1650	DBAZ	1.4	-	Ca	-	-	[2]
WD J1650+1443	DAZ	1.7	-	Mg, Ca	-	-	[2]
WD J1944+4557	DA	0.6	-	-	Ca	-	[2]

Total age includes both white dwarf cooling age and main sequence lifetime. It is calculated using `wdwarfdate` (Kiman et al. 2022).

^acircumstellar absorption line

^ecircumstellar emission line

References: [1] Vanderbosch et al. (2021), [2] Bhattacharjee et al. (2025), [3] Vanderbosch et al. (2020), [4] Farhi et al. (2022), [5] Vennes and Kawka (2013), [6] Vanderburg et al. (2015), [7] Le Bourdais et al. (2024), [8] Hermes et al. (2025), [9] Xu et al. (2019a)

the nucleus of 3I/ATLAS is uncertain given the faint cometary activity, with an upper limit of ~ 20 km (Seligman et al. 2025; Loeb 2025). Lightcurve inversion suggests 1I/‘Oumuamua had a 6:6:1 oblate shape (Mashchenko 2019), while the shapes of 2I/Borisov and 3I/ATLAS were unconstrained due to their comae. 1I/‘Oumuamua and 2I/Borisov both exhibited comet-like nongravitational acceleration (Micheli et al. 2018). The non-gravitational acceleration of 3I/ATLAS are currently unconstrained at the time of the writing of this manuscript.

It is challenging to directly compare the physical properties of interstellar objects with those of exocomets, even though their nominal size distributions are consistent with those of exocomets around β Pic (Lecavelier des Etangs et al. 2022). This preliminary similarity should be interpreted with caution, as ‘Oumuamua did not display cometary activity, whereas Borisov and ATLAS did. It is impossible to trace an interstellar object to a progenitor system due to the chaotic nature of stellar orbits in the galaxy and the uncertainties in phase-space measurements (Zhang 2018). However, the incoming kinematics of an interstellar object trajectory can be used to give a rough dynamical age. 1I/‘Oumuamua had a surprisingly low velocity (26 km s^{-1}) compared to the local standard of rest which implies a dynamical age of $\tau \sim 100$ Myr which was pointed out by Mamajek (2017) and Gaidos et al. (2017b). Numerical integrations of many realizations of galactic trajectories demonstrated that the object was most likely associated with the local Orion Arm and co-moving with Carina or Columba stellar associations (Hallatt and Wiegert 2020). The same study also pointed out that the larger velocity of 2I/Borisov (32 km s^{-1}) is consistent with an age of $\tau \sim 10^9$ yr post ejection (Hallatt and Wiegert 2020). Hsieh et al. (2021) argued that the lower dispersion of 1I/‘Oumuamua was evidence for formation in the core of a giant molecular cloud, because of their low velocity dispersion. This would be consistent with the hypothesis that ‘Oumuamua’s bizarre properties could be attributed to it being composed of primarily H_2 ice (Seligman and Laughlin 2020). However, there are two caveats to the assumption that interstellar objects trace the stellar kinematics that are worth noting. First, Forbes et al. (2025) demonstrated that the galactic background of interstellar objects bears more similarity to stellar streams in nature, given that a single star can eject a large number of planetesimals. Secondly, there should be a contribution to the galactic population from stars that have already died (Hopkins et al. 2023, 2025a). Despite these caveats, it appears that the only conclusion regarding the progenitor systems of 1I/‘Oumuamua and 2I/Borisov is that 2I/Borisov likely originated from a much older system than 1I/‘Oumuamua. 3I/ATLAS had significantly larger excess velocity than 1I/‘Oumuamua and 2I/Borisov (58 km s^{-1}), consistent with a $\sim 3 - 11$ Gyr age (Taylor and Seligman 2025) and possibly a thick disk origin (Hopkins et al. 2025b).

The composition of 1I/‘Oumuamua is somewhat unconstrained because limited observations of the object did not recover any gas production. For complete tables describing the entirety of the compositional measurements, production rates and upper limits of various volatiles species of 1I/‘Oumuamua and 2I/Borisov during their apparitions, see Tables 3 - 5 in Jewitt and Seligman (2023). For 1I/‘Oumuamua upper limits on the production of CN, C_2 , C_3 (Ye et al. 2017), OH (Park et al. 2018), CO_2 and CO Trilling et al. (2018) are given.

2I/Borisov had an apparition that was observable for several months. Detailed spectroscopic measurements were made characterizing the production rates of multiple species pre- and post-perihelion. Measurements of CO post-perihelia (Bodewits et al. 2020; Cordiner et al. 2020) indicated that the object was enriched in CO with respect to H_2O (Xing et al. 2020) which is atypical of comets in the Solar System (Bockelée-Morvan and Biver 2017; McKay et al. 2019; Seligman et al. 2022). The composition of 3I/ATLAS is unconstrained at the time of writing this manuscript.

5 Summary

This manuscript provides a general overview of exocomets, addresses the definition of what we consider as “exocomets” throughout this collection of works on exocomets, and gives a summary of all the reported detections to date. Below, we summarize some of the key points covered in this overview:

- The definition of “exocomet” refers to minor bodies in extrasolar systems that have a coma and/or tail composed of dust and gas, a product of sublimation close to the star. This definition does not include gas or dust found in continuous distributions orbiting around stars or white dwarfs, or material produced in collisions in debris discs, or pollution in white dwarf’s atmospheres.
- To date, the system β Pictoris remains as the premier exocomet host with thousands of detections of exocometary transits. Thanks to its proximity to Earth and its very high exocometary activity it has allowed us to study the dynamics and composition of exocomets better than any other system. The best white dwarf analogue is WD 1145+017, which hosts numerous transits and a debris disk.
- Spectroscopic and photometric detections of exocomets allow us to estimate different physical parameters of exocomets. While spectroscopic observations give us information regarding the composition and dynamics of exocomets, photometric observations allow us to constrain parameters such as the size of exocomets nuclei and dust production rates.
- Exocomet candidates have been reported in about 40 stars, \sim 30 of them through spectroscopy and 11 via photometry. Only two stars, β Pictoris and HD 172555 have detections both in photometry and spectroscopy. In addition, signs of exocomet transits have been identified in 11 white dwarfs via photometry. Most of the candidates so far are around stars and white dwarfs younger and hotter than the Sun. However, it is worth noting that these statistics might be biased by detection constraints, thus the true distribution of exocomets hosts remains unknown.

This overview of exocomets is part of a collection of manuscripts studying different aspects of exocometary science. Korth et al. (submitted) describes observations of exocomets in more detail, Vrignaud et al. (submitted) studies the physical processes of exocomets, Lu et al. (submitted) is devoted specifically to the β Pictoris system, Bannister et al. (2025) discusses the origins and initial reservoirs of exocomets, Mustill et al. (submitted) addresses the evolution and end states of exocomets, and Lecavelier & Strøm (submitted) proposes a nomenclature for naming individual exocomet detections.

Acknowledgements We gratefully acknowledge support by the International Space Science Institute, ISSI, Bern, for supporting and hosting the workshop on “Exocomets: Bridging our Understanding of Minor Bodies in Solar and Exoplanetary Systems”, during which this work was initiated in July 2024.

Funding Information I.R. acknowledges support from the Research Fellowship Program of the European Space Agency (ESA).

D.Z.S. is supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-2303553. This research award is partially funded by a generous gift of Charles Simonyi to the NSF Division of Astronomical Sciences. The award is made in recognition of significant contributions to Rubin Observatory’s Legacy Survey of Space and Time.

S.X. is supported by NOIRLab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation.

A.N. is supported by the University of Warwick and the Royal Society.

D.I. acknowledges support from the Science and Technology Facilities Council via grant number ST/X001016/1.

A.L. acknowledges support from the Centre National des Etudes Spatiales (CNES).

M.T.B. appreciates support by the Rutherford Discovery Fellowships from New Zealand Government funding, administered by the Royal Society Te Apārangi.

H.J.H is supported by funding from eSSENCE (grant number eSSENCE@LU 9:3), the Swedish National Research Council (project number 2023-05307), The Crafoord foundation and the Royal Physiographic Society of Lund, through The Fund of the Walter Gyllenberg Foundation.

C.S. acknowledges support from the UK Space Agency and Science and Technology Facilities Council.

Declarations

Competing Interests Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by/4.0/>.

References

Alarcon MR, Serra-Ricart M, Licandro J, Arencibia SG, Ruiz Cejudo I, Trujillo I (2025) Deep g'-band imaging of interstellar comet 3I/ATLAS from the two-meter twin telescope (TTT). *Astron Teleg* 17264:1

Alvarez W, Muller RA (1984) Evidence from crater ages for periodic impacts on the Earth. *Nature* 308(5961):718–720. <https://doi.org/10.1038/308718a0>

Artymowicz P (1997) Beta Pictoris: an early Solar System? *Annu Rev Earth Planet Sci* 25:175. <https://doi.org/10.1146/annurev.earth.25.1.175>

Bagnulo S, Cellino A, Kolokolova L, Nežić R, Santana-Ros T, Borisov G, Christou AA, Bendjoya P, Devogèle M (2021) Unusual polarimetric properties for interstellar comet 2I/Borisov. *Nat Commun* 12:1797. <https://doi.org/10.1038/s41467-021-22000-x>

Bannister MT, Schwamb ME, Fraser WC, Marsset M, Fitzsimmons A, Benecchi SD, Lacerda P, Pike RE, Kavelaars JJ, Smith AB, Stewart SO, Wang S-Y, Lehner MJ (2017) Col-OSSOS: colors of the interstellar planetesimal 1I/'Oumuamua. *Astrophys J Lett* 851(2):38. <https://doi.org/10.3847/2041-8213/aaa07c>. [arXiv:1711.06214](https://arxiv.org/abs/1711.06214) [astro-ph.EP]

Bannister M, Pfalzner S, Pearce T, Mustill AJ, Klahr H, Nomura H, Ohashi N, Kokotanekova R, Marino S, Bodewits D, Marschall R, Seligman DZ, Jones GH, Veras D (2025) The origins & reservoirs of exocomets. *Space Sci Rev* 221:90. <https://doi.org/10.1007/s11214-025-01219-w>. [arXiv:2509.22541](https://arxiv.org/abs/2509.22541) [astro-ph.EP]

Belton MJS, Hainaut OR, Meech KJ, Mueller BEA, Kleyna JT, Weaver HA, Buie MW, Drahus M, Guzik P, Wainscoat RJ, Waniak W, Handzlik B, Kurowski S, Xu S, Sheppard SS, Micheli M, Ebeling H, Keane JV (2018) The excited spin state of 1I/2017 U1 'Oumuamua. *Astrophys J Lett* 856:21. <https://doi.org/10.3847/2041-8213/aab370>

Belyakov M, Fremling C, Graham MJ, Bolin BT, Kilic M, Jewett G, Lisse CM, Ingebretsen C, Ryleigh Davis M, Wong I (2025) Palomar and Apache Point Spectrophotometry of Interstellar Comet 3I/ATLAS. *Res Notes AAS* 9:194. <https://doi.org/10.3847/2515-5172/adf059>. [arXiv:2507.11720](https://arxiv.org/abs/2507.11720) [astro-ph.EP]

Bendahan-West R, Kennedy GM, Brown DJA, Strøm PA (2025) Quantifying spectroscopic Ca II exocomet transit occurrence in two decades of HARPS data. *Mon Not R Astron Soc* 537(1):229–251. <https://doi.org/10.1093/mnras/stae2804>. [arXiv:2412.13253](https://arxiv.org/abs/2412.13253) [astro-ph.EP]

Benz W, Broeg C, Fortier A, Rando N, Beck T, Beck M, Queloz D, Ehrenreich D, Maxted PFL, Isaak KG, Billot N, Alibert Y, Alonso R, António C, Asquier J, Bandy T, Bárczy T, Barrado D, Barros SCC, Baumjohann W, Bekkelien A, Bergomi M, Biondi F, Bonfils X, Borsato L, Brandeker A, Busch M-D, Cabrera J, Cessa V, Charnoz S, Chazelas B, Collier Cameron A, Corral Van Damme C, Cortes D, Davies MB, Deleuil M, Deline A, Delrez L, Demangeon O, Demory BO, Erikson A, Farinato J, Fossati L, Fridlund M, Futyán D, Gandolfi D, Garcia Muñoz A, Gillon M, Guterman P, Gutierrez A, Hasiba J, Heng K, Hernandez E, Hoyer S, Kiss LL, Kovacs Z, Kuntzer T, Laskar J, Lecavelier des Etangs A, Lendl M, López A, Lora I, Lovis C, Lüftinger T, Magrin D, Malvasio L, Marafatto L, Michaelis H, de Miguel D, Modrego D, Munari M, Nascimbeni V, Olofsson G, Ottacher H, Ottensamer R, Pagano I,

Palacios R, Pallé E, Peter G, Piazza D, Piotto G, Pizarro A, Pollaco D, Ragazzoni R, Ratti F, Rauer H, Ribas I, Rieder M, Rohlfs R, Safa F, Salatti M, Santos NC, Scandariato G, Ségransan D, Simon AE, Smith AMS, Sordet M, Sousa SG, Steller M, Szabó GM, Szoke J, Thomas N, Tschentscher M, Udry S, Van Grootel V, Viotto V, Walter I, Walton NA, Wildi F, Wolter D (2021) The CHEOPS mission. *Exp Astron* 51(1):109–151. <https://doi.org/10.1007/s10686-020-09679-4>. arXiv:2009.11633 [astro-ph.IM]

Bergner JB, Seligman DZ (2023) Acceleration of 1I/'Oumuamua from radiolytically produced H₂ in H₂O ice. *Nature* 615(7953):610–613. <https://doi.org/10.1038/s41586-022-05687-w>. arXiv:2303.13698 [astro-ph.EP]

Bernardinelli PH, Bernstein GM, Montet BT, Weryk R, Wainscoat R, Aguena M, Allam S, Andrade-Oliveira F, Annis J, Avila S, Bertin E, Brooks D, Burke DL, Carnero Rosell A, Carrasco Kind M, Carretero J, Cawthon R, Conselice C, Costanzi M, da Costa LN, Pereira MES, De Vicente J, Diehl HT, Everett S, Ferrero I, Flaugher B, Frieman J, García-Bellido J, Gaztanaga E, Gerdes DW, Gruen D, Gruendl RA, Gschwend J, Gutierrez G, Hinton SR, Hollowood DL, Honscheid K, James DJ, Kuehn K, Kupratkin N, Lahav O, Maia MAG, Marshall JL, Menanteau F, Miquel R, Morgan R, Ogando RLC, Paz-Chinchón F, Pieres A, Malagón AAP, Rodriguez-Monroy M, Romer AK, Roodman A, Sanchez E, Schubnell M, Serrano S, Sevilla-Noarbe I, Smith M, Soares-Santos M, Suchtya E, Swanson MEC, Tarle G, To C, Troxel MA, Varga TN, Walker AR, Zhang Y (2021) DES collaboration: C/2014 UN₂₇₁ (Bernardinelli-Bernstein): the nearly spherical cow of comets. *Astrophys J Lett* 921(2):37. <https://doi.org/10.3847/2041-8213/ac32d3>. arXiv:2109.09852 [astro-ph.EP]

Beust H, Lagrange-Henri AM, Vidal-Madjar A, Ferlet R (1989) The beta Pictoris circumstellar disk. IX. Theoretical results on the infall velocities of CA II, AI III and MG II. *Astron Astrophys* 223:304–312

Beust H, Lagrange-Henri AM, Vidal-Madjar A, Ferlet R (1990) The beta Pictoris circumstellar disk. X. Numerical simulations of infalling evaporating bodies. *Astron Astrophys* 236:202

Beust H, Vidal-Madjar A, Lagrange-Henri AM, Ferlet R (1991) The beta Pictoris circumstellar disk. XI. New CA II absorption features reproduced numerically. *Astron Astrophys* 241:488

Beust H, Milli J, Morbidelli A, Lacour S, Lagrange A-M, Chauvin G, Bonnefoy M, Wang J (2024) Dynamics of the β Pictoris planetary system and its falling evaporating bodies. *Astron Astrophys* 683:89. <https://doi.org/10.1051/0004-6361/202348203>. arXiv:2401.00715 [astro-ph.EP]

Bhattacharjee S, Vanderbosch ZP, Hollands MA, Tremblay P-E, Xu S, Guidry JA, Hermes JJ, Caiazzo I, Rodriguez AC, van Roestel J, El-Badry K, Drake AJ, Roulston BR, Riddle R, Rusholme B, Groom SL, Smith R, Tolosa O (2025) A ZTF search for circumstellar debris transits in white dwarfs: six new candidates, one with gas disk emission, identified in a novel metric space. *Publ Astron Soc Pac* 137(7):074202. <https://doi.org/10.1088/1538-3873/ade0ea>. arXiv:2502.05502 [astro-ph.SR]

Bockelée-Morvan D, Biver N (2017) The composition of cometary ices. *Philos Trans R Soc Lond Ser A* 375(2097):20160252. <https://doi.org/10.1098/rsta.2016.0252>

Bodewits D, Noonan JW, Feldman PD, Bannister MT, Farnocchia D, Harris WM, Li J-Y, Mandt KE, Parker JW, Xing Z-X (2020) The carbon monoxide-rich interstellar comet 2I/Borisov. *Nat Astron* 4:867–871. <https://doi.org/10.1038/s41550-020-1095-2>. arXiv:2004.08972 [astro-ph.EP]

Bodman EHL, Quillen A (2016) KIC 8462852: transit of a large comet family. *Astrophys J Lett* 819(2):34. <https://doi.org/10.3847/2041-8205/819/2/L34>. arXiv:1511.08821 [astro-ph.EP]

Bolin BT, Weaver HA, Fernandez YR, Lisse CM, Huppenkothen D, Jones RL, Jurić M, Moeyens J, Schambeau CA, Slater CT, Ivezić Ž, Connolly AJ (2018) APO time-resolved color photometry of highly elongated interstellar object 1I/'Oumuamua. *Astrophys J Lett* 852(1):2. <https://doi.org/10.3847/2041-8213/aaa0c9>. arXiv:1711.04927 [astro-ph.EP]

Bolin BT, Lisse CM, Kasliwal MM, Quimby R, Tan H, Copperwheat CM, Lin Z-Y, Morbidelli A, Abe L, Bendjoya P, Burdge KB, Coughlin M, Fremling C, Itoh R, Koss M, Masci FJ, Maeno S, Mamajek EE, Marocco F, Murata K, Rivet J-P, Sitko ML, Stern D, Vernet D, Walters R, Yan L, Andreoni I, Bhalerao V, Bodewits D, De K, Deshmukh KP, Bellm EC, Blagorodnova N, Buzasi D, Cenko SB, Chang C-K, Chojnowski D, Dekany R, Duev DA, Graham M, Jurić M, Kulkarni SR, Kupfer T, Mahabal A,Neill JD, Ngewo C-C, Penprase B, Riddle R, Rodriguez H, Smith RM, Rosset P, Sollerman J, Soumagnac MT (2020) Characterization of the nucleus, morphology, and activity of interstellar comet 2I/Borisov by optical and near-infrared GROWTH, apache point, IRTF, ZTF, and Keck observations. *Astron J* 160(1):26. <https://doi.org/10.3847/1538-3881/ab9305>. arXiv:1910.14004 [astro-ph.EP]

Boyajian TS, LaCourse DM, Rappaport SA, Fabrycky D, Fischer DA, Gandolfi D, Kennedy GM, Korhonen H, Liu MC, Moor A, Olah K, Vida K, Wyatt MC, Best WMJ, Brewer J, Ciesla F, Csák B, Deeg HJ, Dupuy TJ, Handler G, Heng K, Howell SB, Ishikawa ST, Kovács J, Kozakis T, Kriskovics L, Lehtinen J, Lintott C, Lynn S, Nespral D, Nikbakhtsh S, Schwabinski K, Schmitt JR, Smith AM, Szabo G, Szabo R, Viuho J, Wang J, Weiksnar A, Bosch M, Connors JL, Goodman S, Green G, Hoekstra AJ, Jebson T, Jek KJ, Omohundro MR, Schwengeler HM, Szewczyk A (2016) Planet Hunters IX. KIC 8462852 - where's the flux? *Mon Not R Astron Soc* 457(4):3988–4004. <https://doi.org/10.1093/mnras/stw218>. arXiv:1509.03622 [astro-ph.SR]

Chandler CO, Bernardinelli PH, Jurić M, Singh D, Hsieh HH, Sullivan I, Jones RL, Kurlander JA, Vavilov D, Eggel S, Holman M, Spoto F, Schwamb ME, Christensen EJ, Beebe W, Roodman A, Lim K-T, Jenness T, Bosch J, Smart B, Bellm E, MacBride S, Rawls ML, Greenstreet S, Slater C, Heinze A, Ivezić Ž, Blum B, Connolly A, Daues G, Makadia R, Gower M, Bryce Kalmbach J, Monet D, Bannister MT, Dones L, Dorsey RC, Fraser WC, Forbes JC, Fuentes C, Holt CE, Inno L, Jones GH, Knight MM, Lintott CJ, Lister T, Lupton R, Mendoza Magbanua MJ, Malhotra R, Mueller BEA, Murtagh J, Pandey N, Reach WT, Samarasingha NH, Seligman DZ, Snodgrass C, Solontoi M, Szabó GM, White E, Womack M, Young LA, Allberry R, Armellin R, Aubourg É, Avdellidou C, Azfar F, Bauer J, Bechtol K, Belyakov M, Benecchi SD, Bertini I, Bolin BT, Bose v, Buchanan LE, Boucaud A, Boufleur RC, Boutigny D, Braga-Ribas F, Calabrese D, Camargo JIB, Caplar N, Carry B, Carvajal JP, Choi Y, Cowan P, Croft S, Čuk M, Daruich F, Daubard G, Davenport JRA, Daylan T, Delgado J, Devillepoix HAR, Doherty PE, Donaldson A, Drass H, Deppe SJ, Dubois-Felsmann GP, Economou F, Eduardo MR, Farnocchia D, Frissell MK, Fedorets G, Fernandes MB, Fulle M, Gerdes DW, Gibbs AR, Gillan AF, Guy LP, Hammergren M, Hanushevsky A, Hernandez F, Hestroffer D, Hopkins MJ, Granvik M, Ieva S, Irving DH, Jannuzzi BT, Jimenez D, Ramos Gomes-Júnior A, Juramy C, Kahn SM, Kannawadi A, Kang Y, Kryszczyńska A, Kotov I, Kounjian A, Krughoff KS, Lage C, Lange TJ, Levine WG, Li Z, Licandro J, Lin HW, Lust NB, Lytle RR, Mahabal AA, Mahlke M, Plazas Malagón AA, Salazar Manzano LE, Marc M, Margot G, Marčeta D, Menanteau F, Meyers J, Mills D, Morato N, More S, Morrison CB, Moulae Y, Muñoz-Gutiérrez MA, M. NF, O'Connor P, Oldag D, Oldroyd WJ, O'Mullane W, Opitom C, Oszkiewicz D, Page GL, Patterson J, Payne MJ, Peloton J, Pereira CL, Peterson JR, Polin D, Pollek HMM, Polen R, Qiu Y, Ragozzine D, Rajagopal J, van Reeven v, Rice M, Ridgway ST, Rivkin AS, Robinson JE, Rożek A, Salnikov A, Sánchez BO, Sarid G, Schambeau CA, Scolnic D, Schindler RH, Seaman R, Jacques Š, Shaw RA, Shugar A, Sick J, Siraj A, Sitarz MC, Sobhani S, Soldahl C, Stalder B, Stetzler S, Swinbank JD, Szegedi L, Tauraso M, Thornton A, Tonietti L, Trilling DE, Trujillo CA (2025) NSF-DOE Vera C. Rubin Observatory Observations of Interstellar Comet 3I/ATLAS (C/2025 N1). *arXiv e-prints*, 507–13409. [arXiv:2507.13409](https://arxiv.org/abs/2507.13409) [astro-ph.EP]

Chen CH, Mittal T, Kuchner M, Forrest WJ, Lisse CM, Manoj P, Sargent BA, Watson DM (2014) The Spitzer infrared spectrograph debris disk catalog. I. Continuum analysis of unresolved targets. *Astrophys J Suppl Ser* 211(2):25. <https://doi.org/10.1088/0067-0049/211/2/25>

Cheng K-P, Neff JE (2003) Far-ultraviolet observations of the circumstellar gas in the 2 Andromedae system. *Astron J* 125:868–874. <https://doi.org/10.1086/345795>

Cordiner MA, Milam SN, Biver N, Bockelée-Morvan D, Roth NX, Bergin EA, Jehin E, Remijan AJ, Charnley SB, Mumma MJ, Boissier J, Crovisier J, Paganini L, Kuan Y-J, Lis DC (2020) Unusually high CO abundance of the first active interstellar comet. *Nat Astron* 4:861–866. <https://doi.org/10.1038/s41550-020-1087-2>. [arXiv:2004.09586](https://arxiv.org/abs/2004.09586) [astro-ph.EP]

Cordiner MA, Roth NX, Kelley MSP, Bodewits D, Charnley SB, Drozdovskaya MN, Farnocchia D, Micheli M, Milam SN, Opitom C, Schwamb ME, Thomas CA, Bagnulo S (2025) JWST detection of a carbon-dioxide-dominated gas coma surrounding interstellar object 3I/ATLAS. *Astrophys J Lett* 991(2):43. <https://doi.org/10.3847/2041-8213/ae0647>. [arXiv:2508.18209](https://arxiv.org/abs/2508.18209) [astro-ph.EP]

Coulson IM, Kuan Y-J, Charnley SB, Cordiner MA, Chuang Y-L, Lee Y-N, Lin M-K, Milam SN, Pimpanuwat B, Roth NX, Źółtowski M (2025) JCMT detection of HCN emission from 3I/ATLAS at 2.1 AU. *arXiv e-prints*, 2510–02817. <https://doi.org/10.48550/arXiv.2510.02817>. [arXiv:2510.02817](https://arxiv.org/abs/2510.02817) [astro-ph.EP]

David TJ, Hillenbrand LA (2015) The ages of early-type stars: Strömgren photometric methods calibrated, validated, tested, and applied to hosts and prospective hosts of directly imaged exoplanets. *Astrophys J* 804(2):146. <https://doi.org/10.1088/0004-637X/804/2/146>. [arXiv:1501.03154](https://arxiv.org/abs/1501.03154) [astro-ph.SR]

de la Fuente Marcos R, Licandro J, Alarcon MR, Serra-Ricart M, de Leon J, de la Fuente Marcos C, Lombardi G, Tejero A, Cabrera-Lavers A, Guerra Arencibia S, Ruiz Cejudo I (2025) Assessing interstellar comet 3I/ATLAS with the 10.4 m Gran Telescopio Canarias and the Two-meter Twin Telescope. *Astron Astrophys* 700:L9. <https://doi.org/10.1051/0004-6361/202556439>. [arXiv:2507.12922](https://arxiv.org/abs/2507.12922) [astro-ph.EP]

de León J, Licandro J, Serra-Ricart M, Cabrera-Lavers A, Font Serra J, Scarpa R, de la Fuente Marcos C, de la Fuente Marcos R (2019) Interstellar visitors: a physical characterization of comet C/2019 Q4 (Borisov) with OSIRIS at the 10.4 m GTC. *Res Notes AAS* 3(9):131. <https://doi.org/10.3847/2515-5172/ab449c>

Debes JH, Kilic M, Faedi F, Shkolnik EL, Lopez-Morales M, Weinberger AJ, Slesnick C, West RG (2012) Detection of weak circumstellar gas around the DAZ white dwarf WD 1124-293: evidence for the accretion of multiple asteroids. *Astrophys J* 754:59. <https://doi.org/10.1088/0004-637X/754/1/59>. [arXiv:1205.3503](https://arxiv.org/abs/1205.3503) [astro-ph.SR]

Deeg HJ, Alonso R, Nespral D, Boyajian TS (2018) Non-grey dimming events of KIC 8462852 from GTC spectrophotometry. *Astron Astrophys* 610:12. <https://doi.org/10.1051/0004-6361/201732453>. [arXiv:1801.00720](https://arxiv.org/abs/1801.00720) [astro-ph.SR]

Deleuil M, Gry C, Lagrange-Henri A-M, Vidal-Madjar A, Beust H, Ferlet R, Moos HW, Livengood TA, Ziskin D, Feldman PD (1993) The beta Pictoris circumstellar disk. XV. Highly ionized species near beta Pictoris. *Astron Astrophys* 267:187–193

Denneau L, Siverd R, Tonry J, Weiland H, Erasmus N, Fitzsimmons A, Robinson J (2025) 3I/ATLAS = C/2025 N1 (ATLAS). Minor Planet Electronic Circular 2025-N12

Dennihy E, Xu S, Lai S, Bonsor A, Clemens JC, Dufour P, Gänsicke BT, Gentile Fusillo NP, Hardy F, Hegedus RJ, Hermes JJ, Kaiser BC, Kissler-Patig M, Klein B, Manser CJ, Reding JS (2020) Five new post-main-sequence debris disks with gaseous emission. *Astrophys J* 905(1):5. <https://doi.org/10.3847/1538-4357/abc339>. [arXiv:2010.03693](https://arxiv.org/abs/2010.03693) [astro-ph.EP]

Dent WRF, Wyatt MC, Roberge A, Augereau J-C, Casassus S, Corder S, Greaves JS, de Gregorio-Monsalvo I, Hales A, Jackson AP, Hughes AM, Lagrange A-M, Matthews B, Wilner D (2014) Molecular gas clumps from the destruction of icy bodies in the β Pictoris debris disk. *Science* 343(6178):1490–1492. <https://doi.org/10.1126/science.1248726>. [arXiv:1404.1380](https://arxiv.org/abs/1404.1380) [astro-ph.SR]

Desch SJ, Jackson AP (2021) II/‘Oumuamua as an N_2 ice fragment of an exo-Pluto surface II: generation of N_2 ice fragments and the origin of ‘Oumuamua. *J Geophys Res Planets* 126:e2020JE006807. <https://doi.org/10.1029/2020JE006807>

Desch SJ, Jackson AP (2022) Some pertinent issues for interstellar panspermia raised after the discovery of II/‘Oumuamua. *Astrobiology* 22(12):1400–1413. <https://doi.org/10.1089/ast.2021.0199>

Drahus M, Guzik P, Waniak W, Handzlik B, Kurowski S, Xu S (2018) Tumbling motion of II/‘Oumuamua and its implications for the body’s distant past. *Nat Astron* 2:407–412. <https://doi.org/10.1038/s41550-018-0440-1>

Ducati JR (2002) VizieR Online Data Catalog: Catalogue of Stellar Photometry in Johnson’s 11-color System

Eiroa C, Rebollido I, Montesinos B, Villaver E, Absil O, Henning T, Bayo A, Canovas H, Carmona A, Chen C, Ertel S, Iglesias DP, Launhardt R, Maldonado J, Meeus G, Moór A, Mora A, Mustill AJ, Olofsson J, Rivière-Marichalar P, Roberge A (2016) Exocomet signatures around the A-shell star φ Leonis? *Astron Astrophys* 594:1. <https://doi.org/10.1051/0004-6361/201629514>. [arXiv:1609.04263](https://arxiv.org/abs/1609.04263) [astro-ph.SR]

Eiroa C, Montesinos B, Rebollido I, Henning T, Launhardt R, Maldonado J, Meeus G, Mora A, Rivière-Marichalar P, Villaver E (2021) The A-shell star φ Leo revisited: its photospheric and circumstellar spectra. *Astron Astrophys* 653:115. <https://doi.org/10.1051/0004-6361/202141140>. [arXiv:2106.16229](https://arxiv.org/abs/2106.16229) [astro-ph.SR]

Farihi J, Hermes JJ, Marsh TR, Mustill AJ, Wyatt MC, Guidry JA, Wilson TG, Redfield S, Izquierdo P, Toloza O, Gänsicke BT, Aungwerojwit A, Kaewmanee C, Dhillon VS, Swan A (2022) Relentless and complex transits from a planetesimal debris disc. *Mon Not R Astron Soc* 511(2):1647–1666. <https://doi.org/10.1093/mnras/stab3475>. [arXiv:2109.06183](https://arxiv.org/abs/2109.06183) [astro-ph.EP]

Farnham TL, Hood M, Kelley MSP, Sunshine JM (2025) A search for coma in TESS observations of interstellar comet 3I/ATLAS. *Res Notes AAS* 9(10):266. <https://doi.org/10.3847/2515-5172/ae109f>

Farnocchia D, Seligman DZ, Granvik M, Hainaut O, Meech KJ, Micheli M, Weryk R, Chesley SR, Christensen EJ, Koschny D, Kleyna JT, Lazzaro D, Mommert M, Wainscoat RJ (2023) (523599) 2003 RM: the asteroid that wanted to be a comet. *Planet Sci J* 4(2):29. <https://doi.org/10.3847/PSJ/acb25b>. [arXiv:2212.08135](https://arxiv.org/abs/2212.08135) [astro-ph.EP]

Feinstein AD, Noonan JW, Seligman DZ (2025) Precovery observations of 3I/ATLAS from TESS suggest possible distant activity. *Astrophys J Lett* 991(1):2. <https://doi.org/10.3847/2041-8213/adfd4d>. [arXiv:2507.21967](https://arxiv.org/abs/2507.21967) [astro-ph.EP]

Forlet R, Hobbs LM, Madjar AV (1987) The beta Pictoris circumstellar disk. V. Time variations of the CA II-K line. *Astron Astrophys* 185:267–270

Fitzsimmons A, Snodgrass C, Rozitis B, Yang B, Hyland M, Seccull T, Bannister MT, Fraser WC, Jedicke R, Lacerda P (2018) Spectroscopy and thermal modelling of the first interstellar object 1I/2017 U1 ‘Oumuamua. *Nat Astron* 2:133–137. <https://doi.org/10.1038/s41550-017-0361-4>. [arXiv:1712.06552](https://arxiv.org/abs/1712.06552) [astro-ph.EP]

Fitzsimmons A, Hainaut O, Meech K, Jehin E, Moulane Y, Opitom C, Yang B, Keane JV, Kleyna JT, Micheli M, Snodgrass C (2019) Detection of CN gas in Interstellar Object 2I/Borisov. *Astrophys J Lett* 885:L9. <https://doi.org/10.3847/2041-8213/ab49fc>. [arXiv:1909.12144](https://arxiv.org/abs/1909.12144) [astro-ph.EP]

Fitzsimmons A, Meech K, Matrà L, Pfalzner S (2024) Interstellar objects and exocomets. In: Meech KJ et al (eds) Comets III. The University of Arizona Press, Tucson, pp 731–766. [arXiv:2303.17980](https://arxiv.org/abs/2303.17980) [astro-ph.EP]

Forbes JC, Bannister MT, Lintott C, Forrest A, Portegies Zwart S, Dorsey RC, Albrow L, Hopkins MJ (2025) He awa whiria: the tidal streams of interstellar objects. *Astrophys J* 988:121. <https://doi.org/10.3847/1538-4357/adc9ac>. [arXiv:2411.14577](https://arxiv.org/abs/2411.14577) [astro-ph.EP]

Fouesneau M, Andrae R, Dharmawardena T, Rybizki J, Bailer-Jones CAL, Demleitner M (2022) Astrophysical parameters from Gaia DR2, 2MASS, and AllWISE. *Astron Astrophys* 662:125. <https://doi.org/10.1051/0004-6361/202141828>. [arXiv:2201.03252](https://arxiv.org/abs/2201.03252) [astro-ph.GA]

Fraser WC, Pravec P, Fitzsimmons A, Lacerda P, Bannister MT, Snodgrass C, Smolić I (2018) The tumbling rotational state of II/‘Oumuamua. *Nat Astron* 2:383–386. <https://doi.org/10.1038/s41550-018-0398-z>. [arXiv:1711.11530](https://arxiv.org/abs/1711.11530) [astro-ph.EP]

Frincke TT, Yaginuma A, Noonan JW, Hsieh HH, Seligman DZ, Holt CE, Strader J, Do T, Craig P, Molina I (2025) Near-discovery SOAR photometry of the third interstellar object: 3I/ATLAS. *Mon Not R Astron Soc* **staf1994**. <https://doi.org/10.1093/mnras/staf1994>. [arXiv:2509.02813](https://arxiv.org/abs/2509.02813) [astro-ph.EP]

Füglister A, Pfenniger D (2018) Solid H₂ in the interstellar medium. *Astron Astrophys* **613**:64. <https://doi.org/10.1051/0004-6361/201731739>. [arXiv:1712.01160](https://arxiv.org/abs/1712.01160) [astro-ph.GA]

Gaia Collaboration (2020) VizieR online data catalog: Gaia EDR3 (Gaia collaboration, 2020). <https://doi.org/10.26093/cds/vizier.1350>

Gaidos E, Williams J, Kraus A (2017b) Origin of interstellar object A/2017 U1 in a nearby young stellar association? *Res Notes AAS* **1**(1):13. <https://doi.org/10.3847/2515-5172/aa9851>. [arXiv:1711.01300](https://arxiv.org/abs/1711.01300) [astro-ph.EP]

Gänsicke BT, Marsh TR, Southworth J, Rebassa-Mansergas A (2006) A gaseous metal disk around a white dwarf. *Science* **314**:1908. <https://doi.org/10.1126/science.1135033>. [arXiv:astro-ph/0612697](https://arxiv.org/abs/astro-ph/0612697)

Gentile Fusillo NP, Manser CJ, Gänsicke BT, Toloza O, Koester D, Dennihy E, Brown WR, Farihi J, Hollands MA, Hoskin MJ, Izquierdo P, Kinnear T, Marsh TR, Santamaría-Miranda A, Pala AF, Redfield S, Rodríguez-Gil P, Schreiber MR, Veras D, Wilson DJ (2021) White dwarfs with planetary remnants in the era of Gaia - I. Six emission line systems. *Mon Not R Astron Soc* **504**(2):2707–2726. <https://doi.org/10.1093/mnras/stab992>. [arXiv:2010.13807](https://arxiv.org/abs/2010.13807) [astro-ph.SR]

Gibson A, MacGregor MA, Howard WS, Cody AM, Swain M, Burt JA, Venuti L, Shkolnik E, Turner NJ, Didion A, Nastal J, Makowski D (2025) TESS discovers a second system of transiting exocomets in the extreme debris disk of RZ Psc. *Astrophys J Lett* **993**:L29. <https://doi.org/10.3847/2041-8213/ae11a1>. [arXiv:2510.09920](https://arxiv.org/abs/2510.09920) [astro-ph.EP]

Grady CA, Perez MR, Talavera A, McCollum B, Rawley LA, England MN, Schlegel M (1996) The beta Pictoris phenomenon in A-shell stars: detection of accreting gas. *Astrophys J Lett* **471**:49. <https://doi.org/10.1086/310332>

Grady CA, Brown A, Welsh B, Roberge A, Kamp I, Rivière Marichalar P (2018) The star-grazing bodies in the HD 172555 system. *Astron J* **155**(6):242. <https://doi.org/10.3847/1538-3881/abef74>

Gratton R, Squicciarini V, Nascimbeni V, Janson M, Reffert S, Meyer M, Delorme P, Mamajek EE, Bonavita M, Desidera S, Mesa D, Rigliaco E, D’Orazi V, Vigan A, Lazzoni C, Chauvin G, Langlois M (2023) Multiples among B stars in the Scorpius-Centaurus association. *Astron Astrophys* **678**:93. <https://doi.org/10.1051/0004-6361/202346806>. [arXiv:2308.09962](https://arxiv.org/abs/2308.09962) [astro-ph.SR]

Gullikson K, Kraus A, Dodson-Robinson S (2016) The close companion mass-ratio distribution of intermediate-mass stars. *Astron J* **152**(2):40. <https://doi.org/10.3847/0004-6256/152/2/40>. [arXiv:1604.06456](https://arxiv.org/abs/1604.06456) [astro-ph.SR]

Guzik P, Drahus M, Rusek K, Waniak W, Cannizzaro G, Pastor-Marazuela I (2020) Initial characterization of interstellar comet 2I/Borisov. *Nat Astron* **4**:53–57. <https://doi.org/10.1038/s41550-019-0931-8>. [arXiv:1909.05851](https://arxiv.org/abs/1909.05851) [astro-ph.EP]

Halder P, Sengupta S (2023) A comprehensive model of morphologically realistic cosmic dust particles: an application to mimic the unusual polarization properties of the interstellar comet 2I/Borisov. *Astrophys J* **947**:1. <https://doi.org/10.3847/1538-4357/acbf52>. [arXiv:2302.13370](https://arxiv.org/abs/2302.13370) [astro-ph.EP]

Hallatt T, Wiegert P (2020) The dynamics of interstellar asteroids and comets within the galaxy: an assessment of local candidate source regions for 1I/’Oumuamua and 2I/Borisov. *Astron J* **159**(4):147. <https://doi.org/10.3847/1538-3881/ab7336>. [arXiv:1911.02473](https://arxiv.org/abs/1911.02473) [astro-ph.EP]

Hempel M, Schmitt JHMM (2003) High resolution spectroscopy of circumstellar material around A stars. *Astron Astrophys* **408**:971–979. <https://doi.org/10.1051/0004-6361:20030946>

Hermes JJ, Guidry JA, Vanderbosch ZP, Badenas Agustí M, Xu S, Kao ML, Rodriguez AC, Hawkins K (2025) Sporadic dips from planetary debris transiting the metal-rich white dwarf SBSS 1232+563. *Astrophys J* **980**:56. <https://doi.org/10.3847/1538-4357/ada5fd>

Hobbs LM, Vidal-Madjar A, Ferlet R, Albert CE, Gry C (1985) The gaseous component of the disk around beta Pictoris. *Astrophys J Lett* **293**:29–33. <https://doi.org/10.1086/184485>

Hopkins MJ, Lintott C, Bannister MT, Mackereth JT, Forbes JC (2023) The galactic interstellar object population: a framework for prediction and inference. *Astron J* **166**(6):241. <https://doi.org/10.3847/1538-3881/ad03e6>. [arXiv:2308.05801](https://arxiv.org/abs/2308.05801) [astro-ph.EP]

Hopkins MJ, Bannister MT, Lintott C (2025a) Predicting interstellar object chemodynamics with Gaia. *Astron J* **169**:78. <https://doi.org/10.3847/1538-3881/ad9eb3>. [arXiv:2402.04904](https://arxiv.org/abs/2402.04904) [astro-ph.EP]

Hopkins MJ, Dorsey RC, Forbes JC, Bannister MT, Lintott CJ, Leicester B (2025b) From a Different Star: 3I/ATLAS in the context of the Ōtautahi-Oxford interstellar object population model. *Astrophys J Lett* **990**:L30. <https://doi.org/10.3847/2041-8213/adfbf4>. [arXiv:2507.05318](https://arxiv.org/abs/2507.05318) [astro-ph.EP]

Hsieh C-H, Laughlin G, Arce HG (2021) Evidence suggesting that ‘Oumuamua is the 30 Myr old product of a molecular cloud. *Astrophys J* **917**(1):20. <https://doi.org/10.3847/1538-4357/ac0729>. [arXiv:2105.14670](https://arxiv.org/abs/2105.14670) [astro-ph.EP]

Hui M-T, Farnocchia D, Micheli M (2019) C/2010 U3 (Boattini): a bizarre comet active at record heliocentric distance. *Astron J* 157(4):162. <https://doi.org/10.3847/1538-3881/ab0e09>. [arXiv:1903.02260](https://arxiv.org/abs/1903.02260) [astro-ph.EP]

Hui M-T, Ye Q-Z, Föhring D, Hung D, Tholen DJ (2020) Physical characterization of interstellar comet 2I/2019 Q4 (Borisov). *Astron J* 160(2):92. <https://doi.org/10.3847/1538-3881/ab9df8>

Hui M-T, Weryk R, Micheli M, Huang Z, Wainscoat R (2024) Serendipitous archival observations of a new ultradistant comet C/2019 E3 (ATLAS). *Astron J* 167(3):140. <https://doi.org/10.3847/1538-3881/ad2500>

Iglesias D, Bayo A, Olofsson J, Wahhaj Z, Eiroa C, Montesinos B, Rebollido I, Smoker J, Sbordone L, Schreiber MR, Henning T (2018) Debris discs with multiple absorption features in metallic lines: circumstellar or interstellar origin? *Mon Not R Astron Soc* 480(1):488–520. <https://doi.org/10.1093/mnras/sty1724>. [arXiv:1806.10687](https://arxiv.org/abs/1806.10687) [astro-ph.SR]

Iglesias DP, Olofsson J, Bayo A, Zieba S, Montesinos M, Smoker J, Kennedy GM, Godoy N, Pantoja B, Talens GJ, Wahhaj Z, Zamora C (2019) An unusually large gaseous transit in a debris disc. *Mon Not R Astron Soc* 490(4):5218–5227. <https://doi.org/10.1093/mnras/stz2888>. [arXiv:1910.04747](https://arxiv.org/abs/1910.04747) [astro-ph.EP]

Jackson AP, Desch SJ (2021) II/‘Oumuamua as an N₂ ice fragment of an exo-Pluto surface: I. Size and compositional constraints. *J Geophys Res Planets* 126:e2020JE006706. <https://doi.org/10.1029/2020JE006706>

Jewitt D, Hsieh HH (2024) The asteroid-comet continuum. In: Meech KJ et al (eds) Comets III. The University of Arizona Press, Tucson, pp 767–798

Jewitt D, Li J (2010) Activity in geminid parent (3200) Phaethon. *Astron J* 140(5):1519–1527. <https://doi.org/10.1088/0004-6256/140/5/1519>. [arXiv:1009.2710](https://arxiv.org/abs/1009.2710) [astro-ph.EP]

Jewitt D, Luu J (2019) Initial characterization of interstellar comet 2I/2019 Q4 (Borisov). *Astrophys J Lett* 886(2):29. <https://doi.org/10.3847/2041-8213/ab530b>. [arXiv:1910.02547](https://arxiv.org/abs/1910.02547) [astro-ph.EP]

Jewitt D, Luu J (2025) Interstellar interloper C/2025 N1 is active. *Astron Telegr* 17263:1

Jewitt D, Matthews H (1999) Particulate mass loss from comet Hale-Bopp. *Astron J* 117(2):1056–1062. <https://doi.org/10.1086/300743>

Jewitt D, Seligman DZ (2023) The interstellar interlopers. *Annu Rev Astron Astrophys* 61:197–236. <https://doi.org/10.1146/annurev-astro-071221-054221>. [arXiv:2209.08182](https://arxiv.org/abs/2209.08182) [astro-ph.EP]

Jewitt D, Luu J, Rajagopal J, Kotulla R, Ridgway S, Liu W, Augusteijn T (2017) Interstellar interloper 1I/2017 U1: observations from the NOT and WIYN telescopes. *Astrophys J Lett* 850:36. <https://doi.org/10.3847/2041-8213/aa9b2f>. [arXiv:1711.05687](https://arxiv.org/abs/1711.05687) [astro-ph.EP]

Jewitt D, Hui M-T, Kim Y, Mutchler M, Weaver H, Agarwal J (2020) The nucleus of interstellar comet 2I/Borisov. *Astrophys J Lett* 888(2):23. <https://doi.org/10.3847/2041-8213/ab621b>. [arXiv:1912.05422](https://arxiv.org/abs/1912.05422) [astro-ph.EP]

Jewitt D, Kim Y, Mutchler M, Agarwal J, Li J, Weaver H (2021) Cometary activity begins at Kuiper Belt distances: evidence from C/2017 K2. *Astron J* 161(4):188. <https://doi.org/10.3847/1538-3881/abe4cf>. [arXiv:2102.06313](https://arxiv.org/abs/2102.06313) [astro-ph.EP]

Jewitt D, Hui M-T, Mutchler M, Kim Y, Agarwal J (2025) Hubble Space Telescope observations of the interstellar interloper 3I/ATLAS. *Astrophys J Lett* 990(1):2. <https://doi.org/10.3847/2041-8213/adf8d8>. [arXiv:2508.02934](https://arxiv.org/abs/2508.02934) [astro-ph.EP]

Jolly A, McPhate JB, Lecavelier A, Lagrange AM, Lemaire JL, Feldman PD, Vidal Madjar A, Ferlet R, Malmasson D, Rostas F (1998) HST - GHRS observations of CO and CI fill in the beta -Pictoris circumstellar disk. *Astron Astrophys* 329:1028–1034

Jones GH, Knight MM, Battams K, Boice DC, Brown J, Giordano S, Raymond J, Snodgrass C, Steckloff JK, Weissman P, Fitzsimmons A, Lisse C, Optom C, Birkett KS, Bzowski M, Decock A, Mann I, Ramanjooloo Y, McCauley P (2018) The science of sungrazers, sunskirters, and other near-sun comets. *Space Sci Rev* 214(1):20. <https://doi.org/10.1007/s11214-017-0446-5>

Kalas P (2005) First optical images of circumstellar dust surrounding the debris disk candidate HD 32297. *Astrophys J Lett* 635(2):169–172. <https://doi.org/10.1086/499400>. [arXiv:astro-ph/0511244](https://arxiv.org/abs/astro-ph/0511244) [astro-ph]

Kálmán S, Szabó GM, Kiss C (2024) Exocomet models in transit: light curve morphology in the optical—near infrared wavelength range. *Publ Astron Soc Pac* 136(8):084401. <https://doi.org/10.1088/1538-3873/ad4fe3>. [arXiv:2405.13663](https://arxiv.org/abs/2405.13663) [astro-ph.EP]

Kareta T, Champagne C, McClure L, Emery J, Sharkey BNL, Bauer JM, Connelly M, Rayner J, Thomas C, Reddy V, Firgard M (2025) Near-Discovery Observations of Interstellar Comet 3I/ATLAS with the NASA Infrared Telescope Facility. *Astrophys J Lett* 990:L65. <https://doi.org/10.3847/2041-8213/adfbdf>. [arXiv:2507.12234](https://arxiv.org/abs/2507.12234) [astro-ph.EP]

Karmann C, Beust H, Klinger J (2003) The physico-chemical history of falling evaporating bodies around beta Pictoris: the sublimation of refractory material. *Astron Astrophys* 409:347–359. <https://doi.org/10.1051/0004-6361:20030995>

Kelley MSP, Hsieh HH, Bodewits D, Saki M, Villanueva GL, Milam SN, Hammel HB (2023) Spectroscopic identification of water emission from a main-belt comet. *Nature* 619(7971):720–723. <https://doi.org/10.1038/s41586-023-06152-y>

Kennedy GM, Hope G, Hodgkin ST, Wyatt MC (2019) An automated search for transiting exocomets. *Mon Not R Astron Soc* 482(4):5587–5596. <https://doi.org/10.1093/mnras/sty3049>. [arXiv:1811.03102](https://arxiv.org/abs/1811.03102) [astro-ph.EP]

Kiefer F, Lecavelier des Etangs A, Augereau J-C, Vidal-Madjar A, Lagrange A-M, Beust H (2014a) Exocomets in the circumstellar gas disk of HD 172555. *Astron Astrophys* 561:10. <https://doi.org/10.1051/0004-6361/201323128>. [arXiv:1401.1365](https://arxiv.org/abs/1401.1365) [astro-ph.EP]

Kiefer F, Lecavelier des Etangs A, Boissier J, Vidal-Madjar A, Beust H, Lagrange A-M, Hébrard G, Ferlet R (2014b) Two families of exocomets in the β Pictoris system. *Nature* 514(7523):462–464. <https://doi.org/10.1038/nature13849>

Kiefer F, Lecavelier des Étangs A, Vidal-Madjar A, Hébrard G, Bourrier V, Wilson PA (2017) Detection of a repeated transit signature in the light curve of the enigma star KIC 8462852: a possible 928-day period. *Astron Astrophys* 608:132. <https://doi.org/10.1051/0004-6361/201731306>. [arXiv:1709.01732](https://arxiv.org/abs/1709.01732) [astro-ph.EP]

Kiefer F, Van Grootel V, Lecavelier des Etangs A, Szabó GM, Brandeker A, Broeg C, Collier Cameron A, Deline A, Olofsson G, Wilson TG, Sousa SG, Gandolfi D, Hébrard G, Alibert Y, Alonso R, Anglada G, Bárzky T, Barrado D, Barros SCC, Baumjohann W, Beck M, Beck T, Benz W, Billot N, Bonfils X, Cabrera J, Charnoz S, Csizmadia S, Davies MB, Deleuil M, Delrez L, Demangeon ODS, Demory B-O, Ehrenreich D, Erikson A, Fortier A, Fossati L, Fridlund M, Gillon M, Güdel M, Heng K, Hoyer S, Isaak KG, Kiss LL, Laskar J, Lendl M, Lovis C, Magrin D, Maxted PFL, Munari M, Nascimbeni V, Ottensamer R, Pagano I, Pallé E, Peter G, Piazza D, Piotto G, Pollacco D, Queloz D, Ragazzoni R, Rando N, Ratti F, Rauer H, Reimers C, Ribas I, Santos NC, Scandariato G, Ségransan D, Simon AE, Smith AMS, Steller M, Thomas N, Udry S, Walter I, Walton NA (2023) Hint of an exocomet transit in the CHEOPS light curve of HD 172555. *Astron Astrophys* 671:25. <https://doi.org/10.1051/0004-6361/202245104>. [arXiv:2301.07418](https://arxiv.org/abs/2301.07418) [astro-ph.EP]

Kiman R, Xu S, Faherty JK, Gagné J, Angus R, Brandt TD, Casewell SL, Cruz KL (2022) wdwarfdate: a Python package to derive Bayesian ages of white dwarfs. *Astron J* 164(2):62. <https://doi.org/10.3847/1538-3881/ac7788>. [arXiv:2206.05388](https://arxiv.org/abs/2206.05388) [astro-ph.SR]

Knight MM, Fitzsimmons A, Kelley MSP, Snodgrass C (2016) Comet 322P/SOHO 1: an asteroid with the smallest perihelion distance? *Astrophys J Lett* 823(1):6. <https://doi.org/10.3847/2041-8205/823/1/L6>. [arXiv:1604.07790](https://arxiv.org/abs/1604.07790) [astro-ph.EP]

Knight MM, Protopapa S, Kelley MSP, Farnham TL, Bauer JM, Bodewits D, Feaga LM, Sunshine JM (2017) On the rotation period and shape of the hyperbolic asteroid 1I/'Oumuamua (2017 U1) from its lightcurve. *Astrophys J Lett* 851(2):31. <https://doi.org/10.3847/2041-8213/aa9d81>. [arXiv:1711.01402](https://arxiv.org/abs/1711.01402) [astro-ph.EP]

Kondo Y, Bruhweiler FC (1985) IUE observations of beta Pictoris: an IRAS candidate for a proto-planetary system. *Astrophys J Lett* 291:1–5. <https://doi.org/10.1086/184446>

Kral Q, Matrà L, Wyatt MC, Kennedy GM (2017) Predictions for the secondary CO, C and O gas content of debris discs from the destruction of volatile-rich planetesimals. *Mon Not R Astron Soc* 469(1):521–550. <https://doi.org/10.1093/mnras/stx730>. [arXiv:1703.10693](https://arxiv.org/abs/1703.10693) [astro-ph.EP]

Kral Q, Marino S, Wyatt MC, Kama M, Matrà L (2019) Imaging [CI] around HD 131835: reinterpreting young debris discs with protoplanetary disc levels of CO gas as shielded secondary discs. *Mon Not R Astron Soc* 489(4):3670–3691. <https://doi.org/10.1093/mnras/sty2923>. [arXiv:1811.08439](https://arxiv.org/abs/1811.08439) [astro-ph.EP]

Kruse E, Agol E, Luger R, Foreman-Mackey D (2019) Detection of hundreds of new planet candidates and eclipsing binaries in K2 campaigns 0–8. *Astrophys J Suppl Ser* 244(1):11. <https://doi.org/10.3847/1538-4365/ab346b>. [arXiv:1907.10806](https://arxiv.org/abs/1907.10806) [astro-ph.EP]

Lagrange AM, Ferlet R, Vidal-Madjar A (1987) The beta Pictoris circumstellar disk. IV. Redshifted UV lines. *Astron Astrophys* 173:289–292

Lagrange A-M, Plazy F, Beust H, Mouillet D, Deleuil M, Ferlet R, Spyromilio J, Vidal-Madjar A, Tobin W, Hearnshaw JB, Clark M, Thomas KW (1996) The β Pictoris circumstellar disk. XXI. Results from the December 1992 spectroscopic campaign. *Astron Astrophys* 310:547–563

Lagrange A-M, Gratadour D, Chauvin G, Fusco T, Ehrenreich D, Mouillet D, Rousset G, Rouan D, Allard F, Gendron É, Charton J, Mugnier L, Rabou P, Montri J, Lacombe F (2009) A probable giant planet imaged in the β Pictoris disk. VLT/NaCo deep L'-band imaging. *Astron Astrophys* 493(2):21–25. <https://doi.org/10.1051/0004-6361/200811325>. [arXiv:0811.3583](https://arxiv.org/abs/0811.3583) [astro-ph]

Lagrange A-M, Meunier N, Rubini P, Keppler M, Galland F, Chapellier E, Michel E, Balona L, Beust H, Guillot T, Grandjean A, Borgniet S, Mékarnia D, Wilson PA, Kiefer F, Bonnefoy M, Lillo-Box J, Pantoja B, Jones M, Iglesias DP, Rodet L, Diaz M, Zapata A, Abe L, Schmider F-X (2019) Evidence for an additional planet in the β Pictoris system. *Nat Astron* 3:1135–1142. <https://doi.org/10.1038/s41550-019-0857-1>

Lagrange-Henri AM, Vidal-Madjar A, Ferlet R (1988) The beta Pictoris circumstellar disk. VI. Evidence for material falling on to the star. *Astron Astrophys* 190:275–282

Lagrange-Henri AM, Beust H, Ferlet R, Vidal-Madjar A (1989) The circumstellar gas around beta Pictoris. VIII. Evidence for a clumpy structure of the infalling gas. *Astron Astrophys* 215:5–8

Lagrange-Henri AM, Beust H, Ferlet R, Hobbs LM, Madjar AV (1990a) HR 10: a new beta Pictoris-like star? *Astron Astrophys* 227:13–16

Lagrange-Henri AM, Ferlet R, Vidal-Madjar A, Beust H, Gry C, Lallement R (1990b) Search for beta Pictoris-like star. *Astron Astrophys Suppl Ser* 85:1089

Lauretta DS, Hergenrother CW, Chesley SR, Leonard JM, Pelgrift JY, Adam CD, Al Asad M, Antreasian PG, Ballouz R-L, Becker KJ, Bennett CA, Bos BJ, Bottke WF, Brozović M, Campins H, Connolly HC, Daly MG, Davis AB, de León J, DellaGiustina DN, Drouet d'Aubigny CY, Dworkin JP, Emery JP, Farnocchia D, Gladwin DP, Golish DR, Hartzell CM, Jacobson RA, Jawin ER, Jenniskens P, Kidd JN, Lessac-Chenen EJ, Li J-Y, Libourel G, Licandro J, Liounis AJ, Maleszewski CK, Manzoni C, May B, McCarthy LK, McMahon JW, Michel P, Molaro JL, Moreau MC, Nelson DS, Owen WM, Rizk B, Roper HL, Rozitis B, Sahr EM, Scheeres DJ, Seabrook JA, Selznick SH, Takahashi Y, Thuillet F, Tricarico P, Vokrouhlický D, Wolner CWV (2019) Episodes of particle ejection from the surface of the active asteroid (101955) Bennu. *Science* 366(6470):3544. <https://doi.org/10.1126/science.aay3544>

Le Bourdais É, Dufour P, Xu S (2024) Revisiting the chemical composition of WD 1145+017: impact of circumstellar disk contamination on photospheric abundances. *Astrophys J* 977:93. <https://doi.org/10.3847/1538-4357/ad90b7>. [arXiv:2410.10948](https://arxiv.org/abs/2410.10948) [astro-ph.SR]

Lecavelier Des Etangs A (1999) A library of stellar light variations due to extra-solar comets. *Astron Astrophys Suppl Ser* 140:15–20. <https://doi.org/10.1051/aa:1999114>

Lecavelier Des Etangs A, Lissauer JJ (2022) The IAU working definition of an exoplanet. *New Astron Rev* 94:101641. <https://doi.org/10.1016/j.newar.2022.101641>. [arXiv:2203.09520](https://arxiv.org/abs/2203.09520) [astro-ph.IM]

Lecavelier Des Etangs A, Vidal-Madjar A, Ferlet R (1996) Dust distribution in disks supplied by small bodies: is the β Pictoris disk a gigantic multi-cometary tail? *Astron Astrophys* 307:542–550. [arXiv:astro-ph/9508035](https://arxiv.org/abs/astro-ph/9508035) [astro-ph]

Lecavelier Des Etangs A, Deleuil M, Vidal-Madjar A, Lagrange-Henri A-M, Backman D, Lissauer JJ, Ferlet R, Beust H, Mouillet D (1997) HST-GHRS observations of candidate β Pictoris-like circumstellar gaseous disks. *Astron Astrophys* 325:228–236

Lecavelier Des Etangs A, Vidal-Madjar A, Ferlet R (1999) Photometric stellar variation due to extra-solar comets. *Astron Astrophys* 343:916–922. [arXiv:astro-ph/9812381](https://arxiv.org/abs/astro-ph/9812381) [astro-ph]

Lecavelier des Etangs A, Vidal-Madjar A, Roberge A, Feldman PD, Deleuil M, André M, Blair WP, Bouret J-C, Désert J-M, Ferlet R, Friedman S, Hébrard G, Lemoine M, Moos HW (2001) Deficiency of molecular hydrogen in the disk of β Pictoris. *Nature* 412(6848):706–708. <https://doi.org/10.1038/35089006>

Lecavelier des Etangs A, Cros L, Hébrard G, Martioli E, Duquesnoy M, Kenworthy MA, Kiefer F, Lacour S, Lagrange A-M, Meunier N, Vidal-Madjar A (2022) Exocomets size distribution in the β Pictoris planetary system. *Sci Rep* 12:5855. <https://doi.org/10.1038/s41598-022-09021-2>. [arXiv:2204.13618](https://arxiv.org/abs/2204.13618) [astro-ph.EP]

Levine WG, Laughlin G (2021) Assessing the formation of solid hydrogen objects in starless molecular cloud cores. *Astrophys J* 912(1):3. <https://doi.org/10.3847/1538-4357/abec85>. [arXiv:2103.05449](https://arxiv.org/abs/2103.05449) [astro-ph.EP]

Levine WG, Cabot SHC, Seligman D, Laughlin G (2021) Constraints on the occurrence of ‘Oumuamua-like objects. *Astrophys J* 922(1):39. <https://doi.org/10.3847/1538-4357/ac1fe6>. [arXiv:2108.11194](https://arxiv.org/abs/2108.11194) [astro-ph.EP]

Levison HF (1996) Comet taxonomy. In: Rettig T, Hahn JM (eds) Completing the inventory of the Solar System. Astronomical society of the Pacific conference series, vol 107, pp 173–191

Lisse CM, Bach YP, Bryan S, Crill BP, Cukierman A, Doré O, Fabinsky B, Faisst A, Kornogut PM, Melnick G, Rustamkulov Z, Tolls V, Werner M, Sitko ML, Champagne C, Connelley M, Emery JP, Fernandez YR, Yang B (2025) The SPHEREx science team: SPHEREx discovery of strong water ice absorption and an extended carbon dioxide coma in 3I/ATLAS. *Res Notes AAS* 9(9):242. <https://doi.org/10.3847/2515-5172/ae0293>. [arXiv:2508.15469](https://arxiv.org/abs/2508.15469) [astro-ph.EP]

Livingston JH, Crossfield IJM, Petigura EA, Gonzales EJ, Ciardi DR, Beichman CA, Christiansen JL, Dressing CD, Henning T, Howard AW, Isaacson H, Fulton BJ, Kosiarek M, Schlieder JE, Sinukoff E, Tamura M (2018) Sixty validated planets from K2 campaigns 5–8. *Astron J* 156(6):277. <https://doi.org/10.3847/1538-3881/aae778>. [arXiv:1810.04074](https://arxiv.org/abs/1810.04074) [astro-ph.EP]

Loeb A (2025) 3I/ATLAS is smaller or rarer than it looks. *Res. Notes AAS* 9:178. <https://doi.org/10.3847/2515-5172/adee06>. [arXiv:2507.05881](https://arxiv.org/abs/2507.05881) [astro-ph.EP]

Luk'yanyk I, Kulyk I, Shubina O, Pavlenko Y, Vasylenko M, Dobrycheva D, Korsun P (2024) Numerical simulations of exocomet transits: insights from β Pic and KIC 3542116. *Astron Astrophys* 688:65. <https://doi.org/10.1051/0004-6361/202348498>. [arXiv:2407.17961](https://arxiv.org/abs/2407.17961) [astro-ph.EP]

Malamud U (2026) White dwarf systems: exoplanets and debris disks. In: Mandel I (ed) Encyclopedia of astrophysics. Elsevier, pp 553–563. <https://doi.org/10.1016/B978-0-443-21439-4.00001-8>. [arXiv:2403.07427](https://arxiv.org/abs/2403.07427) [astro-ph.EP]

Mamajek E (2017) Kinematics of the interstellar vagabond 1I/'Oumuamua (A/2017 U1). *Res Notes Amer Astron Soc* 1(1):21. <https://doi.org/10.3847/2515-5172/aa9bdc>. [arXiv:1710.11364](https://arxiv.org/abs/1710.11364) [astro-ph.EP]

Mamajek EE, Bell CPM (2014) On the age of the β Pictoris moving group. *Mon Not R Astron Soc* 445(3):2169–2180. <https://doi.org/10.1093/mnras/stu1894>. [arXiv:1409.2737](https://arxiv.org/abs/1409.2737) [astro-ph.SR]

Mann AW, Gaidos E, Vanderburg A, Rizzuto AC, Ansdel M, Medina JV, Mace GN, Kraus AL, Sokal KR (2017) Zodiacal exoplanets in time (ZEIT). IV. Seven transiting planets in the praesepe cluster. *Astron J* 153(2):64. <https://doi.org/10.1088/1361-6528/aa5276>. [arXiv:1609.00726](https://arxiv.org/abs/1609.00726) [astro-ph.EP]

Manser CJ, Gänsicke BT, Marsh TR, Veras D, Koester D, Breedt E, Pala AF, Parsons SG, Southworth J (2016) Doppler imaging of the planetary debris disc at the white dwarf SDSS J122859.93+104032.9. *Mon Not R Astron Soc* 455(4):4467–4478. <https://doi.org/10.1093/mnras/stv2603>. [arXiv:1511.02230](https://arxiv.org/abs/1511.02230) [astro-ph.SR]

Marino S, Flock M, Henning T, Kral Q, Matrà L, Wyatt MC (2020) Population synthesis of exocometary gas around A stars. *Mon Not R Astron Soc* 492(3):4409–4429. <https://doi.org/10.1093/mnras/stz3487>. [arXiv:2001.10543](https://arxiv.org/abs/2001.10543) [astro-ph.EP]

Martinez-Palomera J, Tuson A, Hedges C, Dotson J, Barclay T, Powell B (2025) Prediscovery TESS observations of interstellar object 3I/ATLAS. *Astrophys J Lett* 994:L51. <https://doi.org/10.3847/2041-8213/ae1f91>. [arXiv:2508.02499](https://arxiv.org/abs/2508.02499) [astro-ph.EP]

Mashchenko S (2019) Modelling the light curve of 'oumuamua: evidence for torque and disc-like shape. *Mon Not R Astron Soc* 489(3):3003–3021. <https://doi.org/10.1093/mnras/stz2380>. [arXiv:1906.03696](https://arxiv.org/abs/1906.03696) [astro-ph.EP]

Masiero J (2017) Palomar Optical Spectrum of Hyperbolic Near-Earth Object A/2017 U1. arXiv e-prints [arXiv:1710.09977](https://arxiv.org/abs/1710.09977) [astro-ph.EP]

Matrà L, Dent WRF, Wyatt MC, Kral Q, Wilner DJ, Panić O, Hughes AM, de Gregorio-Monsalvo I, Hales A, Augereau J-C, Greaves J, Roberge A (2017a) Exocometary gas structure, origin and physical properties around β Pictoris through ALMA CO multitransition observations. *Mon Not R Astron Soc* 464(2):1415–1433. <https://doi.org/10.1093/mnras/stw2415>. [arXiv:1609.06718](https://arxiv.org/abs/1609.06718) [astro-ph.EP]

Matrà L, MacGregor MA, Kalas P, Wyatt MC, Kennedy GM, Wilner DJ, Duchene G, Hughes AM, Pan M, Shannon A, Clampin M, Fitzgerald MP, Graham JR, Holland WS, Panić O, Su KYL (2017b) Detection of exocometary CO within the 440 myr old fomalhaut belt: a similar CO+CO₂ ice abundance in exocomets and Solar System comets. *Astrophys J* 842(1):9. <https://doi.org/10.3847/1538-4357/aa71b4>. [arXiv:1705.05868](https://arxiv.org/abs/1705.05868) [astro-ph.EP]

Mayor M, Queloz D (1995) A Jupiter-mass companion to a solar-type star. *Nature* 378(6555):355–359. <https://doi.org/10.1038/378355a0>

Mazzotta Epifani E, Dotto E, Perna D, Ieva S, Giunta A, Palumbo P, Micheli M (2021) A colour portrait of the interstellar comet 2I/Borisov. *Planet Space Sci* 208:105341. <https://doi.org/10.1016/j.pss.2021.105341>

McKay AJ, DiSanti MA, Kelley MSP, Knight MM, Womack M, Wierczchos K, Harrington Pinto O, Bonev B, Villanueva GL, Dello Russo N, Cochran AL, Biver N, Bauer J, Vervack JRJ, Gibb E, Roth N, Kawakita H (2019) The peculiar volatile composition of CO-dominated comet C/2016 R2 (PanSTARRS). *Astron J* 158(3):128. <https://doi.org/10.3847/1538-3881/ab32e4>. [arXiv:1907.07208](https://arxiv.org/abs/1907.07208) [astro-ph.EP]

Meech KJ, Svoren J (2004) Using cometary activity to trace the physical and chemical evolution of cometary nuclei. In: Festou MC, Keller HU, Weaver HA (eds) Comets II. The University of Arizona Press, Tucson, p 317

Meech KJ, Weryk R, Micheli M, Kleyna JT, Hainaut OR, Jedicke R, Wainscoat RJ, Chambers KC, Keane JV, Petric A, Denneau L, Magnier E, Berger T, Huber ME, Flewelling H, Waters C, Schunova-Lilly E, Chastel S (2017) A brief visit from a red and extremely elongated interstellar asteroid. *Nature* 552(7685):378–381. <https://doi.org/10.1038/nature25020>

Micheli M, Farnocchia D, Meech KJ, Buike MW, Hainaut OR, Prialnik D, Schörghofer N, Weaver HA, Chodas PW, Kleyna JT, Weryk R, Wainscoat RJ, Ebeling H, Keane JV, Chambers KC, Koschny D, Petropoulos AE (2018) Non-gravitational acceleration in the trajectory of 1I/2017 U1 ('Oumuamua). *Nature* 559:223–226. <https://doi.org/10.1038/s41586-018-0254-4>

Miles BE, Roberge A, Welsh B (2016) UV spectroscopy of star-grazing comets within the 49 ceti debris disk. *Astrophys J* 824(2):126. <https://doi.org/10.3847/0004-637X/824/2/126>. [arXiv:1511.01923](https://arxiv.org/abs/1511.01923) [astro-ph.EP]

Montesinos B, Eiroa C, Mora A, Merín B (2009) Parameters of Herbig Ae/Be and Vega-type stars. *Astron Astrophys* 495(3):901–917. <https://doi.org/10.1051/0004-6361:200810623>. [arXiv:0811.3557](https://arxiv.org/abs/0811.3557) [astro-ph]

Montesinos B, Eiroa C, Lillo-Box J, Rebollido I, Djupvik AA, Absil O, Ertel S, Marion L, Kajava JJE, Redfield S, Isaacson H, Cánovas H, Meeus G, Mendigutía I, Mora A, Rivière-Michalar P, Villaver E, Maldonado J, Henning T (2019) HR 10: a main-sequence binary with circumstellar envelopes around both components. Discovery and analysis. *Astron Astrophys* 629:19. <https://doi.org/10.1051/0004-6361/201936180>. [arXiv:1907.12441](https://arxiv.org/abs/1907.12441) [astro-ph.SR]

Montgomery SL, Welsh BY (2012) Detection of variable gaseous absorption features in the debris disks around young A-type stars. *Publ Astron Soc Pac* 124:1042. <https://doi.org/10.1086/668293>

Montgomery SL, Welsh BY (2017) Unusually high circumstellar absorption variability around the δ Scuti / λ Boötis star HD 183324. *Mon Not R Astron Soc* 468:55–58. <https://doi.org/10.1093/mnrasl/slx016>

Moór A, Curé M, Kóspál Á, Ábrahám P, Csengeri T, Eiroa C, Gunawan D, Henning T, Hughes AM, Juhász A, Pawellek N, Wyatt M (2017) Molecular gas in debris disks around young A-type stars. *Astrophys J* 849(2):123. <https://doi.org/10.3847/1538-4357/aa8e4e>. arXiv:1709.08414 [astro-ph.SR]

Moór A, Kral Q, Ábrahám P, Kóspál Á, Dutrey A, Di Folco E, Hughes AM, Juhász A, Pascucci I, Pawellek N (2019) New millimeter CO observations of the gas-rich debris disks 49 cet and HD 32297. *Astrophys J* 884(2):108. <https://doi.org/10.3847/1538-4357/ab4272>. arXiv:1908.09685 [astro-ph.EP]

Morales FY, Bryden G, Werner MW, Stapelfeldt KR (2016) Herschel-resolved outer belts of two-belt debris disks—evidence of icy grains. *Astrophys J* 831:97. <https://doi.org/10.3847/0004-637X/831/1/97>

Moro-Martín A (2019) Could 11°Oumuamua be an icy fractal aggregate? *Astrophys J Lett* 872(2):32. <https://doi.org/10.3847/2041-8213/ab05df>. arXiv:1902.04100 [astro-ph.EP]

Moro-Martín A (2022) Interstellar planetesimals. In: Lara LM, Jewitt D (eds) *Planetary systems now*. World Scientific, Singapore. pp 333–379. https://doi.org/10.1142/9781800613140_0013. arXiv:2205.04277 [astro-ph.EP]

Nakatani R, Kobayashi H, Kuiper R, Nomura H, Aikawa Y (2021) Photoevaporation of grain-depleted protoplanetary disks around intermediate-mass stars: investigating the possibility of gas-rich debris disks as protoplanetary remnants. *Astrophys J* 915(2):90. <https://doi.org/10.3847/1538-4357/ac0137>. arXiv:2009.06438 [astro-ph.SR]

Norazman A, Kennedy GM, Cody AM, Giles D, Gill S, Kruse E (2025) A search for transiting exocomets in TESS sectors 1–26. *Mon Not R Astron Soc* 542(2):1486–1508. <https://doi.org/10.1093/mnras/staf1298>. arXiv:2508.04673 [astro-ph.EP]

O'Brien DP, Izidoro A, Jacobson SA, Raymond SN, Rubie DC (2018) The delivery of water during terrestrial planet formation. *Space Sci Rev* 214(1):47. <https://doi.org/10.1007/s11214-018-0475-8>. arXiv:1801.05456 [astro-ph.EP]

Opitom C, Snodgrass C, Jehin E, Bannister MT, Bufanda E, Deam SE, Dorsey R, Ferrais M, Hmidaoui S, Knight MM, Koktanekova R, Leicester B, Marsset M, Murphy B, Okoth V, Ridden-Harper R, Vander Donckt M, Ferellec L, Hutsemekers D, Lippi M, Manfroid J, Benkhaldoun Z (2025) Snapshot of a new interstellar comet: 3I/ATLAS has a red and featureless spectrum. *Mon Not R Astron Soc Lett* 544(1):L31–L36. <https://doi.org/10.1093/mnrasl/slaf095>. arXiv:2507.05226 [astro-ph.EP]

Park RS, Pisano DJ, Lazio TJW, Chodas PW, Naidu SP (2018) Search for OH 18 cm radio emission from 1I/2017 U1 with the Green Bank Telescope. *Astron J* 155:185. <https://doi.org/10.3847/1538-3881/aab78d>. arXiv:1803.10187 [astro-ph.EP]

Pavlenko Y, Kulyk I, Shubina O, Vasylenko M, Dobrycheva D, Korsun P (2022) New exocomets of β Pic. *Astron Astrophys* 660:49. <https://doi.org/10.1051/0004-6361/202142111>. arXiv:2202.13373 [astro-ph.SR]

Pecaut MJ, Mamajek EE (2013) Intrinsic colors, temperatures, and bolometric corrections of pre-main-sequence stars. *Astrophys J Suppl Ser* 208(1):9. <https://doi.org/10.1088/0067-0049/208/1/9>. arXiv:1307.2657 [astro-ph.SR]

Puzia TH, Rahatgaonkar R, Carvajal JP, Nayak PK, Luco B (2025) Spectral characteristics of interstellar object 3I/ATLAS from SOAR observations. *Astrophys J Lett* 990:L27. <https://doi.org/10.3847/2041-8213/adfa0b>. arXiv:2508.02777 [astro-ph.EP]

Queiroz ABA, Anders F, Chiappini C, Khalatyan A, Santiago BX, Nepal S, Steinmetz M, Gallart C, Valentini M, Dal Ponte M, Barbuy B, Pérez-Villegas A, Masseron T, Fernández-Trincado JG, Khoperskov S, Minchev I, Fernández-Alvar E, Lane RR, Nitschelm C (2023) StarHorse results for spectroscopic surveys and Gaia DR3: chrono-chemical populations in the solar vicinity, the genuine thick disk, and young alpha-rich stars. *Astron Astrophys* 673:155. <https://doi.org/10.1051/0004-6361/202245399>. arXiv:2303.09926 [astro-ph.GA]

Rahatgaonkar R, Carvajal JP, Puzia TH, Luco B, Jehin E, Hutsemékers D, Opitom C, Manfroid J, Marsset M, Yang B, Buchanan L, Fraser WC, Forbes J, Bannister M, Bodewits D, Bolin BT, Belyakov M, Knight MM, Snodgrass C, Bufanda E, Dorsey R, Ferellec L, La Forgia F, Lippi M, Murphy B, Nayak PK, Vander Donckt M (2025) VLT observations of interstellar comet 3I/ATLAS II. From quiescence to glow: Dramatic rise of Ni I emission and incipient CN outgassing at large heliocentric distances. arXiv e-prints, 2508–18382. <https://doi.org/10.48550/arXiv.2508.18382>. arXiv:2508.18382 [astro-ph.SR]

Rappaport S, Gary BL, Kaye T, Vanderburg A, Croll B, Benni P, Foote J (2016) Drifting asteroid fragments around WD 1145+017. *Mon Not R Astron Soc* 458:3904–3917. <https://doi.org/10.1093/mnras/stw612>. arXiv:1602.00740 [astro-ph.EP]

Rappaport S, Vanderburg A, Jacobs T, LaCourse D, Jenkins J, Kraus A, Rizzuto A, Latham DW, Bieryla A, Lazarevic M, Schmitt A (2018) Likely transiting exocomets detected by Kepler. *Mon Not R Astron Soc* 474(2):1453–1468. <https://doi.org/10.1093/mnras/stx2735>. arXiv:1708.06069 [astro-ph.EP]

Rebollido I, Eiroa C, Montesinos B, Maldonado J, Villaver E, Absil O, Bayo A, Canovas H, Carmona A, Chen C, Ertel S, Garufi A, Henning T, Iglesias DP, Launhardt R, Liseau R, Meeus G, Moór A, Mora A, Olofsson J, Rauw G, Riviere-Marichalar P (2018) The co-existence of hot and cold gas in debris discs. *Astron Astrophys* 614:3. <https://doi.org/10.1051/0004-6361/201732329>. arXiv:1801.07951 [astro-ph.SR]

Rebollido I, Eiroa C, Montesinos B, Maldonado J, Villaver E, Absil O, Bayo A, Canovas H, Carmona A, Chen C, Ertel S, Henning T, Iglesias DP, Launhardt R, Liseau R, Meeus G, Moór A, Mora A, Olofsson J, Rauw G, Riviere-Marichalar P (2020) Exocomets: a spectroscopic survey. *Astron Astrophys* 639:11. <https://doi.org/10.1051/0004-6361/201936071>. arXiv:2003.11084 [astro-ph.SR]

Rebollido I, Ribas Á, de Gregorio-Monsalvo I, Villaver E, Montesinos B, Chen C, Canovas H, Henning T, Moór A, Perrin M, Rivière-Marichalar P, Eiroa C (2022) The search for gas in debris discs: ALMA detection of CO gas in HD 36546. *Mon Not R Astron Soc* 509(1):693–700. <https://doi.org/10.1093/mnras/stab2906>. arXiv:2110.02308 [astro-ph.EP]

Redfield S (2007) Gas absorption detected from the edge-on debris disk surrounding HD 32297. *Astrophys J Lett* 656:97–100. <https://doi.org/10.1086/512237>. arXiv:astro-ph/0701116

Redfield S, Kessler-Silacci JE, Cieza LA (2007) Spitzer limits on dust emission and optical gas absorption variability around nearby stars with edge-on circumstellar disk signatures. *Astrophys J* 661:944–971. <https://doi.org/10.1086/517516>. arXiv:astro-ph/0703089

Rhee JH, Song I, Zuckerman B, McElwain M (2007) Characterization of dusty debris disks: the IRAS and hipparcos catalogs. *Astrophys J* 660:1556–1571. <https://doi.org/10.1086/509912>. arXiv:astro-ph/0609555

Roberge A, Weinberger AJ (2008) Debris disks around nearby stars with circumstellar gas. *Astrophys J* 676:509–517. <https://doi.org/10.1086/527314>. arXiv:0711.4561

Roberge A, Feldman PD, Lagrange AM, Vidal-Madjar A, Ferlet R, Jolly A, Lemaire JL, Rostas F (2000) High-resolution Hubble Space Telescope STIS spectra of C I and CO in the β Pictoris circumstellar disk. *Astrophys J* 538(2):904–910. <https://doi.org/10.1086/309157>. arXiv:astro-ph/0003446 [astro-ph]

Roberge A, Welsh BY, Kamp I, Weinberger AJ, Grady CA (2014) Volatile-rich circumstellar gas in the unusual 49 ceti debris disk. *Astrophys J Lett* 796(1):11. <https://doi.org/10.1088/2041-8205/796/1/L11>. arXiv:1410.6542 [astro-ph.EP]

Robert A, Farihi J, Van Eylen V, Aungwerojwit A, Gänsicke BT, Redfield S, Dhillon VS, Marsh TR, Swan A (2024) The frequency of transiting planetary systems around polluted white dwarfs. *Mon Not R Astron Soc* 533(2):1756–1765. <https://doi.org/10.1093/mnras/stae1859>. arXiv:2407.21743 [astro-ph.EP]

Rogers LK, Bonsor A, Xu S, Dufour P, Klein BL, Buchan A, Hodgkin S, Hardy F, Kissler-Patig M, Melis C, Weinberger AJ, Zuckerman B (2024) Seven white dwarfs with circumstellar gas discs I: white dwarf parameters and accreted planetary abundances. *Mon Not R Astron Soc* 527(3):6038–6054. <https://doi.org/10.1093/mnras/stad3557>. arXiv:2311.14048 [astro-ph.EP]

Salazar Manzano LE, Lin HW, Taylor AG, Seligman DZ, Adams FC, Gerdes DW, Ruch T, Frincke TT, Napier KJ (2025) Onset of CN emission in 3I/ATLAS: evidence for strong carbon-chain depletion. *Astrophys J Lett* 993:L23. <https://doi.org/10.3847/2041-8213/ae1232>. arXiv:2509.01647 [astro-ph.EP]

Santana-Ros T, Ivanova O, Mykhailova S, Erasmus N, Kamiński K, Oszkiewicz D, Kwiatkowski T, Husárik M, Ngwane TS, Penttilä A (2025) Temporal evolution of the third interstellar comet 3I/ATLAS: Spin, color, spectra, and dust activity. *Astron Astrophys* 702:L3. <https://doi.org/10.1051/0004-6361/20255671>. arXiv:2508.00808 [astro-ph.EP]

Schleicher DG, Lederer SM, Millis RL, Farnham TL (1997) Photometric behavior of comet Hale-Bopp (C/1995 O1) before perihelion. *Science* 275:1913–1915. <https://doi.org/10.1126/science.275.5308.1913>

Schulte J, Rodriguez JE, Bieryla A, Quinn SN, Collins KA, Yee SW, Nine AC, Soares-Furtado M, Latham DW, Eastman JD, Barkaoui K, Ciardi DR, Dragomir D, Everett ME, Giacalone S, Mireles I, Murgas F, Narita N, Shporer A, Strakhov IA, Striegel S, Vaňko M, Vowell N, Wang G, Ziegler C, Bellaver M, Benni P, Bergeron S, Boffin HMJ, Briceño C, Clark CA, Collins KI, de Leon JP, Dressing CD, Evans P, Esparza-Borges E, Fedewa J, Fukui A, Gan T, Gerasimov IS, Hartman JD, Gill H, Gillon M, Horne K, Grau Horta F, Howell SB, Isogai K, Jehin E, Jenkins JM, Karjalainen R, Kielkopf JF, Lester KV, Littlefield C, Lund MB, Mann AW, McCormack M, Michaels EJ, Painter S, Palle E, Parviainen H, Peterson D-M, Pozuelos FJ, Raup Z, Reed P, Relles HM, Ricker GR, Savel AB, Schwarz RP, Seager S, Sefako R, Srdic G, Stockdale C, Sullivan H, Timmermans M, Winn JN (2024) Migration and evolution of giant ExoPlanets (MEEP). I. Nine newly confirmed hot Jupiters from the TESS mission. *Astron J* 168(1):32. <https://doi.org/10.3847/1538-3881/ad4a57>. arXiv:2401.05923 [astro-ph.EP]

Sekanina Z (2019) Outgassing as Trigger of 1I/'Oumuamua's Nongravitational Acceleration: Could This Hypothesis Work at All? arXiv e-prints, 1905–00935. arXiv:1905.00935 [astro-ph.EP]

Seligman D, Laughlin G (2020) Evidence that 1I/2017 U1 ('Oumuamua) was composed of molecular hydrogen ice. *Astrophys J Lett* 896(1):8. <https://doi.org/10.3847/2041-8213/ab963f>. arXiv:2005.12932 [astro-ph.EP]

Seligman DZ, Moro-Martín A (2023) Interstellar objects. *Contemp Phys* 63(3):200–232. <https://doi.org/10.1080/00107514.2023.2203976>. [arXiv:2304.00568](https://arxiv.org/abs/2304.00568) [astro-ph.EP]

Seligman DZ, Rogers LA, Cabot SHC, Noonan JW, Karetta T, Mandt KE, Ciesla F, McKay A, Feinstein AD, Levine WG, Bean JL, Nordlander T, Krumholz MR, Mansfield M, Hoover DJ, Van Clepper E (2022) The volatile carbon-to-oxygen ratio as a tracer for the formation locations of interstellar comets. *Planet Sci J* 3(7):150. <https://doi.org/10.3847/PSJ/ac75b5>. [arXiv:2204.13211](https://arxiv.org/abs/2204.13211) [astro-ph.EP]

Seligman DZ, Farnocchia D, Micheli M, Vokrouhlický D, Taylor AG, Chesley SR, Bergner JB, Vereš P, Hainaut OR, Meech KJ, Devogele M, Pravec P, Matson R, Deen S, Tholen DJ, Weryk R, Rivera-Valentín EG, Sharkey BNL (2023) Dark comets? Unexpectedly large nongravitational accelerations on a sample of small asteroids. *Planet Sci J* 4(2):35. <https://doi.org/10.3847/PSJ/acb697>. [arXiv:2212.08115](https://arxiv.org/abs/2212.08115) [astro-ph.EP]

Seligman DZ, Micheli M, Farnocchia D, Denneau L, Noonan JW, Hsieh HH, Santana-Ros T, Tonry J, Auchettl K, Conversi L, Devogèle M, Fagioli L, Feinstein AD, Fenucci M, Ferrais M, Frincke T, Hainaut OR, Hart K, Hoffman A, Holt CE, Hoogendam WB, Huber ME, Jehin E, Karetta T, Keane JV, Kelley MSP, Lister T, Mandt K, Marçeta D, Meech KJ, Amine Miftah M, Morgan M, Ocaña F, Peña-Asensio E, Shappee BJ, Siverd RJ, Taylor AG, Tucker MA, Wainscoat R, Weryk R, Wray JJ, Yaginuma A, Yang B, Ye Q, Zhang Q (2025) Discovery and preliminary characterization of a third interstellar object: 3I/ATLAS. *Astrophys J Lett* 989:L36. <https://doi.org/10.3847/2041-8213/adf49a>. [arXiv:2507.02757](https://arxiv.org/abs/2507.02757) [astro-ph.EP]

Smith BA, Terriere RJ (1984) A circumstellar disk around β Pictoris. *Science* 226(4681):1421–1424. <https://doi.org/10.1126/science.226.4681.1421>

Snodgrass C, Agarwal J, Combi M, Fitzsimmons A, Guibert-Lepoutre A, Hsieh HH, Hui M-T, Jehin E, Kelley MSP, Knight MM, Opitom C, Orosei R, de Val-Borro M, Yang B (2017) The main belt comets and ice in the Solar System. *Astron Astrophys Rev* 25(1):5. <https://doi.org/10.1007/s00159-017-0104-7>. [arXiv:1709.05549](https://arxiv.org/abs/1709.05549) [astro-ph.EP]

Sterken VJ, Westphal AJ, Altobelli N, Malaspina D, Postberg F (2019) Interstellar dust in the Solar System. *Space Sci Rev* 215(7):43. <https://doi.org/10.1007/s11214-019-0607-9>

Strøm PA (2026) Exocomets, exoasteroids, and exomoons. In: Mandel I (ed) Encyclopedia of astrophysics. Elsevier, pp 440–452. <https://doi.org/10.1016/B978-0-443-21439-4.00038-9>. [arXiv:2410.06248](https://arxiv.org/abs/2410.06248) [astro-ph.EP]

Strøm PA, Bodewits D, Knight MM, Kiefer F, Jones GH, Kral Q, Matrà L, Bodman E, Capria MT, Cleeves I, Fitzsimmons A, Haghhighipour N, Harrison JHD, Iglesias D, Kama M, Linnartz H, Majumdar L, de Mooij EJW, Milam SN, Opitom C, Rebollido I, Rogers LK, Snodgrass C, Sousa-Silva C, Xu S, Lin Z-Y, Zieba S (2020) Exocomets from a Solar System perspective. *Publ Astron Soc Pac* 132(1016):101001. <https://doi.org/10.1088/1538-3873/aba6a0>. [arXiv:2007.09155](https://arxiv.org/abs/2007.09155) [astro-ph.EP]

Su KYL, Rieke GH, Stansberry JA, Bryden G, Stapelfeldt KR, Trilling DE, Muzerolle J, Beichman CA, Moro-Martin A, Hines DC, Werner MW (2006) Debris disk evolution around a stars. *Astrophys J* 653:675–689. <https://doi.org/10.1086/508649>. [arXiv:astro-ph/0608563](https://arxiv.org/abs/astro-ph/0608563)

Taylor AG, Seligman DZ (2025) The kinematic age of 3I/ATLAS and its implications for early planet formation. *Astrophys J Lett* 990:L14. <https://doi.org/10.3847/2041-8213/adfa28>. [arXiv:2507.08111](https://arxiv.org/abs/2507.08111) [astro-ph.EP]

Tetzlaff N, Neuhauser R, Hohle MM (2011) A catalogue of young runaway hipparcos stars within 3 kpc from the Sun. *Mon Not R Astron Soc* 410(1):190–200. <https://doi.org/10.1111/j.1365-2966.2010.17434.x>. [arXiv:1007.4883](https://arxiv.org/abs/1007.4883) [astro-ph.GA]

Tobin W, Barnes SJ, Persson S, Pollard KR (2019) β Pictoris: observations of the Ca II H&K absorptions in 1997 and 1998. *Mon Not R Astron Soc* 489(1):574–593. <https://doi.org/10.1093/mnras/stz1983>

Tonry JL, Denneau L, Heinzel AN, Stalder B, Smith KW, Smartt SJ, Stubbs CW, Weiland HJ, Rest A (2018) ATLAS: a high-cadence all-sky survey system. *Publ Astron Soc Pac* 130(988):064505. <https://doi.org/10.1088/1538-3873/aabaf6>. [arXiv:1802.00879](https://arxiv.org/abs/1802.00879) [astro-ph.IM]

Torres CAO, Quast GR, da Silva L, de La Reza R, Melo CHF, Sterzik M (2006) Search for associations containing young stars (SACY). I. Sample and searching method. *Astron Astrophys* 460(3):695–708. <https://doi.org/10.1051/0004-6361:20065602>. [arXiv:astro-ph/0609258](https://arxiv.org/abs/astro-ph/0609258) [astro-ph]

Trilling DE, Robinson T, Roegge A, Chandler CO, Smith N, Loeffler M, Trujillo C, Navarro-Meza S, Glaspie LM (2017) Implications for planetary system formation from interstellar object 1I/2017 U1 ('Oumuamua). *Astrophys J Lett* 850(2):38. <https://doi.org/10.3847/2041-8213/aa9989>. [arXiv:1711.01344](https://arxiv.org/abs/1711.01344) [astro-ph.EP]

Trilling DE, Mommert M, Hora JL, Farnocchia D, Chodas P, Giorgini J, Smith HA, Carey S, Lisse CM, Werner M, McNeill A, Chesley SR, Emery JP, Fazio G, Fernandez YR, Harris A, Marengo M, Mueller M, Roegge A, Smith N, Weaver HA, Meech K, Micheli M (2018) Spitzer observations of interstellar object 1I/'Oumuamua. *Astron J* 156:261. <https://doi.org/10.3847/1538-3881/aae88f>. [arXiv:1811.08072](https://arxiv.org/abs/1811.08072) [astro-ph.EP]

Vaghi S (1973) Orbital evolution of comets and dynamical characteristics of Jupiter's family. *Astron Astrophys* 29:85

van Sluijs L, Van Eylen V (2018) The occurrence of planets and other substellar bodies around white dwarfs using K2. *Mon Not R Astron Soc* 474(4):4603–4611. <https://doi.org/10.1093/mnras/stx3068>. arXiv: 1711.09691 [astro-ph.EP]

Vanderbosch Z, Hermes JJ, Dennihy E, Dunlap BH, Izquierdo P, Tremblay P-E, Cho PB, Gänsicke BT, Toloza O, Bell KJ, Montgomery MH, Winget DE (2020) A white dwarf with transiting circumstellar material far outside the Roche limit. *Astrophys J* 897(2):171. <https://doi.org/10.3847/1538-4357/ab9649>. arXiv: 1908.09839 [astro-ph.SR]

Vanderbosch ZP, Rappaport S, Guidry JA, Gary BL, Blouin S, Kaye TG, Weinberger AJ, Melis C, Klein BL, Zuckerman B, Vanderburg A, Hermes JJ, Hegedus RJ, Burleigh MR, Sefako R, Worters HL, Heintz TM (2021) Recurring planetary debris transits and circumstellar gas around white dwarf ZTF J0328-1219. *Astrophys J* 917(1):41. <https://doi.org/10.3847/1538-4357/ac0822>. arXiv: 2106.02659 [astro-ph.EP]

Vanderburg A, Johnson JA, Rappaport S, Bieryla A, Irwin J, Lewis JA, Kipping D, Brown WR, Dufour P, Ciardi DR, Angus R, Schaefer L, Latham DW, Charbonneau D, Beichman C, Eastman J, McCrady N, Wittenmyer RA, Wright JT (2015) A disintegrating minor planet transiting a white dwarf. *Nature* 526(7574):546–549. <https://doi.org/10.1038/nature15527>. arXiv: 1510.06387 [astro-ph.EP]

Vennes S, Kawka A (2013) The polluted atmosphere of the white dwarf NLTT 25792 and the diversity of circumstellar environments. *Astrophys J* 779(1):70. <https://doi.org/10.1088/0004-637X/779/1/70>. arXiv: 1309.6804 [astro-ph.SR]

Veras D, Mustill AJ, Bonsor A (2024) The evolution and delivery of rocky extra-solar materials to white dwarfs. *Rev Mineral Geochem* 90(1):141–170. <https://doi.org/10.2138/rmg.2024.90.05>. arXiv: 2401.08767 [astro-ph.EP]

Vican L (2012) Age determination for 346 nearby stars in the Herschel DEBRIS survey. *Astron J* 143(6):135. <https://doi.org/10.1088/0004-6256/143/6/135>. arXiv: 1203.1966 [astro-ph.SR]

Vidal-Madjar A, Hobbs LM, Ferlet R, Gry C, Albert CE (1986) The circumstellar gas cloud around beta Pictoris. II. *Astron Astrophys* 167:325–332

Vidal-Madjar A, Lagrange-Henri A-M, Feldman PD, Beust H, Lissauer JJ, Deleuil M, Ferlet R, Gry C, Hobbs LM, McGrath MA, McPhate JB, Moos HW (1994) HST-GHRS observations of β Pictoris: additional evidence for infalling comets. *Astron Astrophys* 290:245–258

Vidal-Madjar A, Lecavelier des Etangs A, Désert J-M, Ballester GE, Ferlet R, Hébrard G, Mayor M (2003) An extended upper atmosphere around the extrasolar planet HD209458b. *Nature* 422(6928):143–146. <https://doi.org/10.1038/nature01448>

Vidal-Madjar A, Kiefer F, Lecavelier des Etangs A, Bourrier V, Ehrenreich D, Ferlet R, Hébrard G, Wilson PA (2017) Fe I in the β Pictoris circumstellar gas disk. I. Physical properties of the neutral iron gas. *Astron Astrophys* 607:25. <https://doi.org/10.1051/0004-6361/201630040>. arXiv: 1709.08170 [astro-ph.EP]

Brignaud T, Lecavelier des Etangs A (2024) Population of excited levels of Fe⁺, Ni⁺, and Cr⁺ in exocomets' gaseous tails. *Astron Astrophys* 691:2. <https://doi.org/10.1051/0004-6361/202451183>. arXiv: 2409.15247 [astro-ph.EP]

Brignaud T, Lecavelier des Etangs A, Kiefer F, Lagrange A-M, Hébrard G, Strøm PA, Vidal-Madjar A (2024) Curves of growth for transiting exocomets: application to Fe II lines in the β Pictoris system. *Astron Astrophys* 684:210. <https://doi.org/10.1051/0004-6361/202347588>. arXiv: 2402.10169 [astro-ph.EP]

Brignaud T, Lecavelier des Etangs A, Strøm PA, Kiefer F (2025) Abundances of refractory ions in beta Pictoris exocomets. *Astron Astrophys* 697:21. <https://doi.org/10.1051/0004-6361/202453568>. arXiv: 2503.17346 [astro-ph.EP]

Welsh BY, Montgomery S (2013) Circumstellar gas-disk variability around A-type stars: the detection of exocomets? *Publ Astron Soc Pac* 125(929):759. <https://doi.org/10.1086/671757>

Welsh BY, Montgomery SL (2015) The appearance and disappearance of exocomet gas absorption. *Adv Astron* 2015:980323. <https://doi.org/10.1155/2015/980323>

Welsh BY, Montgomery SL (2018) Further detections of exocomet absorbing gas around southern hemisphere A-type stars with known debris discs. *Mon Not R Astron Soc* 474(2):1515–1525. <https://doi.org/10.1093/mnras/stx2800>

Welsh BY, Craig N, Crawford IA, Price RJ (1998) Beta pic-like circumstellar disk gas surrounding HR 10 and HD 85905. *Astron Astrophys* 338:674–682

Williams GV, Sato H, Sarnecky K, Wainscoat R, Woodworth D, Meech K (2017) Minor planets 2017 SN_33 and 2017 U1. *Cent Bur Electron Telegr* 4450:1

Wyatt MC (2008) Evolution of debris disks. *Annu Rev Astron Astrophys* 46:339–383. <https://doi.org/10.1146/annurev.astro.45.051806.110525>

Wyatt MC, Panić O, Kennedy GM, Matrà L (2015) Five steps in the evolution from protoplanetary to debris disk. *Astrophys Space Sci* 357(2):103. <https://doi.org/10.1007/s10509-015-2315-6>. arXiv: 1412.5598 [astro-ph.EP]

Wyatt MC, van Lieshout R, Kennedy GM, Boyajian TS (2018) Modelling the KIC8462852 light curves: compatibility of the dips and secular dimming with an exocomet interpretation. *Mon Not R Astron Soc* 473(4):5286–5307. <https://doi.org/10.1093/mnras/stx2713>. [arXiv:1710.05929](https://arxiv.org/abs/1710.05929) [astro-ph.EP]

Xing Z, Bodewits D, Noonan J, Bannister MT (2020) Water production rates and activity of interstellar comet 2I/Borisov. *Astrophys J Lett* 893(2):48. <https://doi.org/10.3847/2041-8213/ab86be>. [arXiv:2001.04865](https://arxiv.org/abs/2001.04865) [astro-ph.EP]

Xing Z, Oset S, Noonan J, Bodewits D (2025) Water production rates of the interstellar object 3I/ATLAS. *Astrophys J Lett* 991(2):L50. <https://doi.org/10.3847/2041-8213/ae08ab>. [arXiv:2508.04675](https://arxiv.org/abs/2508.04675) [astro-ph.EP]

Xu S, Dufour P, Klein B, Melis C, Monson NN, Zuckerman B, Young ED, Jura MA (2019a) Compositions of planetary debris around dusty white dwarfs. *Astron J* 158(6):242. <https://doi.org/10.3847/1538-3881/ab4cee>. [arXiv:1910.07197](https://arxiv.org/abs/1910.07197) [astro-ph.SR]

Xu S, Hallakoun N, Gary B, Dalba PA, Debes J, Dufour P, Fortin-Archambault M, Fukui A, Jura MA, Klein B, Kusakabe N, Muirhead PS, Narita N, Steele A, Su KYL, Vanderburg A, Watanabe N, Zhan Z, Zuckerman B (2019b) Shallow ultraviolet transits of WD 1145+017. *Astron J* 157(6):255. <https://doi.org/10.3847/1538-3881/ab1b36>. [arXiv:1904.10896](https://arxiv.org/abs/1904.10896) [astro-ph.EP]

Xu S, Rogers LK, Blouin S (2024) The chemistry of extra-solar materials from white dwarf planetary systems. *Rev Mineral Geochem* 90(1):171–197. <https://doi.org/10.2138/rmg.2024.90.06>

Yang B, Meech KJ, Connelley M, Zhao R, Keane JV (2025) Spectroscopic characterization of interstellar object 3I/ATLAS: water ice in the coma. *Astrophys J Lett* 992(1):9. <https://doi.org/10.3847/2041-8213/ae08a7>. [arXiv:2507.14916](https://arxiv.org/abs/2507.14916) [astro-ph.EP]

Ye Q, Jenniskens P (2024) Comets and meteor showers. In: Meech KJ et al (eds) Comets III. The University of Arizona Press, Tucson, pp 799–822. [arXiv:2209.10654](https://arxiv.org/abs/2209.10654) [astro-ph.EP]

Ye Q-Z, Zhang Q, Kelley MSP, Brown PG (2017) 1I/2017 U1 ('Oumuamua) is hot: imaging, spectroscopy, and search of meteor activity. *Astrophys J Lett* 851:5. <https://doi.org/10.3847/2041-8213/aa9a34>. [arXiv:1711.02320](https://arxiv.org/abs/1711.02320) [astro-ph.EP]

Ye Q, Knight MM, Kelley MSP, Moskovitz NA, Gustafsson A, Schleicher D (2021) A deep search for emission from "Rock Comet" (3200) Phaethon at 1 au. *Planet Sci J* 2(1):23. <https://doi.org/10.3847/PSJ/abcc71>. [arXiv:2011.10184](https://arxiv.org/abs/2011.10184) [astro-ph.EP]

Ye Q, Kelley MSP, Hsieh HH, Bellone EC, Chen TX, Dekany R, Drake A, Groom SL, Helou G, Kulkarni SR, Prince TA, Riddle R (2025) Prediscovery activity of new interstellar object 3I/ATLAS: rapid brightening from 6 to 4 au. *Astrophys J Lett* 993(1):L31. <https://doi.org/10.3847/2041-8213/ae147b>. [arXiv:2509.08792](https://arxiv.org/abs/2509.08792) [astro-ph.EP]

Zhang Q (2018) Prospects for backtracing 1I/'Oumuamua and future interstellar objects. *Astrophys J Lett* 852(1):13. <https://doi.org/10.3847/2041-8213/aaa2f7>. [arXiv:1712.08059](https://arxiv.org/abs/1712.08059) [astro-ph.EP]

Zieba S, Zwintz K, Kenworthy MA, Kennedy GM (2019) Transiting exocomets detected in broadband light by TESS in the β Pictoris system. *Astron Astrophys* 625:13. <https://doi.org/10.1051/0004-6361/201935552>. [arXiv:1903.11071](https://arxiv.org/abs/1903.11071) [astro-ph.SR]

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Daniela Iglesias¹ · Isabel Rebollido² · Azib Norazman^{3,4} · Colin Snodgrass⁵ ·
 Darryl Z. Seligman⁶ · Siyi Xu⁷ (许偲艺) · H. Jens Hoeijmakers⁸ · Matthew Kenworthy⁹ ·
 Alain Lecavelier des Etangs¹⁰ · Michele Bannister¹¹ · Bin Yang¹²

 D. Iglesias
D.P.Iglesias@leeds.ac.uk

¹ School of Physics and Astronomy, University of Leeds, Sir William Henry Bragg Building, Leeds, LS2 9JT, UK

² European Space Astronomy Centre (ESAC), European Space Agency (ESA), Camino Bajo del Castillo s/n, Villanueva de la Cañada, 28692, Madrid, Spain

³ Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK

- 4 Centre for Exoplanets and Habitability, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
- 5 Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ, United Kingdom
- 6 Department of Physics and Astronomy, Michigan State University, East Lansing, 48824, MI, USA
- 7 Gemini Observatory/NOIRLab, 950 N Cherry Ave, Tucson, 85719, AZ, USA
- 8 Division of Astrophysics, Department of Physics, Lund University, Professorsgatan 1B, Lund, 221 00, Sweden
- 9 Leiden Observatory, Leiden University, Einsteinweg 55, Leiden, NL-2333, The Netherlands
- 10 Institut d'astrophysique de Paris, CNRS-Sorbonne Université, 98bis boulevard Arago, Paris, 75014, France
- 11 School of Physical and Chemical Sciences—Te Kura Matū, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
- 12 Instituto de Estudios Astrofísicos, Facultad de Ingeniería y Ciencias, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago, 8370191, Chile