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ABSTRACT

Context. To directly image Earth-like planets, contrast levels of 10−8–10−10 are required. The next generation of instruments will need
wavefront control below the nanometer level to achieve these goals. The Zernike wavefront sensor (ZWFS) is a promising candidate
thanks to its sensitivity, which reaches the fundamental quantum information limits. However, its highly non-linear response restricts
its practical use case.
Aims. We aim to demonstrate the improvement in robustness of the ZWFS by reconstructing the wavefront based on multi-wavelength
measurements facilitated by technologies such as the microwave kinetic inductance detectors (MKIDs).
Methods. We performed numerical simulations using an accelerated multi-wavelength gradient descent reconstruction algorithm.
Three aspects are considered: dynamic range, photon noise sensitivity, and phase unwrapping. We examined both the scalar and vector
ZWFS.
Results. Firstly, we find that using multiple wavelengths improves the dynamic range of the scalar ZWFS. However, for the vector
ZWFS, its already extended range was not further increased. In addition, a multi-wavelength reconstruction allowed us to take advan-
tage of a broader bandpass, which increases the number of available photons, making the reconstruction more robust to photon noise.
Finally, multi-wavelength phase unwrapping enabled the measurement of large discontinuities such as petal errors with a trade-off in
noise performance.
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1. Introduction
The next few decades will see a strong push towards the search
for Earth-like planets in our cosmic neighbourhood. To enable
more insights to be drawn with respect to the question of life
in the universe, the atmospheres of these exoplanets need to be
characterized. One of our most promising methods is to use high-
contrast imaging instruments that resolve the planet from its host
star (Snellen et al. 2022). Because of its potential, a range of new
instruments on the next generation of telescopes will be directed
towards the direct imaging of exoplanets. From the ground, there
is the upcoming European Extremely Large Telescope, where
most of the first-generation instruments will have some form of
high-contrast imaging mode (Brandl et al. 2021; Houllé et al.
2021; Davies et al. 2016). A dedicated direct imaging instrument
is being developed for the second generation called the Plane-
tary Camera and Spectrograph (Kasper et al. 2021). From space,
NASA’s Nancy Grace Roman Space Telescope will perform
high-contrast observations and serve as a testbed for the more
ambitious Habitable Worlds Observatory (Bailey et al. 2023;
National Academies of Sciences, Engineering, and Medicine
2023).

To reach the desired contrast levels of the future (10−8 for an
exo-Earth around an M-dwarf and 10−10 for an exo-Earth around
⋆ Corresponding author: m.darcis@sron.nl

a Sun-like star), there are still significant technical challenges
to be overcome. A crucial part of this will be the wavefront
sensing and control. To reach the 10−10 contrast, the residual
wavefront error can only be on the order of picometers (Ruane
et al. 2018). Therefore, a great deal of research is being dedi-
cated to building more sensitive and accurate wavefront sensors.
A highly promising technology is the Zernike wavefront sensor
(ZWFS) because it is one of the most sensitive sensors and it
even has the potential capacity to reach the fundamental quantum
information limits for wavefront sensing (Bloemhof & Wallace
2003; Haffert et al. 2023). This enables shorter integration times
to reach a certain measurement performance, allowing for better
contrast limits. Furthermore, unlike the often used modulated
pyramid wavefront sensor, it is inherently sensitive to aperture
discontinuities such as segmentation and petaling, both of which
significantly degrade the achieved contrast (Leboulleux et al.
2018; Bertrou-Cantou et al. 2020). As a result, several groups are
presently investigating its use in a high-contrast imaging setting,
from measuring non-common path aberrations, as a second-
stage atmospheric turbulence sensor, to segment co-phasing, and
more (N’Diaye et al. 2013; N’Diaye et al. 2024; Salama et al.
2024).

Essentially, a ZWFS is a self-referenced interferometer
where part of the input wavefront is phase-shifted and which
serves as the reference beam. The phase shift is induced by a
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phase mask in a focal plane with a small circular dot centred on
the PSF. In the classical scalar ZWFS, the dot is a small dimple
whose optical path difference (OPD) produces the phase shift.

In general, the response of the ZWFS for monochromatic
light can be expressed as

Iout = Iin + Ire f + 2IinIre f cos(ϕin − ϕre f ), (1)

where Iout is the measured intensity, Iin the intensity in the input
pupil plane, and Ire f and ϕre f are the intensity and phase, respec-
tively, of the self-created reference wave at the output pupil
plane. This equation highlights one of the main problems of the
ZWFS, namely its dynamic range. To find ϕin, the cosine needs
to be inverted which is only possible over a π interval. Further-
more, the presence of ϕre f in the cosine term makes the response
asymmetric around ϕin and, thus, the range is not centred
around 0.

The full dynamic range on a 2π interval can be recovered
by employing phase diversity, where multiple measurements are
taken with different phase responses. The diversity can be intro-
duced by adding a known phase difference to the input or by
changing the phase shift of the ZWFS (Haffert 2024; Wallace
et al. 2011). The latter can be implemented by using a vec-
tor ZWFS concept (Doelman et al. 2019; Chambouleyron et al.
2024a). A vector ZWFS uses liquid crystals or metasurfaces to
simultaneously induce a phase shift to one polarization state and
the opposite phase shift to the orthogonal polarization state.

When trying to achieve better levels of precision, another
limitation of the ZWFS is its chromaticity. The ZWFS is a white
light interferometer and can still work on a few ten per cents
of bandwidth. However, when going to wider bandwidths in
order to capture more photons and lower the measurement noise,
there are two main chromatic effects that become important.
Firstly, the dimple of the scalar ZWFS provides a fixed OPD and,
therefore, the induced phase-shift varies with wavelength, λ, as
described by (2π/λ) · (n − 1) · d. Here, n and d are the refractive
index of the mask material and the depth of the dot, respectively.
In contrast, the vector ZWFS does not suffer from this problem
since its working principle is based on geometric phase which
makes it possible to have the same phase shift for different wave-
lengths. Secondly, due to the physically fixed diameter of the
Zernike dot, the size of the dot relative to the PSF is different for
each wavelength since the latter scales with λ. This is an issue
for both scalar and vector ZWFS. In the past, certain methods
have been proposed to achromatize the size of the dot, but this
is not considered here (Bloemhof & Wallace 2004). As a result,
since a change in phase shift and/or relative dot size changes
the sensitivity of the ZWFS (Chambouleyron et al. 2023, 2021),
each wavelength experiences a different response. These chro-
matic effects essentially reduce the fringe visibility and therefore
the signal-to-noise ratio of the measurement. This, in turn,
degrades the reconstruction performance, limiting the usable
bandwidth.

To further develop the ZWFS, multi-wavelength measure-
ments offer a promising new avenue for improved performance.
In practice, this could already be implemented with existing
techniques. If only a few wavelengths are desired, it would be
possible, for example, to implement a system that uses multi-
ple dichroics to create different wavelength channels, as done
in (Deo et al. 2024; Magniez et al. 2024). For a larger amount
of measurements, another alternative can be to use one of the
available integral field unit (IFU) technologies. Nevertheless, all
these options will have their eventual limitations when pushed
to the limits. For example, different wavelengths can experience

different non-common path aberrations that complicate accurate
wavefront reconstruction. In addition, truly broadband operation
from the visible to infrared is prohibited by the use of semicon-
ducting detectors. However, new technologies are on the horizon
that can help mitigate these limitations.

One promising technology for use in multi-wavelength wave-
front sensing is the microwave kinetic inductance detector
(MKID), which can count individual photons and estimate their
energy (Mazin et al. 2012; Kouwenhoven et al. 2023; Magniez
et al. 2022, 2024). In this way, multi-wavelength measure-
ments can be taken without the need for changing the optical
architecture. Furthermore, compared to classical semiconducting
detectors, MKIDs can also be rendered simultaneously sensitive
all the way from the ultraviolet to the near-infrared. Resolving
powers of R ≈ 50 have been demonstrated in this wavelength
range and will only improve with further research (De Visser
et al. 2021). Moreover, the measurements will also benefit from
the zero read noise due to the photon counting capability and
the very low level of dark counts (Swimmer et al. 2023). In
addition, arrays containing thousands pixels have already been
implemented which is sufficient for wavefront sensing purposes
(Walter et al. 2020).

In this paper, we examine the benefits of using multi-
wavelength measurements in combination with a classic scalar
ZWFS or a vector ZWFS. In the limit of achromatic OPD errors,
three potential improvements are identified and investigated.
Firstly, different wavelengths experience a different phase for
the same OPD and therefore offer a form of phase diversity that
can be exploited to improve the dynamic range. Secondly, wave-
length information has the potential to broaden the bandpass
and increase the robustness against photon noise. Classically,
a narrow wavelength range has been used since the response
of the ZWFS is chromatic but when measurements at different
wavelengths are separately available, these can be combined to
effectively use the information of more photons to reconstruct
the wavefront. Thirdly, multi-wavelength measurements can be
used to extend the dynamic range well beyond the 2π inter-
val by enabling phase unwrapping, as is done in more classical
interferometry (Cheng & Wyant 1984).

The work is outlined as follows. Section 2 starts with an
overview of the non-linear reconstruction method used here,
which also covers how multi-wavelength measurements can
be included. This section also outlines the principle of two-
wavelength phase unwrapping. Next, Section 3 investigates
the performance of a multi-wavelength ZWFS, describing the
numerical simulations used to examine the dynamic range, the
photon noise sensitivity, and the capabilities of two-wavelength
phase unwrapping. Our overall results and conclusions are given
in Section 4.

2. Multi-wavelength reconstruction

2.1. Accelerated gradient descent

For the monochromatic case, there are several ways to retrieve
ϕin of the wavefront from Equation (1). The methods generally
differ in the manner in which the reference field is modelled
and how the cosine is inverted. For the reference field, the sim-
plest approach is to model it assuming a flat wavefront (N’Diaye
et al. 2013). More sophisticated methods iteratively update the
reference field estimate (Doelman et al. 2019; Haffert 2024;
Chambouleyron et al. 2024a). Next, the cosine can be inverted as
is or can be simplified by employing for example a Taylor series
(N’Diaye et al. 2013). Additionally, as mentioned before, phase
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Fig. 1. Gradient descent based wavefront reconstruction using multiple wavelength measurements for a scalar and a vector ZWFS. The input
wavefront is described by a set of modal coefficients, θ. The current estimate is propagated through a model of the considered ZWFS which
produces the expect output intensity images at the considered wavelengths. These are compared to the measured intensity images and the similarity
is captured in a cost function J(θ). The gradients of this cost function with respect to θ are calculated by a back-propagation process and these are
used to update the current estimate by using an optimizer such as the Newton-CG.

diversity can be employed to overcome the limited invertibility
range of the cosine.

One of the limitations of the aforementioned methods is
that they are defined for monochromatic light and do not trans-
late well to a multi-wavelength scenario. There exist methods
that build a data-driven model using for example radial basis
functions or neural networks that can incorporate multiple wave-
lengths (Lin & Fitzgerald 2024; Allan et al. 2020). However,
this work uses a different approach. We made use of a recently
proposed accelerated gradient descent method to solve the wave-
front estimation problem that is also able to incorporate multi-
wavelength measurements in a relatively easy way (Haffert et al.
in prep). Here, the measured output is directly compared to the
output of a model and an optimizer is used to find the parame-
ters of the model that best describe the measurements. Compared
to the data-driven chromatic reconstructors such as neural net-
works, the model-based gradient descent method offers a more
explainable framework, which makes it possible to better inves-
tigate the effects of employing multi-wavelength measurements.

The parameters estimated in this work are the modal coeffi-
cients describing the OPD of the input wavefront. Any desired
mode basis can be used for the reconstruction in principle.
The cost function describing the difference between measure-
ment and model is the maximum likelihood estimator and for
the scalar ZWFS with multi-wavelength measurements can be
described by

J(θ) =
∑

i

Ji(θ) =
∑

i

1
N2

photi

||Imeasured
outi (θ) − Imodelled

outi (θ)||22, (2)

where θ are the OPD parameters and || · ||2 is the two-norm. Each
wavelength has its own cost function, which are summed to pro-
duce the overall cost. Also, Imeasured

outi , Imodelled
outi , and Nphoti are the

measured output intensity, modelled output intensity, and total
number of photons at a wavelength, i, respectively. The factor
1/N2

phot,i is a normalization factor to enable to work at various
input levels. We could further tweak the cost function, for exam-
ple, by using a weighting system to control the contribution of
each wavelength, but this type of cost function engineering is
not considered here.

For a vector ZWFS, the cost function changes slightly
because there are two pupil images per wavelength, one for each
considered polarization state, and therefore can be described as

J(θ) =
∑

i

∑
j=0,1

Ji, j(θ) =
∑

i

∑
j=0,1

1
N2

photi, j

||Imeasured
outi, j (θ) − Imodelled

outi, j (θ)||22.

(3)

A powerful way to minimize Equation (2) or (3) is to ana-
lytically calculate the gradients using back propagation for an
optical system as discussed in Jurling & Fienup (2014). Using
the assumption that each wavelength experiences the same OPD
at the input, the gradients are calculated with respect to each
cost function Ji, j(θ) separately and then averaged to produce the
overall dJ/dθ. The gradients are then given to a solver which
significantly speeds up the process, making it suitable for the
real-time demands of extreme adaptive optics applications. In
this work, the Newton-CG method of SciPy is employed as
the optimizer (Nocedal & Wright 2006). In summary, Figure 1
shows the overview of the reconstruction method for the scalar
and the vector ZWFS setting.

2.2. Phase unwrapping

The interferometric nature of a ZWFS limits the dynamic range
to a 2π interval because outside this range, the phase wraps
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and the measurement becomes ambiguous. To break this ambi-
guity and unlock a significantly larger range, there are many
algorithms that can be used to try and recover the true phase
from the wrapped measurement based on spatial correlations
(Schofield & Zhu 2003; Herráez et al. 2002). These methods
are not suitable for the next generation of segmented telescopes,
where gaps between mirror segments destroy the spatial correla-
tions. Thick spiders holding a secondary mirror likewise cause
discontinuities in the wavefront that lead to petal errors. Phase
unwrapping on these segmented apertures can still be done by
employing correlations between wavelengths rather than spatial
correlation, where the wrapped phase is measured separately at
multiple wavelengths and these are then combined to solve for
the unwrapped OPD (Cheng & Wyant 1985). In addition to being
able to handle segmented apertures, these methods are compu-
tationally less expensive and so are better suited for high-speed
adaptive optics applications.

In this paper, only two-wavelength phase unwrapping will
be considered (Warnasooriya & Myung 2010), where two wave-
lengths are combined to produce an equivalent wavelength, also
known as the beat wavelength, of:

Λ =
λ0λ1

|λ1 − λ0|
. (4)

Considering the wrapped phase measurements ϕ0, ϕ1 on the
interval [0, 2π] at λ0 and λ1 respectively, the unwrapped OPD on
the interval [0,Λ] can then be calculated via

OPD =
Λ

2π
[(ϕ0 − ϕ1) mod 2π]. (5)

Earlier works have demonstrated that this method, together
with a sparse aperture mask, can reconstruct large petal errors
(Deo et al. 2024). It is nevertheless interesting to test the com-
bination with a ZWFS because of its sensitivity and its inherent
ability to sense segmentation and petal errors. Vigan et al. (2011)
have shown that large segmentation errors can be measured in
this manner but only by fitting a very specific model for segment
OPD differences in order to retrieve the wrapped phases. Here, a
monochromatic version of the gradient descent method outlined
in Section 2.1 is used to estimate ϕ0 and ϕ1, which, in principle,
can be easily adapted to different types of errors by choosing
the mode basis that is being reconstructed. This aspect is further
explored in Section 3.4.

3. Multi-wavelength ZWFS performance
simulations and analysis

To investigate the performance of a multi-wavelength ZWFS,
we performed simulations using the HCIPy package (Por et al.
2018).

3.1. Zernike mask design

We must first find a mask design has to be found that works
with multi-wavelength measurements. The mask of a ZWFS has
two design parameters: the phase shift introduced by the dot and
the size of the dot, but carrying out a full optimization of mask
design and accompanying cost function is beyond the scope of
this paper. Instead, the parameters are selected based on a few
principles.

Regarding the phase shift, the classical π/2 radians is taken
as the baseline since it has been shown to provide the maximum

sensitivity under read noise in linear conditions (Chambouleyron
et al. 2023). Furthermore, it has been established that an ideal-
ized wavefront sensor that shifts the piston mode by π/2 radians
is able to achieve the fundamental sensitivity (Chambouleyron
et al. 2024b). In addition, it is known that when two ZWFS mea-
surements are used with different phase shifts to obtain phase
diversity, then the optimal diversity is achieved when the differ-
ence in phase shift equals π mod 2π radians (Chambouleyron
et al. 2024a).

To choose the phase shift for a scalar ZWFS mask in a
multi-wavelength setting, we need to take into account the wave-
length dependence of the induced phase shift as discussed in
Section 1. Remembering that phase is a 2π modular quantity,
a certain desired phase shift is only achieved at specific wave-
lengths. These can be tuned by changing the physical depth of the
dot, which then changes the scaling relationship of the induced
phase. The vector ZWFS mask is easier to design since it can
apply the phase shift achromatically and the π phase difference
can be directly implemented by applying a π/2 and −π/2 phase
shift to two different polarization states.

The main consideration for choosing the diameter of the
dot is to have each wavelength have a similar sensitivity. Each
measurement will then have a comparable cost function frac-
tion and the gradients will be of similar magnitude. This makes
the algorithm easier to use and understand, without going into
cost function engineering. It has been shown that increasing the
dot size with respect to the PSF increases the sensitivity of the
ZWFS, at the cost of lowering the sensitivity of lower order
modes (Chambouleyron et al. 2021). Therefore, wavelengths are
chosen not too far apart in order to have a sufficiently compara-
ble sensitivity over the full range of modes. In practice, it was
seen that keeping the dot size limited to ∼1–2λ/D produced the
best results.

3.2. Dynamic range

A two-wavelength simulation was performed to investigate the
dynamic range, considering the following mask parameters.
Firstly, an arbitrary design wavelength λ0 of 600 nm was
selected. For the scalar mask, a phase shift of 5π/2 at λ0 is
taken. To provide the π phase shift difference, the wavelength
corresponding to a phase shift of 3π/2 was chosen as the second
wavelength, λ1, which in this case is 1000 nm. The dot size was
set to 2λ/D at λ0. The dot size at λ1 was then 1.2λ/D. For the
vector mask, the same wavelengths and dot size were taken, but
a phase shift of ±π/2 was induced at each wavelength.

This allowed us to create a dataset of 500 OPD screens on
a circular pupil of unit diameter. For each screen, a power law
error was generated on a 64 × 64 grid with a random expo-
nent uniformly distributed between −1 and −3. Then, 75 Zernike
coefficients were calculated on the same 64 × 64 grid starting
from defocus and serve as the description of the OPD error. The
RMS values were set to be uniformly distributed between 0 and
250 nm. An example of a generated OPD screen can be seen
in Figure 1. Each OPD screen is initially reconstructed using a
monochromatic version of the gradient descent method at λ0 =
600 nm and λ1 = 1000 nm separately and then reconstructed by
combining the multi-wavelength measurements. Figure 2 com-
pares the RMS of the input screens to the residual RMS errors
left after subtracting the reconstruction for both the scalar and
vector ZWFS.

Looking at the reconstruction result for the scalar ZWFS,
the longer wavelength can successfully reconstruct larger OPD
errors, compared to the shorter wavelength (as expected).
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Fig. 2. Dynamic range of the scalar and vector ZWFS using the gradient descent based reconstruction. For each configuration, 500 wavefronts are
reconstructed consisting of 75 Zernike modes with a power law exponent between –1 and –3 and an RMS up to 250 nm. (a) and (b) Residual RMS
for the scalar ZWFS using a monochromatic reconstruction for two different wavelengths (600, 1000 nm). (c) Residual RMS when employing the
multi-wavelength reconstructor. (d), (e), and (f) Same results, but for a vector ZWFS.

Nevertheless, when combining the two wavelengths, an even
larger dynamic range can be achieved. This shows that the algo-
rithm is able to exploit the diversity provided by the different
measurements.

For the vector ZWFS, the longer wavelength once again
provides a larger dynamic range. However, combining the wave-
lengths no longer provides an improvement. The diversity from
having opposite phase shifts for different polarization states is
sufficient to extend the dynamic range. The additional diversity
gained from having multiple wavelengths seems to be redundant
and even makes the algorithm fail more often on larger OPD
errors.

Looking closer at the input screens, we found that for both
the multi-wavelength scalar and vector ZWFS, there are screens
that show regions of phase wrapping at λ0 and λ1 that the algo-
rithm was able to reconstruct (screens with roughly >175 nm
RMS). The monochromatic gradient descent was also able to
perform phase unwrapping in the vector ZWFS case. The gra-
dient descent method in itself is somewhat able to reconstruct
phase wraps, even without the multi-wavelength measurements
for the vector ZWFS. The hypothesis is that the dynamic range is
increased by exploiting the mode mixing of the Zernike modes,
where when exciting a single mode in the non-linear regime the
signal starts to appear in other modes. This capability is limited
as the reconstructor starts to fail at larger RMS screens. In the
low Strehl regime, the interference between input and reference
field becomes of too low contrast.

An example of input and reconstruction residual is shown
in Figure 3 for the multi-wavelength scalar ZWFS for one of
the OPD screens where it had been unsuccessful in finding the

correct solution. The algorithm successfully converged but is
unable to fully reconstruct the edge. Figure 3 also plots the
calculated gradients at the converged point. It shows that the
gradients of the different wavelength images cancel each other.
This makes the total gradient zero and appears to be a solution.
However, when noise is introduced the gradients will not per-
fectly cancel any longer and the interpretation will depend on
the signal-to-noise ratio.

3.3. Photon noise

Apart from the dynamic range, real systems also need to be
robust with respect to sources of noise, of which photon noise
is the most fundamental. Under only photon noise, the variance
on the measurement of a specific phase mode ϕi under linear
conditions is given by (Chambouleyron et al. 2023):

σ2
ϕi
=

1
s2
γ(ϕi) · Nphot

, (6)

where Nphot is the number of photons used for the measurement
and sγ(ϕi) is the photon noise sensitivity, which is equal to the
Fisher information and is derived to be 0 ≤ sγ ≤ 2 (Paterson
2008).

By using multiple wavelengths for the measurement, the
total number of photons is increased and according to Equa-
tion (6), this decreases the variance. For the multi-wavelength
reconstruction considered here OPD and not phase is the recon-
structed quantity. The variance of the OPD measurement is
the variance of the phase times the factor (λ/2π)2; in other

A157, page 5 of 9



Darcis, M., et al.: A&A, 701, A157 (2025)

(a) Input OPD error [nm] (b) Residual [nm]

10 20 30 40 50 60 70 80
Zernike mode

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Gr
ad

ie
nt

 [a
rb

itr
ar

y 
un

it]

(c) Gradients at convergence

0

1
Average600

400

200

0

200

400

600

600

400

200

0

200

400

600

Fig. 3. Example of the multi-wavelength gradient descent algorithm not finding the correct solution. The scalar ZWFS is used with wavelengths
600 and 1000 nm and the mask consists of a dot with 5π/2 phase shift and 2 λ/D dot diameter at 600 nm. (a) Input wavefront of 168 nm RMS. (b)
Residual error after reconstruction of 38 nm RMS. (c) Calculated gradients at convergence at each wavelength and the overall gradient obtained by
averaging.
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Fig. 4. Reconstruction error at different photon levels for the monochro-
matic scalar ZWFS and the multi-wavelength scalar ZWFS using
600 nm and either 428 or 1000 nm. It is assumed that each wavelength
has the same number of photons. 100 photon noise samples are recon-
structed at each considered input level. Coloured areas correspond to ±1
standard deviation.

words, shorter wavelengths have a larger phase for a fixed OPD
and therefore produce a larger signal at the ZWFS output. Not
all photons, therefore, will contribute equally in increasing the
signal-to-noise ratio. To illustrate this point, Figure 4 shows the
reconstruction error under photon noise for the scalar ZWFS at
600 nm and two multi-wavelength scalar ZWFS configurations
that have an additional wavelength at either 428 or 1000 nm, both
of which experience a 3π/2 mod 2π phase shift when using the
same mask parameters as in Section 3.2. An OPD screen with an
exponent of –2 and 20 nm RMS was taken as the input. Then,
100 photon noise samples were reconstructed at each considered
input level. Both the multi-wavelength configurations improve
the reconstruction error, but by a different amount, even though
they both have the same total number of photons.

In a more generalized setting, we also need to take into
account the fact that different wavelengths see a slightly dif-
ferent ZWFS configuration, which changes the sensitivity, sγ.
An advantage of the vector ZWFS in this case is that it applies

the same phase shift to the various wavelengths. This has been
shown before to improve the bandwidth over which a success-
ful reconstruction is possible, thus allowing more photons to be
part of the measurement (Doelman et al. 2019). Conceptually, the
signals at different wavelengths add up and under a flat spectrum
the signals from the short and long wavelengths average out to
produce a larger signal at the centre wavelength.

To investigate whether multi-wavelength measurements can
further broaden the useful bandwidth, the noise performance
of a vector ZWFS with monochromatic reconstruction at the
centre wavelength was compared to the scenario where the
bandwidth is split up into multiple wavelength bins and the
multi-wavelength algorithm was used for the reconstruction. An
OPD screen was generated with an exponent of –2 and 20 nm
RMS. A flat spectrum with a central wavelength of 600 nm
was assumed for the simulations. For each considered bandwidth
size ∆λ, the total number of photons was divided between ten
equally spaced wavelength samples, which were then propagated
through the vector ZWFS model. A dot diameter of 2 λ/D at
600 nm was taken. For the standard vector ZWFS, the output
signals were added together; whereas for the multi-wavelength
version, they were considered separately in the reconstruction.
For each bandwidth size, 50 samples with a different pho-
ton noise realization were reconstructed and the performance
is given in Figure 5. The reconstruction error is similar up to
50%, after which the error for the classic vector ZWFS starts
to go up again; whereas for the multi-wavelength version, the
error continues to decrease. This can be explained by consid-
ering the scaling of the error due to photon noise and due to
broadband effects in function of bandwidth size. For photon
noise, the error scales according to 1/

√
∆λ. With some sim-

plifying assumptions, it has been shown that the error induced
by using a monochromatic reconstructor for broadband measure-
ments scales proportionally to ∆λ2 (Haffert 2024). Increasing ∆λ
reduces photon noise error but increases the chromatic errors.
Consequently, for the monochromatic reconstructor, there is an
optimal ∆λ beyond which a broader bandwidth only increases
the error, as seen in Figure 5. This point where broadband effects
take over depends on the level and shape of the input spectrum.
However, when using multi-wavelength measurements the chro-
maticity can be taken into account and the error continues to
scale in a way that resembles the photon noise for larger ∆λ,
increasing the usable bandwidth. The improvement could be
even greater in more realistic situations where the spectral type
of the host star and chromaticity of the instrument are taken care
of by the multi-wavelength reconstruction.
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Fig. 5. Reconstruction error at different bandwidth sizes using differ-
ent reconstruction approaches for the vector ZWFS. The first method
(vZWFS) does not separate the wavelengths and reconstructs at the
central wavelength using the broadband image. The second method
(mw-vZWFS) separates the bandwidth into ten wavelength bins and
then uses the multi-wavelength algorithm. Then, 50 photon noise sam-
ples are taken at each bandwidth size. Coloured areas correspond to ±1
standard deviation.

3.4. Phase unwrapping

To investigate the potential of multi-wavelength phase unwrap-
ping, we performed simulations to examine its ability to recon-
struct petal errors. This application was chosen because the
more common wavefront sensors such as the Shack-Hartmann
and the modulated pyramid have difficulties in sensing these
errors, which can lead to large petal jumps during operation.
Petal modes are fully orthogonal since they are defined on dif-
ferent parts of the aperture, so they do not show mode mixing.
Thus, the gradient descent method on its own cannot perform
any phase unwrapping, as described in Section 3.2.

The assumed pupil for the simulation has a general hexagonal
segmented shape with six spiders and 36 segments. An example
of a displaced petal is shown in Figure 6. Next, the vector ZWFS
was used because it unlocks the 2π range at individual wave-
lengths, which is required by Equation (5). The monochromatic
gradient descent method was utilized to reconstruct the wrapped
OPD of the six petal modes at the different wavelengths, which
were then converted to phase to produce ϕ0 and ϕ1. Afterwards,
the unwrapped OPD error was reconstructed according to Equa-
tion (5). The two wavelengths chosen for the simulation were 600
and 700 nm. This offered an equivalent wavelength of 4.2 µm.

Firstly, a single petal was displaced in 40 steps between
±2.5 µm. Figure 6 shows the reconstructed petal OPD when
using just a single wavelength of 700 nm and when using
the two-wavelength phase unwrapping method. As expected,
the monochromatic reconstruction was limited to ±350 nm,
while phase unwrapping can reconstruct over the full ±2.1 µm
range. To furthermore investigate the ability of handling also
larger RMS errors, all petals except one (which is needed as a
reference) were displaced by some amount. Figure 7 shows the

Fig. 6. Reconstruction of a single petal mode using one wavelength at
700 nm (Mono-GD) and using two-wavelength phase unwrapping with
600 and 700 nm.

reconstruction results. The gradient descent method can still
find the correct wrapped phase maps also in a higher RMS
regime. This shows the potential of using multi-wavelengths for
measuring large petal errors.

The increase in dynamic range provided by two-wavelength
phase unwrapping will come with a hit in photon noise sensi-
tivity due to the noise propagation properties of Equation (5).
This is illustrated in Figure 8. A single petal is displaced by
150 nm and reconstructed using a single wavelength of 700 nm
and using the phase unwrapping algorithm with 600 and 700 nm.
Various photon levels were considered and for each 100 photon
noise realizations were reconstructed to produce the statistics.
The variance of the phase unwrapping method is significantly
greater than the monochromatic reconstruction. There are meth-
ods proposed in the literature that can increase the dynamic
range without the added increase in noise propagation by making
use of more wavelengths and/or more complicated algorithms;
however, a full investigation is beyond the scope of this paper
(Wagner et al. 2000; Guo et al. 2022; Warnasooriya & Myung
2010). Overall, this result suggests that it is not useful to apply
phase unwrapping when considering small errors. In practice,
we can come up with an approach where the multi-wavelength
reconstruction (as discussed in Sections 3.2 and 3.3) is used for
improved reconstruction under smaller errors and then switch
to a phase unwrapping reconstruction in a large error regime.
In this way, the multi-wavelength information can be exploited
differently, depending on the current conditions.

4. Discussion and conclusions

The ZWFS is a highly sensitive wavefront sensor and a good can-
didate for the next generation of extreme adaptive optics (XAO)
systems, but enhancing its usability in terms of dynamic range
and robustness is critical. This work uses simulations to inves-
tigate the potential of using multi-wavelength measurements to
improve the performance of the ZWFS. A non-linear gradient
descent reconstructor has been set up, with the ability to exploit
the information from the different wavelengths. Three aspects
of improvement were explored. Firstly, it was examined if the
reconstructor can use the phase diversity from having multiple
wavelengths and increase the dynamic range of the ZWFS. It was
found that for a scalar ZWFS, this can offer a significant gain. For
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Fig. 7. Reconstruction with multiple petal modes excited with a total RMS error of 1.4 µm. (a) the input wavefront. (b) the estimated wavefront.
(c) the residual after subtracting the reconstruction from the input (different scale).
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Fig. 8. Reconstruction error at various flux levels when estimating a
single petal mode of 150 nm using a single wavelength of 700 nm
(Mono-GD) and using phase unwrapping at 600 and 700 nm. Then,
100 photon noise samples are taken at each considered number of input
photons. Coloured areas correspond to ±1 standard deviation.

the vector ZWFS, however, no improvement was observed. This
suggests that the additional diversity from multiple wavelength
does not further increase the dynamic range provided by the vec-
tor concept. Secondly, the noise performance was investigated.
Our study shows how measuring multiple wavelengths increases
the number of available photons to estimate the wavefront with-
out compromising the reconstruction accuracy due to chromatic
errors, improving the overall robustness against photon noise.
Finally, multi-wavelength phase unwrapping was implemented
to reconstruct large discontinuities. Combining a vector ZWFS,
gradient descent reconstructor, and phase unwrapping algorithm
enables the estimation of petal errors, but the extended dynamic
range comes with a trade-off in the noise performance.

Overall, using multiple wavelengths opens up a new degree
of freedom in wavefront sensing that is enabled by new algo-
rithms, such as the accelerated gradient descent wavefront recon-
structor. For the ZWFS in particular, it appears that combining
the vector ZWFS concept with multi-wavelength measurements
offers an interesting solution for the next generation of telescopes
in particular, since it makes the best use of all the advantages
considered here. Other future optimizations are still possible,
such as the design of the mask and the cost function.

The proposed multi-wavelength wavefront sensing scheme
can be implemented with existing technologies, such as dichroics
and IFUs. Nevertheless, new technologies such as MKIDs,
offer a more optimal implementation. Because of its various
advantages, such as inherent wavelength resolution and noise
performance, a full test bed is currently being setup at SRON,
combining multiple wavelengths in the visible, a deformable
mirror, and a ZWFS together with an MKID array to demon-
strate the potential for multi-wavelength wavefront sensing and
set up a prototype for the methods investigated here.

Data availability

The source code used in this work is available at https://
github.com/darcism/multiwavelength-zernike.
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