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ABSTRACT

Context. Time series photometry offers astronomers the tools to study time-dependent astrophysical phenomena, from stellar activ-
ity to fast radio bursts and exoplanet transits. Transit events, in particular, are focussed primarily on planetary transits and eclipsing
binaries with eclipse geometries that can be parameterised with a few variables. However, more complex light curves caused by the
substructure within the transiting object would require a customised analysis code.
Aims. We present Beyond Circular Eclipsers (BeyonCE), which reduces the parameter space encompassed by the transit of circumsec-
ondary disc (CSD) systems with azimuthally symmetric, non-uniform optical-depth profiles. By rejecting disc geometries that are not
able to reproduce the measured gradients within their light curves, we can constrain the size and orientation of discs with a complex
sub-structure.
Methods. We mapped out all the possible geometries of a disc and calculated the gradients for rings crossing the star. We then
rejected those configurations where the measured gradient of the light curve is greater than the theoretical gradient from the given disc
orientation.
Results. We present the fitting code BeyonCE and demonstrate its effectiveness in considerably reducing the parameter space of discs
that contain an azimuthally symmetric structure. We used the code to analyse the light curves seen towards J1407 and PDS 110,
attributed to CSD transits.

Key words. methods: numerical – eclipses – planets and satellites: rings

1. Introduction

Times series photometry has led to tremendous physical insights
into astrophysical processes thanks to the ability to measure the
intensity of a star with high cadence, precision, and accuracy
over long temporal baselines. A myriad of data highlighting
the vast range of stellar variability exhibited on all timescales
has been made possible via several ground-based surveys, such
as All Sky Automated Survey for Super-Novae (ASAS-SN;
Shappee et al. 2014; Kochanek et al. 2017), Asteroid Terrestrial-
impact Last Alert System (ATLAS; Tonry et al. 2018; Heinze
et al. 2018), Super Wide-Angle Search for Planets (SWASP;
Pollacco et al. 2006). Valuable data have also come from a num-
ber of space-based surveys, such as the Kepler mission (Borucki
et al. 2010), which was extended to the K2 mission (Howell et al.
2014) and Transiting Exoplanet Survey Satellite (TESS; Ricker
et al. 2015).

It has been reported that intrinsic stellar variability may be
caused by high-amplitude optical variability of young stars (Joy
1945), rotational starspot modulation (Rodono et al. 1986; Olah
et al. 1997), or asteroseismology (Handler 2013). Other sources
of variability include interactions of the star with other objects
or dust orbiting the star. ‘Dipper’ stars are a class whose stellar
variability arises due to occultations by dust in the inner bound-
aries of circumstellar discs, which produce transits with depths
of up to 50% (Alencar et al. 2010; Cody et al. 2014; Cody &
Hillenbrand 2018). Ansdell et al. (2019) found that this variabil-
ity requires the misalignment of the inner protoplanetary disc
compared to the circumstellar disc. Another interesting source
of variability is stellar occultations due to the transit of a body.

The transiting bodies could be: (1) planets (Fischer et al. 2014)
characterised by short symmetrical dips with regular periods
and fixed transit depths, (2) exo-comets, which are characterised
by a saw-tooth eclipse as seen in Fig. 2 of Zieba et al. (2019);
or (3) disintegrating planets characterised by regular periods,
but varying transit depths due to loss of planetary material
(Rappaport 2012; Lieshout & Rappaport 2018; Ridden-Harper
et al. 2018). (4) An additional source of variability is the transit
of tilted and inclined circumplanetary discs. Due to projection
effects, these create elliptical occulters that generate asymmetric
eclipse profiles in the resultant light curve.

There are two leading theories for gas giant formation. The
first is gravitational instability (Kratter & Lodato 2016), when
gravitational instabilities in the protoplanetary disc result in gas
and dust collapse under its own gravity and eventually forms a
planet with a similar metallicity to the protostellar cloud (the
top-down formation). The second is core-accretion (Helled et al.
2014), where a core grows to a sufficiently large mass that it
starts to pull gas from its surroundings onto itself (bottom-up).
As circumstellar material is transferred into the Hill sphere of
the forming protoplanet, the material forms an accretion disc
that depletes material on that orbital radius from the star and
can produce cavities that are observable in the optical and sub-
millimetre wavelengths (Benisty et al. 2021); it may also form
spiral arms at this point. In both cases of planet formation, a
disc forms around the protoplanet, which, in turn, can potentially
support moon formation (Teachey et al. 2018). Expectations sug-
gest that these circumplanetary discs are large (of the order of
AU) and should be clearly visible as transits in time-series pho-
tometry (Mamajek et al. 2012). Problems arise in the fact that
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Fig. 1. Disc parameters. Symbols are the same as in Table 1. Scale fac-
tors in the table are not included here as they are contained by Rdisc
and i.

Table 1. Disc parameters.

Parameter Symbol Unit Range

Disc radius Rdisc day >0
Transmission T – 0–1
Impact parameter δy day >0
Centroid shift δx day –
Tilt ϕ deg 0–180
Inclination i deg 0–90
Transverse velocity vt R∗ day−1 >0

Horizontal scale factor fx – >0
Vertical scale factor fy – >0

Notes. See Fig. 1 for a visual representation of these parameters. The
scale factors are not included in the figure as they are contained by Rdisc
and i.

planet-searching algorithms were not designed to identify such
transits, as the eclipses would be too long, deep, and complex
to be identified an an exoplanet transit. The number of param-
eters to describe the geometry of the transit is already quite
large, given the fact that there are many astrophysical effects that
need to be taken into consideration. There are currently several
prime candidates for occulting circumplanetary discs: V928 Tau
(van Dam et al. 2019), EPIC 204376071 (Rappaport et al. 2019),
and EPIC 220208795 (van der Kamp et al. 2022). Some candi-
dates exhibit much more complex sub-structure reminiscent of
rings: 1SWASP J140745.93–394542.6J1407 (J1407, Kenworthy
& Mamajek 2015) and PDS 110 (Osborn et al. 2017, 2019).

The Shallot Explorer is a module of the Beyond Circular
Eclipsers (BeyonCE) package that can limit the extended param-
eter space of circumplanetary ring systems (Sect. 2), based on
measurements taken from the light curve (Sect. 3). The Shal-
lot Explorer is described in detail in Sect. 4, with the results of
simulations described in Sect. 5 and validations of the parameter
space on real data discussed in Sect. 6. Finally, Sect. 7 presents
the discussion and conclusions.

2. Circumsecondary disc parameters

The parameters that define the geometry and orientation of the
disc with respect to our line of sight are shown in Fig. 1 and
listed in Table 1.

The disc is assumed to be circular, with a scale height (hdisc)
considerably smaller than the radius of the star (R∗) and the

radius of the disc (Rdisc):

hdisc << R∗ << Rdisc.

The disc is inclined to our line of sight by angle, i, where
i = 0◦ is a face-on disc and i = 90◦ is an edge-on disc. This
presents an elliptical cross section with semi-major axis of Rdisc
and semi-minor axis of Rdisc cos i. The path of the disc in front
of the star with radius of R∗ is defined as going in a straight line
moving with a constant projected transverse velocity of vt. The
angle between the path of the disc and the on-sky projected semi-
major axis of the disc is defined as the tilt, ϕ. The perpendicular
distance (w.r.t. the path of the disc) from the centre of the pro-
jected disc to the centre of the star is the impact parameter δy.
Since the diameter of the star typically contains the largest rela-
tive uncertainty of all the physical components in the system, we
chose to represent size of the stellar disc in units of time, usually
days, where the physical size of the disc can be converted from
time to distance by multiplying by vt.

The inclination, tilt, and radius of the disc define the geom-
etry of the disc projected onto the plane of the sky. The light
curve is characterised by the first ingress of the star at tstart and
egress at tend. Exactly between these two values lies tmid, such
that tmid − tstart = tend − tmid. Thus, the disc geometry combined
with the impact parameter δy defines the chord that the disc
makes as it moves in front of the star. We limit the range of δy
to be a positive value and the 0 ≤ ϕ ≤ 180 because there is a
geometric degeneracy in the transit geometry. The transit geom-
etry for an occulter with δy = y0 and ϕ = ϕ0 is the same as an
occulter with δy = −y0 and ϕ = 180 − ϕ0.

We define a Cartesian coordinate system in the plane of the
sky, with the origin centred at the midpoint of the eclipse, tmid =
0. The centre of the projected disc is at (δx, δy) as shown in
Fig. 1.

Though there are many effects that alter the evolution of a
light curve during an eclipse such as intrinsic stellar variability,
forward scattering of light from the star on the circumplane-
tary disc (see van Kooten et al. 2020; Budaj 2013), magnetic
interactions between the circumstellar material and the host star
(Kennedy et al. 2017); we consider the limiting case where a
star can be modelled as a sphere, with radius, R∗. We allow for
the model of the star to include limb-darkening as described
by the linear limb-darkening law, which is parameterised by
the limb-darkening parameter, u, as described in Eq. (1).
It is expressed as

I(µ)
I(1)
= 1 − u (1 − µ). (1)

We note that µ = cos γ, where γ is the angle between the line of
sight and the emergent intensity and I(1) is the specific intensity
at the centre of the stellar disc.

The occulter itself can be separated into various parameters.
Starting with the physical objects, there is the anchor body itself,
which we assume to be a fully opaque (T = 0) spherical body,
with radius, Rp. This is supplemented by a larger disc centered
on the body, which has a radius of Rdisc. This disc can have an
intricate radial evolution of optical depth (this includes gaps, i.e.
rings). This is modelled by separating the disc into any number
of rings with an inner radius, Rx,in, an outer radius, Rx,out, and a
ring transmission, Tx, that varies as a function of radial distance
from the central body. The final parameter for the system is the
centroid shift, δx, which is necessary to define the centre of the
occulter with respect to the centre of the star.

The model simplifications are reiterated here. First, the stel-
lar limb is assumed to be spherical, the star quiescent with no
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significant star spots on its disc, and with a limb-darkening
profile that can be described by a linear limb-darkening law
(Eq. (1)). The disc is assumed to be azimuthally symmetric
about the anchor body both in geometry and transmission. This
means that we assume that the transmission profile is one dimen-
sional (1D), T = T (R), and that there are no disc misalignments
(i , i(R) and ϕ , ϕ(R)). Finally, we assume a constant veloc-
ity and impact parameter for the duration of the eclipse (i.e.
the path of the occulter as it transits the star is straight). This
assumption is a consequence of the Rdisc >> R∗ and is justified
in Appendix A.

3. Light curve measurements
A light curve provides information about the star and the tran-
siting object. We can determine the eclipse duration, which is
related to the orbital period and transverse velocity of the object.
We can measure the eclipse depth, which gives an indication
of the size (convolved with the transmission) of the occulting
object. If the eclipse exhibits a flat bottom, then the amount of
light the occulter is blocking does not change with time, which
can mean that either the object is fully contained by the star (as
with a planet transit) or the object is completely covering the
disc of the star. The light-curve gradients (dI/dt) in the light
curve provide information about the speed of the occulting object
and (if the object is large enough) can also provide informa-
tion about the geometric tangent of the occulter with respect
to the host star. van Werkhoven et al. (2014) determined that a
lower bound on the velocity of the transiting object could be
determined by measuring the steepest light-curve gradient in
the light curve – the slowest moving occulter that can produce
the given eclipse would be a completely opaque boundary large
enough to show no curvature travelling at some velocity. This is
because a curved boundary would occult a smaller area of the
stellar limb than a straight boundary at each position, requiring
a higher velocity of the occulter. Likewise, a lower opacity of
the body would require the object to occult a larger area of the
star more quickly than a fully opaque object. The lower bound
on the transverse velocity thus depends on the limb-darkening
of the star and the steepest light-curve gradient of the system.
This is expressed as Eq. (2), where L̇ is the steepest light-curve
gradient in normalised luminosity (using L̇

[
day−1

]
gives vt in

R∗ day−1):

vt = πL̇R∗

(
2u − 6

12 − 12u + 3πu

)
. (2)

The caveat with respect to curved boundaries always eclips-
ing a smaller area of the star is good enough to first order as
the Shallot Explorer is not a disc fitter. Instead it is a useful tool
to limit the parameter space that needs to be explored in more
detail, where the curved ring boundaries can subsequently be
analysed completely.

4. Shallot Explorer

The Shallot Explorer is used to describe the parameter space
spanned by eclipsing inclined and tilted discs and narrow down
the possible models of the disc for further analysis. Initially, it
is important that the parameter space described in Sect. 2 can
be described in a grid that can be explored with ease. For that
purpose, the argument is made that when analysing light curves
and modelling occulters, the starting point is to determine what
the smallest possible disc could be that could cause the eclipses

Fig. 2. Determining the simplest sheared disc model. The coordinate
system is centred at (0, 0). The midpoint of the disc is shifted up to
(0, δy). A circle (blue) is drawn with radius Rcircle (Eq. (3)). The mid-
point of the disc is shifted to (δx, δy), shearing the circle into an ellipse
(orange, Eqs. (4)–(6)). From this ellipse the disc parameters can be
determined.

observed. We are aware that the prior distribution may be flat
towards the Hill sphere, but we chose to start with smaller discs
due to stability considerations. The arguments here are made
because smaller discs are more likely to be stable as the stabil-
ising influence of the anchor body is stronger for smaller discs
and thus dominates over the disturbing influence of the host star
and other gravitational interactions (Zanazzi & Lai 2017). A light
curve produces one very hard limit and that is the duration of the
eclipse, which is obtained by converting the combination of the
width of the occulting object in the transit chord and the diameter
of the star to a time using the transverse velocity. For the limit-
ing case of Rdisc >> R∗ the diameter of the star can be ignored,
which allows for disc size modelling to be done analytically.

The maths, that will be described in the following sections,
show that the parameter grid can linearly scale with the duration
of the eclipse. Thus, the grid is to be defined in terms of eclipse
duration, as it can subsequently be transformed to physical scales
with the transverse velocity. This linear scaling encourages the
preparation of a high-resolution grid that can be either refined
at the appropriate location or linearly interpolated for a more
precise investigation.

4.1. Simple sheared disc model

To explore this grid in an intuitive manner, we define a Cartesian
coordinate system, in eclipse duration space, centred on the mid-
point of the eclipse (tmid = 0), with the x-axis aligned with the
transit path of the star, and the y-axis with the impact parameter.
We note that since we are proposing that the transverse velocity
is positive and move in the x direction, larger x point to earlier
times in the light curve. We thus want to find the simplest sheared
disc that is bound by the transit duration, ∆ecl and is centred at
(δx, δy).

The most obvious solution is simply a circle with Rdisc =
0.5∆ecl centred at (δx, δy) = (0, 0). Changing the impact param-
eter impacts the y-coordinate of the midpoint of the disc, which
changes the size of the circular disc to a radius defined by Eq. (3)
and as seen in Fig. 2. This is expressed as

Rcircle = Rdisc, δx=0 =

√
(δy)2 +

(
1
2

)2

. (3)
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If we also move the centre of the disc in the x-direction, we need
to ensure that the resulting ellipse is still bound by tstart and tend
at y = 0. To do this we shear the circle into an ellipse, with the
transformation defined in Eq. (4) and (5), where s is the shear
parameter defined in Eq. (6):

x′ = x − s y + δx (4)

y′ = y + δy (5)

s = −
δx
δy
. (6)

This shear transformation allows for the determination of the
simplest possible ellipse produced from the sheared circle cen-
tred at (δx, δy), with a width of∆ecl and passing through tstart and
tend at a height of y = 0. The ellipse parameters must be deter-
mined for this grid point, which can in turn be mapped to the disc
parameters. To determine the semi-major, aproj, and semi-minor,
bproj, axes of the projected disc, we must determine the location
of a vertex and co-vertex of the ellipse described. This can be
done by noting that the vertex of an ellipse must fulfill the con-
dition dR/dθ = 0, where θ is the parametric angle of the ellipse.
To perform this operation, we initially defined the simple radius
circle for the ellipse (see blue circle in Fig. 2) in parametric form
in Eqs. (7) and (8), as follows:

x = Rcircle cos(θ), (7)

y = Rcircle sin(θ). (8)

We then apply the shearing as defined by Eqs. (4) and (5), as

x′ = Rcircle cos(θ) − sRcircle sin(θ) + δx, (9)

y′ = Rcircle sin(θ) + δy. (10)

The equation of the ellipse can be written as

R′2 = x′2 + y′2. (11)

Substituting Eqs. (9) and (10) into Eq. (11), then taking the
derivative and setting it to 0 (dR/dθ = 0) provides the analytic
definition (Eq. (12)) of a vertex of this ellipse:

θ =
1
2

arctan
(

2
s

)
. (12)

This can, in turn be used with Eqs. (7) and (8) to determine the
(x, y) coordinate of either aproj or bproj. The next vertex (either
aproj if the angle defined by Eq. (12) defines bproj or vice versa)
is at θ + π/2. With the (x, y) coordinates of the vertices of the
ellipse, we can determine aproj and bproj simply, using Eq. (13):

(a, b)disc =

√
(x(a, b) − δx)2 + (y(a, b) − δy)2. (13)

The tilt is obtained by choosing the vertex related to the aproj and
using Eq. (14), expressed as

ϕ = arctan
(
ya − δy

xa − δx

)
. (14)

Finally, the inclination is determined by Eq. (15) as

i = arccos
(

bproj

aproj

)
. (15)

With this process, it is possible to determine the simplest
sheared disc that has its midpoint at (δx, δy) and passes through
the points (±0.5, 0). We are able to determine the size and ori-
entation of the simplest disc that could cause an eclipse lasting
∆ecl given the centre of the disc. We note that in units of time, we
need not concern ourselves with vt as this is simply a proportion-
ality factor used to convert from sizes in terms of time to sizes in
distance.

4.2. Extension of discs

There are two further points to consider after the disc determi-
nation in the previous section. The first is that five points are
required to uniquely determine a given ellipse, so there are an
infinite number of ellipses that are centred at (δx, δy) and inter-
sect with (±0.5, 0). The second is that while the circles defined
by Rcircle are the smallest possible ‘circles’ that intersect with the
eclipse boundaries, after shearing, the resulting ellipses are not
necessarily the ellipse with the smallest semi-major axis; thus,
the equations above do not provide the smallest possible discs.
To extend the parameter space defined by the simplest sheared
disc model and create a three-dimensional (3D) grid – with the
position of the disc centre (δx, δy) and the radius scale of the
disc, fR – we must be able to model this complete family of
ellipses.We do so by introducing two scale factors, fx and fy.
These scale factors are applied after shifting the midpoint from
the origin to (0, δy). The circle is scaled into an ellipse, by scaling
x and y in Eqs. (4) and (5), as described in Eq. (16) and visualised
in Fig. 3:

x→ x fx, y→ y fy. (16)

Scaling in one direction, say y using fy, causes the newly formed
ellipse to no longer pass through the points (±0.5, 0). For this
reason, a dependent scaling must be applied in the perpendicular
direction, here x with fx, such that the newly formed ellipse once
again passes through the points (±0.5, 0). fx can thus be defined
by Eq. (17) as a function of fy, as follows:

fx = fy

√
1

f 2
y

(
1 + 4 δy2) − 4 δy2 . (17)

Thus, fy is taken as an independent parameter, with fx compen-
sating the effects of fy and being a dependent parameter for the
ellipse.

We note that the introduction of these scaling fac-
tors modifies Eq. (12) into the general case described by
Eq. (18):

θ =
1
2

arctan
 2 fx fy s

(s2 + 1) f 2
y − f 2

x

 . (18)

Now it becomes possible to analytically determine every ellipse
that has a midpoint at (δx, δy) and passes through the points
(±0.5, 0), by adding the scale factor, fy. Thus, we have estab-
lished a 3D grid with parameters δx, δy, and fy.

4.3. Converting to a radius fraction

The grid defined above is constructed rapidly as it is determined
analytically. However, fy is not an intuitive third dimension, as
it has no obvious physical meaning. Thus, we need to convert
fy into a the radius scale factor, fR = Rdisc/Rmin, which relates
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Fig. 3. Determining the scaled disc model. Top: fy > 1. Bottom: fy < 1.
The coordinate system is centred at (0, 0). The midpoint of the disc is
shifted up to (0, δy). A (blue) circle is drawn with radius Rcircle (Eq. (3)).
The circle is then scaled in the y direction by fy and this scaling is com-
pensated with a scaling in the x direction with fx (grey). The midpoint
of the disc is then shifted to (δx, δy), shearing the ellipse to the proper
midpoint (orange). From this ellipse, the disc parameters can be deter-
mined.

the size of the disc to its minimum radius, at each (δx, δy). This
dimension drops from any radius scale factor, say fR,max down to
fR,min = 1 back up to fR,max. This is due to the fact that one can
increase the size of the final disc either by stretching the sim-
ple circle horizontally, fx > fx |Rmin , or vertically, fy > fy |Rmin ,
as shown in Fig. 4. The analytical formulation of the Rdisc as
a function of either fx or fy to determine Rmin becomes too
involved and, thus, it must be determined numerically. Initially
a high-resolution grid is generated from the starting fx = fy = 1
(simplest sheared disc solution) that is extended in one direction
with fx > 1 ( fy < 1; wider ellipses) and with fy > 1 ( fx < 1;
taller ellipses) in the other direction. The fR grid is determined
through linear interpolation of this fx – fy grid.

4.4. Gradient analysis

Another source of information is the light-curve gradients mea-
sured as: dI(t)

dt . It should be noted that the light curve of a
transiting ring system is not time-symmetric for most geometries
(see Fig. 7, where the most obvious asymmetry is in the time
central occultation approximately between −0.1 and 0.1 days).
As described in Kenworthy & Mamajek (2015), the light-curve
gradient is dependent on the size of the star, the local tangent
of the ring edge and the direction of motion. This is charac-
terised by Eq. (19), where the projected gradient, g(t), is defined

Fig. 4. Effects of fR on disc geometry. Top left: changes in disc shape
and geometry. Top-upper right: evolution of inclination with fR. Top-
lower right: evolution of tilt with fR. Middle: evolution of the theoretical
maximum gradient with fR. Bottom left: evolution of fR with fx. Bottom
right: evolution of fR with fx. We note that this disc is centred on (δx, δy)
= (0.67, 0.47) in ∆ecl.

by Eq. (21), T0 is the transmission at the ingress of the ring edge,
and T1 is the transmission at the egress of the ring edge. We note
that this equation is only valid when the ring edge boundary can
be approximated as a straight line. It is expressed as

dI(t)
dt
= (T0 − T1)

2vtg(t)
πR∗

(
12 − 12u + 3πu

12 − 4u

)
. (19)

For a given orientation, determined by δx, δy, i, and ϕ, an upper
bound to the absolute gradient can be calculated by determining
what the absolute gradient would be for a transition from fully
transparent (T0 = 1) to fully opaque (T1 = 0). Given this upper
bound on the gradient, it is possible to rule out a given disc
geometry based on the light-curve gradients measured. Those
measured gradients must be lower than the upper bounds for the
geometry to represent a physically possible solution.

We determine the local tangents of the ring edges along the
transit path of the star. To do so, we solve Eq. (16), in Cartesian
coordinates, for dy

dx (x), thereby producing Eq. (20):

dy′′

dx′′
(x) =

f 2
y (s δy + δx − x)

s f 2
y (x − δx) − δy (s2 f 2

y + f 2
x )
. (20)
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Fig. 5. Determining local tangents and projected gradients. Upper: full
projected gradient curve outside and during the transit. Lower: part
of the transit where the projected gradient changes significantly and
rapidly. Note: the projected gradient is stable for relatively large |x|
because the change in the local ring edge tangent is negligible with posi-
tion (the left and right asymptote are 1/s as dictated by Eq. (20)). For
small |x|, the projected gradient rises to some peak value (where the
local tangent is perpendicular to motion), before quickly dropping to
0 (where the local tangent is parallel to motion), and then rising once
more. In the lower panel, it appears that the local tangent rotates coun-
terclockwise with time, which supports the sinusoidal definition of the
projected gradient (Eq. (21)).

This local tangent can be converted to a projected gradient, g(x),
by means of Eq. (21). This ensures that the projected gradient
runs from 1 (perpendicular) to 0 (parallel):

g(x) = sin (ψ(x)) , tan (ψ(x)) =
dy
dx

(x). (21)

A visual representation of the time evolution of the local tangents
and their respective projected gradients can be seen in Fig. 5. The
pattern to note is that the projected gradient starts from the 1/s
asymptote (see Eq. (20)) rising slowly before peaking at some
value where the local tangent is perpendicular to the direction
of motion (g(x) = 1). There is a steep drop to the time when the
local tangent is parallel to the direction of motion (g(x) = 0),
before the projected gradient rises to the same asymptotic value
of 1/s.

The local tangents of the discs generated by the Shallot
Explorer are determined for (x, 0). Also, x is a position in the
eclipse duration, which is coupled to the measured light-curve
gradient, dI(t)

dt , measured in L∗ day−1, time measured in days. The
conversion is described in Eq. (22):

t = −(x − δx). (22)

Finally we note that the light-curve gradients are measured from
as many data points that show this trend in the light curve as
possible to increase the signal-to-noise ratio (S/N) of the mea-
surement. This is done by fitting a straight line to the light curve
data wherever an extended increase/decrease of flux is observed.

4.5. Limiting the parameter space

The disc models and gradient analysis discussed in the previous
sections describe an infinitely large parameter space described
by (δx, δy, fR). To limit the parameter space we introduce two
astrophysical restrictions.

4.5.1. Hill radius

An important stability criterion for the disc is that the disc
remains stable under the gravitational interactions with the host
star. To ensure an extended lifetime of the disc, Rdisc < 0.3 RHill,
where RHill is the Hill radius defined by Eq. (23) (Quillen &
Trilling 1998); then, a is the orbital semi-major axis, e is the
eccentricity of the orbit, m is the mass of the companion, and M
is the mass of the host star. This measurement is expressed as

RHill ≈ a (1 − e) 3

√
m

3M
. (23)

It is necessary to obtain information (a,m,M) that is not
readily determined from the normalised light curve. This also
means that the Hill radius restriction applies to the whole grid.

4.5.2. Gradients

Another consideration is that projected gradients determined
from the measured light-curve gradients, must be less than the
projected gradient upper limits derived from Eqs. (19)–(21). This
is because the upper limit is based on a boundary from fully
opaque (T = 1) to fully transparent (T = 0), and ring crossings
will never produce steeper light-curve gradients and thus pro-
jected gradients. As the upper bound of a projected gradient is
determined by its location on the x axis for a given geometry (see
Fig. 5), the projected gradients measured from the light curve
serve as a way to cut out all the unphysical geometries.

4.5.3. Visualisation

Figure 6 shows the evolution of valid grid points as the restric-
tions are applied to the grid; in particular, the disc radius is
shown. In this case, a Hill radius limit of 2∆ecl is applied and
a projected gradient is applied at a time, t = 0.45∆ecl, with a
value g(t) = 0.1. We note that it is from this characteristic visu-
alisation of the disc radii the Shallot Explorer derives its name
from.

4.6. Computational considerations

To increase the computational efficiency of calculating the grid,
several degeneracies and symmetries are exploited. For a given
point (δx, δy), there exists a point (δx,−δy), (−δx,−δy) and
(−δx, δy), that produce ellipses with the same disc radius and
inclination, but with a different tilt. In disc radius and inclina-
tion the first quadrant can be reflected off the x and y axis to
produce the four quadrants. Tilt requires an additional transfor-
mation after reflecting off the x/y axis. For quadrants 2 and 4
ϕ → 180 − ϕ, while quadrants 1 and 3 remain the same. This
ensures the tilt is restricted from 0◦ to 180◦, which is possi-
ble because an ellipse has an axis of symmetry that is aligned
with the tilt. Finally, projected gradients can be reflected off the
x-axis, but not the y-axis, thus requiring the first and second
quadrant. This means that Rdisc, i, and ϕ are calculated for one
quadrant, and gradients analysis is performed on two, effectively
reducing the computation time to a significant extent.
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Fig. 6. Shallot visualisation of the disc radius. The first row shows the
full extent of the grid with no restrictions applied. The second row
shows the grid after applying just a Hill radius cut at 2∆ecl. The third
row shows the grid after applying just a cut due to a projected gradient
at t = 0.45∆ecl with a value of g(t) = 0.1. The fourth row shows the
grid after applying both the projected gradient and Hill radius cut. Left:
grid slice with fR = 2 when the disc is stretched horizontally. Middle:
grid slice with the minimum radius disc ( fR = 1). Right: grid slice with
fR = 2 when the disc is stretched vertically.

5. Light curve simulations

The transit of ring systems can be modelled to validate whether
the geometry of a given grid point of the Shallot Explorer fits the
data. These light curves are simulated using the pyPplusS pack-
age developed by Rein & Ofir (2019). It makes use of a Polygon
plus Segments (P+S) algorithm to rapidly and accurately deter-
mine the area of a star that is blocked by a ringed planet. The
package fixes the shape of the star to a circle with a radius of
1, which implies that the distances defined are in units of R∗. It
is possible to change the intensity profile of the star by applying
one of the limb-darkening laws, which can be described with up
to four parameters. The occulter is composed of two objects: the
anchor body which is an opaque circle (T = 0) with any given
size (0 is also possible); and a ring which has an inner radius,
outer radius, transmission, tilt, and inclination. It is then possi-
ble to model the orbital motion of the occulter by passing in the
(x, y) coordinate in the physical space in units of R∗, centred on
the midpoint of the star. The result is that for every given (x, y)
position, pyPplusS is able to determine the relative intensity of
the star (1 – when the occulter does not occult the star and 0 –
when the star is fully blocked by an opaque object).

Light curves measure the relative flux of a star with respect to
time, so the physical space must be converted to temporal space.
This is done by firstly assuming that the path of the occulter
across the face of the star (the transit chord) is a straight line,
which means we can rotate the coordinate system such that the
occulter’s y position is fixed, denoted as the impact parameter
(for transits, we describe how this is justified in Appendix A).
The x coordinate now tracks the motion across the transit chord,

Table 2. Parameters for the ring system illustrated in Fig. 7.

Parameter Value Unit

Rp 0.003 ∆ecl
δx 0.067 ∆ecl
δy 0.086 ∆ecl
i 65 ◦

ϕ 40 ◦

vt 1.100
u 0.800 [–]

Ring Rin [∆ecl] Rout [∆ecl] T [−]

1 0.000 0.172 0.100
2 0.172 0.258 1.000
3 0.258 0.344 0.700
4 0.344 0.645 1.000
5 0.645 0.860 0.400

but this should be converted to time space by introducing a trans-
verse velocity, vt, which is assumed to be constant during the
transit of the occulting body and the maximum occultation time,
δt, which is a time-shift parameter to align the light curve. We
are then able to model light curves: (1) for planets by setting the
transmission of the ring to T = 1; (2) discs by setting the planet
and inner ring radius to zero; and (3) a ringed planet.

To extend the model to produce simulations of ring system
transits, we ran the package multiple times. We initially ran it for
a planet with no rings and then subsequently for each individual
ring (with no planet). We then combined the light curves of each
component. We note that this approach fails for small rings that
are partially occulted by the anchor body itself and for transit
geometries where the anchor body transits the star and there is
a gap between the anchor body and the first ring. As we are pri-
marily focused on very large ring systems, this effect is deemed
negligible, especially considering that it is now possible to model
ring system transits. We note that if we were to use enough rings,
it would even be possible to model a quasi-continuous transmis-
sion profile of the disc-ring system. Figure 7 shows an example
of a simulation produced in this way, with parameters listed in
Table 2.

6. Comparisons to real data

To validate the effective parameter space reduction, the Shallot
Explorer is used to determine a viable parameter space for can-
didate ring systems in the literature. In both cases, we used a
relatively coarse Shallot Explorer grid that extends from δx =
−1 → 1, δy = −1 → 1 and fR = 5 (h) → 1 → 5 (v), where (h)
is horizontal stretch and (v) is vertical stretch. The bounds of
δx, δy, and fR are chosen such that the extremities of the grid at
fR = 1 can be cut away by the Hill radius restriction. This ensures
that the exploration is complete.The grid has a final shape of
(201, 201, 401), which is a resolution of (0.01, 0.01, 0.02). Two
examples are explored in this work.

6.1. J1407b

J1407 b is a widely studied system that highlights the complexity
of pinning down and characterising single eclipse systems that
exhibit a complex sub-structure (see Fig. 8).

Kenworthy & Mamajek (2015) studied the light curve to
fit a ring system and found a 36-ring solution with a reason-
able fit (see Table 3). Subsequently mass and period limits were

A11, page 7 of 14



van Dam, D. M., and Kenworthy, M. A.: A&A, 687, A11 (2024)

Fig. 7. Geometry of a transiting ring system with parameters described in Table 2. Top: ring system in grey scale, with the stellar transit path in
green, with a red stellar disc. The vertical green dotted lines indicate when the stellar disc is moving behind a ring edge. Bottom: theoretical light
curve for the ring system. Note: the projected gradient of the light curve is related to the geometrical tangent of the ring edge with the star and that
the light curve drops or rises before the ring crossing because of the finite size of the star.

Fig. 8. J1407 light curve. The SuperWASP photometry of the star with
the model of the ring system superimposed. The model parameters can
be found in Table 3. This is a slightly modified version of the top panel
of Fig. 4 from Kenworthy & Mamajek (2015).

studied by Kenworthy et al. (2015), followed by constraints on
the size and dynamics by Rieder & Kenworthy (2016). Due
to nature of the eclipse, photographic plates were studied by
Mentel et al. (2018), and a search for other potential transit-
ing companions was performed by Barmentloo et al. (2021).
ALMA data was taken to observe the ring system by
Kenworthy et al. (2020), which led to the surprising conclu-
sion that J1407 b is an unbound object that happened to transit
J1407 at the right time. For the purposes of validating the Shal-
lot Explorer, we set aside the conclusions reported by Kenworthy
et al. (2020) and direct our attention to the models produced by
Kenworthy & Mamajek (2015).

To carry out the gradient analysis, we set the eclipse duration
to ∆ecl = 50.5 days, determined from the tend − tstart = 50.9 days
of the modelled eclipse (green line from Fig. 8) and subtracting
the diameter of the star (d∗ = 0.4 days). The transverse veloc-
ity is set to vt = 33 km s−1 and the limb darkening of the star
to u = 0.8. To perform the right unit conversions, we set the
star radius to R∗ = 0.9 R⊙. The measured light-curve gradients
(time (t), light-curve gradient (dI(t)/dt), errors, and transmission
change (T0 − T1)) are listed in Table 4.

Kenworthy & Mamajek (2015) and Mentel et al. (2018)
showed that the ring system exhibited by J1407 b fills the Hill
sphere; thus, we took RHill = 0.6 AU and converted it to the time
space, yielding RHill = 0.621∆ecl. We also performed the gra-
dient analysis twice: once excluding the measured transmission
changes (i.e. setting (T0 − T1) = 1, which is more inclusive) and
a second time including the measured transmission changes. To
illustrate this, we rewrite Eq. (19) in terms of g(t) and intro-
duce the transmission factor, fT = (T0 − T1). In the rest of this
paper, ‘transmission scaling’ refers to the act of using the actual
measured transmission factor, fT , instead of substituting unity
( fT = 1), as follows:

g(t) =
1
fT

πR∗
2vt

dI(t)
dt

(
12 − 4u

12 − 12u + 3πu

)
. (24)

Now it is clear that ignoring the measured transmission ( fT = 1)
provides the lowest possible g(t), which means the fewest ring
system configurations are excluded. We also note that if, for any
reason (e.g. sparse photometry), it is not possible to measure fT ,
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Table 3. Ring model parameters for J1407 b from Kenworthy &
Mamajek (2015).

Parameter Value Unit

Rp 0.00 ∆ecl
δx 0.086 ∆ecl
δy 0.070 ∆ecl
i 70.0 ◦

ϕ 166.1 ◦

vt 262.1 R∗ ∆−1
ecl

RHill 0.621 ∆ecl
R∗ 0.004 ∆ecl
u 0.80 –
∆ecl 50.5 day

Ring Rin [∆ecl] Rout [∆ecl] T [−]

1 0.000 0.193 0.010
2 0.193 0.196 0.393
3 0.196 0.204 0.113
4 0.204 0.207 0.596
5 0.207 0.213 0.230
6 0.213 0.222 0.027
7 0.222 0.227 0.365
8 0.227 0.234 0.789
9 0.234 0.238 0.342
10 0.238 0.245 0.813
11 0.245 0.254 0.502
12 0.254 0.265 0.667
13 0.265 0.267 0.365
14 0.267 0.273 0.689
15 0.273 0.292 0.488
16 0.292 0.301 0.217
17 0.301 0.310 0.682
18 0.310 0.316 0.070
19 0.316 0.321 0.973
20 0.321 0.324 0.214
21 0.324 0.331 0.450
22 0.331 0.335 1.000
23 0.335 0.338 0.053
24 0.338 0.347 0.495
25 0.347 0.358 0.743
26 0.358 0.371 0.553
27 0.371 0.383 0.971
28 0.383 0.394 0.606
29 0.394 0.410 0.808
30 0.410 0.418 0.895
31 0.418 0.431 0.888
32 0.431 0.472 0.922
33 0.472 0.492 0.778
34 0.492 0.520 0.943
35 0.520 0.565 0.594
36 0.565 1.786 1.000

then the value defaults to 1. This provides an inclusive analysis
and by applying the measured fT , the analysis becomes more
exclusive.

Once the gradient analysis and Hill sphere restriction have
been performed, we use the χ2 goodness-of-fit (as described in
Eq. (25)) to to rank the physically possible configurations. Here,

Table 4. J1407 measured light-curve gradients.

Time Light-curve Gradient Transmission
gradient error change

[day] [L∗ day−1] [L∗ day−1] [−]

−50.645 −0.160 0.020 −1.00
−21.745 −0.160 0.020 −1.00
−21.565 −0.410 0.030 −1.00
−20.665 0.270 0.009 0.25
−17.745 0.160 0.030 0.15
−14.835 −0.970 0.060 −0.40
−14.735 0.620 0.070 0.40
−13.695 −1.200 0.040 −1.00
−13.555 1.700 0.040 0.70
−12.835 −0.320 0.040 −0.70
−12.685 3.000 0.060 1.00
−9.835 0.520 0.050 0.70
−9.615 −0.520 0.010 −0.70
−8.825 −0.540 0.030 −1.00
−8.625 −0.270 0.010 −1.00
−7.685 −0.570 0.030 −0.50
−7.545 0.660 0.060 0.50
−6.765 −0.870 0.020 −1.00
−5.765 −0.860 0.070 −0.80
−5.605 0.870 0.020 0.80
−4.875 −0.880 0.100 −0.85
−4.685 0.170 0.010 0.85
9.325 0.330 0.040 1.00
10.105 0.630 0.060 0.60
11.105 0.320 0.050 0.50
11.285 −0.870 0.030 −0.60
11.405 −0.260 0.070 −0.40
12.125 −0.580 0.030 −0.60
12.295 0.360 0.020 0.60
12.415 1.100 0.090 0.60
16.255 −0.150 0.010 −1.00
18.175 −0.190 0.020 −1.00
25.125 0.880 0.050 1.00
32.205 −0.280 0.030 −1.00
33.235 −0.140 0.030 −1.00
44.155 −0.220 0.020 −1.00

Notes. Times, light-curve gradients, and gradient errors taken
from the exorings repository (https://github.com/mkenworthy/
exorings) related to Kenworthy & Mamajek (2015). The transmission
changes were determined according to the BeyonCE repository (https:
//github.com/dmvandam/beyonce-shallot) related to this study.

o is the observed (measured) value, e is the expected value, and
σ is the error on the measurement. It is expressed as

χ2 =

n∑
i=1

(gi, o − gi, e)2

σ2
i

. (25)

The χ2 value is determined for each grid point (note: all points
where the measured value is greater than the expected value
are ignored as they are physically impossible). These points are
then extracted and sorted by the χ2 value. We chose to investi-
gate all solutions, finding that from the 16 200 801 explored grid
points, only 1850 are physically possible. These solutions were
then sorted by disc radius. Solutions with δy < 0 are ignored as
they are degenerate (see Sect. 4.6). To visualise the distribution
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of these physical solutions, we introduce the normalised r.m.s.,
rms, described in Eq. (26), where χ2

min and χ2
max are the

smallest and largest χ2 values measured respectively. This is
expressed as

rms =
χ2 − χ2

min

χ2
max − χ

2
min

. (26)

The solutions are subsequently placed into five bins with a width
of 0.2, running from rms = 0.0−1.0 and the distribution of disc
parameters is presented in Fig. 9. This figure demonstrates the
complexity of the possible physical systems that could fit the
light curve data.

The reason we performed the gradient analysis while ignor-
ing the transmission factor is due to the large uncertainties
involved in determining them. This is primarily due to the
photometric data being too sparse to confidently measure a trans-
mission change. To accurately determine fT for a particular
light-curve gradient, we must have a flat-bottom before and after
the gradient time (which, in most cases, is not available). This
leads to the estimation of fT . We must take the largest upper
bound of fT because underestimating it can lead to unphysical
projected gradients (g(t) > 1).

The ring systems of both analyses are visible in Fig. 10
with projected gradient information shown in Fig. 11. Notice
how there are some solutions which have a smaller disc radius
than the original paper. This highlights the purpose of Shallot
Explorer in finding physically smaller ring solutions.

Table 7 compares the smallest disc solution found by
Shallot Explorer with a rms < 0.2 to the solution determined by
Kenworthy & Mamajek (2015).

6.2. PDS 110

PDS 110 (HD 290380) is a young (∼11 Myr old) T-Tauri star
in the Orion OB1 Association. It exhibited two extended, deep
eclipses with a duration of approximately 25 days, which were
separated by about 808 days. These eclipses were studied by
Osborn et al. (2017) and were interpreted as the result of the tran-
sit of a circumsecondary disc around an unseen companion, PDS
110 b. An observing campaign was subsequently setup to detect
an expected transit event, but no such event occurred (Osborn
et al. 2019). We focus on the ring models produced by Osborn
et al. (2017).

The analysis follows the same steps as we undertook for
J1407 (detailed in the previous section), but we limit the number
of solutions investigated to 10 000. This is because as the number
of solutions increases, they become so general that they end up
meaningless. The Hill radius for PDS 110 is 0.69 AU and to do
the gradient analysis the eclipse duration is set to ∆ecl = 25 days,
the transverse velocity is set to vt = 27 km s−1, and the limb
darkening of the star to u = 0.8. To perform the right unit con-
versions, we set the star radius to R∗ = 2.23 R⊙. The measured
light-curve gradients (time (t), light-curve gradient (dI(t)/dt),
errors, and transmission change (T0 − T1)) are listed in Table 6.

The ring systems of both passes are visible in Fig. 13 with
projected gradient information shown in Fig. 14. We notice how
all the solutions have a significantly smaller disc radius than
the original model used. This demonstrates the use case of the
Shallot Explorer.

As with J1407, we also show the distribution of the parame-
ters for bins of rms in Fig. 15. In Table 7, we see how the smallest
disc with an rms < 0.2, compares with the model determined by
Osborn et al. (2017).

Fig. 9. J1407 disc property distributions. Each panel shows the distribu-
tion of a particular disc property, grouped by rms bins (rms runs from
0 to 1). The vertical line shows the solution with the smallest rms. Top:
disc radius. Middle: inclination. Bottom: tilts. Note that the tilt distri-
bution is not bimodal because we only show solutions with a positive
impact parameter.

Fig. 10. J1407 disc models. The results of the Shallot Explorer are
shown along with the original model for the J1407 disc (black). Solu-
tions that ignore transmission scaling, fT,x = 1, are in blue, and the
solutions that do not are in orange.

7. Discussion and conclusions

The Shallot Explorer module of the BeyonCE package is an
effective tool for exploring and visualising the parameter space
spanned by circumsecondary discs. It produces a grid that is
described with the offset of the centre of the disc with respect
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Fig. 11. J1407 projected gradients. The projected gradients are plotted
for the ring system models depicted in Fig. 10. Note that the orange
data points make use of fT and that the J1407 model (black) does not
( fT = 1).

Fig. 12. Solutions that ignore transmission scaling, fT,x = 1, are in blue,
and the solutions that do not are in orange. PDS 110 light curve. Top:
first eclipse from 2008. Bottom: second eclipse from 2011. The red cir-
cles are data from KELT, the blue squares is data from SuperWASP, the
green triangles are data from ASAS. The best fit eclipse model is over-
plotted in orange with parameters in Table 5. This figure is extracted
from the bottom left panels of Fig. 1 from Osborn et al. (2017).

to the centre of the eclipse in time space, with a final dimension
describing the size of the disc relative to the minimum possi-
ble size at that specific centre offset. The parameter space is still
very large, but can be limited by two fundamental properties.
The first is the Hill radius, which imposes a maximum size of
the disc based on stability criteria for the object orbiting the host
star. The second is the relationship between the light-curve gra-
dients measured and the physical local tangent of the edge of
the disc crossing the star. Implementing these two cuts effec-
tively, significantly reduces the parameter space to much more
manageable starting points for further analysis. Importantly, the
Shallot Explorer makes no use of prior distributions. Instead, it
is designed to explore the unbiased parameter space of every-
thing that is physically possible. We are producing a systematic
approach and defining the boundary between possible and not
possible disc geometries based on the gradients as opposed to
only minimising the radius of the disc.

Table 5. Ring model parameters for PDS110 from Osborn et al. (2017).

Parameter Value Unit

Rp 0.00 ∆ecl
δx 0.161 ∆ecl
δy 0.098 ∆ecl
i 74.7 ◦

ϕ 158.6 ◦

vt 39.89 R∗ ∆−1
ecl

RHill 1.741 ∆ecl
R∗ 0.025 ∆ecl
u 0.80 –
∆ecl 25 day

Ring Rin [∆ecl] Rout [∆ecl] T [−]

1 0.000 0.160 0.750
2 0.160 0.197 0.768
3 0.197 0.234 0.920
4 0.234 0.271 0.550
5 0.271 0.309 1.000
6 0.309 0.346 0.500
7 0.346 0.395 0.700
8 0.395 0.420 0.875
9 0.420 0.457 0.900
10 0.457 0.494 1.000
11 0.494 0.531 0.700
12 0.531 0.697 0.970
13 0.697 0.758 0.860
14 0.758 0.803 0.982
15 0.803 0.840 1.000

Fig. 13. PDS 110 disc models. The results of the Shallot Explorer are
shown along with the original model for the PDS 110 disc (black).
In blue, solutions that ignore transmission scaling, (T0 − T1)x = 1. In
orange, the solutions that integrate it. Solutions that ignore transmis-
sion scaling, fT,x = 1, are in blue, and the solutions that do not are in
orange.

Two examples were explored in this work. The first is
J1407 b, an object with a very large ring system proposed.
Using the information obtained from the light curve (light-
curve gradients, eclipse duration, etc.) and from the orbits
of the system (mass of the star, orbital mechanics), Shallot
Explorer was capable of returning solutions of a similar geom-
etry as those found by Kenworthy & Mamajek (2015) (see
Table 7). The same analysis was done for the PDS 110 sys-
tem, producing solutions that are significantly smaller than
the proposed disc (see Table 7 and Fig. 13). This analysis
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Table 6. PDS 110 measured light-curve gradients.

Time Light-curve Gradient Transmission
gradients error change

[day] [L∗ day−1] [L∗ day−1] [−]

–14.20 0.24 0.03 1.00
–13.10 –0.03 0.05 –1.00
–12.18 0.05 0.02 1.00
–11.13 –0.36 0.02 –1.00
–10.17 0.03 0.01 0.97
–9.97 0.05 0.01 0.97
–8.97 0.04 0.03 0.97
–5.18 –0.02 0.02 –0.90
–5.00 –0.37 0.07 –1.00
–4.00 0.19 0.35 0.90
–3.06 0.65 0.03 1.00
–2.98 0.11 0.44 0.85
–2.05 –0.54 0.08 –1.00
–1.27 –0.02 0.05 –0.80
–1.04 0.23 0.09 1.00
–0.21 0.04 0.01 0.80
0.96 0.03 0.09 0.80
1.95 –0.04 0.07 –0.80
2.94 0.07 0.13 0.88
3.95 –0.01 0.08 –0.95
5.77 0.24 0.02 1.00
6.00 0.03 0.01 0.95
6.85 –0.02 0.00 –0.90
7.91 –0.01 0.01 –0.95
7.97 0.01 0.02 0.97
8.84 –0.01 0.01 –0.95
8.95 0.12 0.09 0.97
9.78 0.04 0.01 0.95
9.95 0.06 0.14 1.00
11.78 0.03 0.01 1.00
13.83 –0.05 0.01 –1.00
14.77 0.02 0.01 1.00
15.78 0.00 0.01 1.00

Notes. Times, light-curve gradients, and gradient errors were taken
from the pds_110_exorings repository (https://github.com/
mkenworthy/pds_110_exorings) related to Osborn et al. (2017).

generally provides a robust exploration of the disc orienta-
tions and in these particular cases (J1407b and PDS 110)
reduces the parameter space to ∼10% of our initial grid.
Figure 9 and 15 show the distribution of each disc property for
the valid configurations with a positive impact parameter, for
J1407 and PDS 110, respectively. By ‘valid configurations’ we
are referring to the solutions left over after applying the Hill
radius and projected gradient cuts. We chose the positive impact
parameter because we obtain the same disc solution by flipping
the sign of the impact parameter and reflecting the tilt off the
ϕ = 90◦ axis (as described in Sects. 2 and 4.6).

Both of these results suggest a different aspect of Shallot
Explorer. The fact that J1407 b has such similar solutions implies
that Shallot Explorer is able to find a solution that is determined
by other means and that the solution found for the J1407 system
is one of the smallest solutions given the light curve data. The
fact that PDS 110 shows smaller solutions implies that Shallot
Explorer is able to find solutions with a better fit than a focussed
case study. The more Shallot Explorer is used on similar complex

Fig. 14. PDS 110 projected gradients. The projected gradients are plot-
ted for the ring system models depicted in Fig. 10. Note: the orange data
points make use of fT and the PDS110 model (black) does not ( fT = 1).
Solutions that ignore transmission scaling, fT,x = 1, are in blue, and the
solutions that do not are in orange.

Fig. 15. PDS 110 disc property distributions. Each panel shows the dis-
tribution of that particular disc property that has been grouped by rms
(rms runs from 0 to 1) bins. The vertical line shows the solution with the
smallest rms Top: disc radius. Middle: inclination. Bottom: tilt. Note:
the tilt distribution is not bimodal because we only show solutions with
a positive impact parameter.

systems, the more evidence will support its application as the
starting point in modelling complex light curves.

While the grid produced is linearly scalable, the implications
do have hidden consequences. For instance, we can consider the
light curve for J1407 b (Fig. 8): it shows no definitive eclipse
duration as we are missing a clear ingress and egress and we
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Table 7. Literature versus Shallot Explorer model comparisons.

J1407 b Kenworthy & Mamajek (2015) Shallot

Rdisc [AU] 0.60 0.52
i [◦] 70 78
ϕ [◦] 166 175
δx [AU] 0.092 0.028
δy [AU] 0.075 0.019

PDS 110 Osborn et al. (2017) Shallot

Rdisc [AU] 0.67 0.22
i [◦] 75 82
ϕ [◦] 159 175
δx [AU] 0.063 0.028
δy [AU] 0.038 0.019

Notes. The value listed under Shallot is the smallest disc solution with
a rms < 0.2.

also have no confirmation that the light curve remains steady
outside of this time period. While not knowing the eclipse dura-
tion has no effect on the validity of the grid points, it does have
an influence on the gradient cuts applied. This becomes obvi-
ous when looking at Eq. (22). The time measured changes with
respect to the eclipse duration, which changes the maximum the-
oretical value that gradient could have. For gradients measured
close to the ingress and egress, this will have a small effect. For
gradients measured closer to the times when the local tangent
of the ring edge is parallel and perpendicular to the direction
of motion (between −0.1 and 0.1 in Fig. 5), the uncertainty in
eclipse duration could have a very significant effect.

Another limitation that is not considered here is that every
ring crossing produces four gradients: two sets of an ingress
and an egress. This is not considered when making cuts to the
parameter space, ensuring that the parameter space is larger than
it would otherwise be. Shallot Explorer is thus inclusive of the
correct solutions; however, determining the best-fit solutions (as
described by Eq. (25)) is only a starting point when moving on
to a light-curve fitting for a ring system.

It is also useful to investigate the Rdisc value at which
the Shallot Explorer fails to produce viable results due to the
breakdown of the first assumption:

hdisc << R∗ << Rdisc.

BeyonCE will be supplemented with a second module that
will be used for the fitting of the actual ring system transmis-
sions itself, based on results exported from the Shallot Explorer
or unique manual input from the user.

Acknowledgements. To achieve the scientific results presented in this article we
made use of the Python programming language (Python Software Foundation,

https://www.python.org/), especially the SciPy (Virtanen et al. 2020),
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Appendix A: Validity of exoring software geometry

The exoring code approximates the path of the star behind the
rings with a straight line that is parallel to the x-coordinate of
the ring coordinate system (line S C; see Figure A.1). In reality,
for non-zero impact parameters, the path of the star behind the
ring system follows an ellipse (assuming a circular orbit for the
eclipser around the star), whose projected semimajor axis on the
sky is the radius of the orbit of the eclipser about the star, a.

We estimate how close the approximation of the straight line
path is to the correct orbital path by taking the most extreme
case scenario: that of a disc that is face-on to the observer with
an impact parameter y. In Figure A.1, S represents the star, P the
centre of the disc, and RD is the radius of the disc seen face on to
the observer. The straight line path lies along the line S C, where
C is the point where the star leaves the disc. The orbital curved
path is along S B, and the perpendicular distance from the x-axis
to the star’s location is AB = y cos ϕ where ϕ is the orbital phase
angle of P in its orbit around S .

Our goal is to calculate the distance BC, the distance between
the idealised path and the orbital path. From geometry, ϕ can be
calculated from triangle S PA as tan ϕ = x/a, which we approx-
imate to ϕ = x/a and substitute into BC to get BC = yx2/(2a2).
We substitute x2 = (R2

D − y
2) to obtain

BC =
y(R2

D − y
2)

2a2 .

We note that BC is zero both at y = 0 and y = RD, with a
maximum value at y = RD/

√
3. We now have

BCMAX =
r3

D

3
√

3a2 .

The radius of the disc and the semimajor axis, a, are related
through the radius of the Hill sphere:

R3
H = a3(1 − e)3

(
m

3M∗

)
.

Here, e is the eccentricity of P about S (taken to be zero), and m
and M∗ are the masses of P and S , respectively.

The disc fills a fraction, ξ, of the Hill sphere RH so we have
RD = ξRH and substituting into BCMAX we get(

BC
RD

)
MAX
=
ξ2(1 − e)2

3
√

3

(
m

3M∗

)2/3

.

If we take the mass ratio of the star and planet to be 0.1, this
equation is now (

BC
RD

)
MAX
= 0.02ξ2(1 − e)2.

This shows that for the most extreme case, the difference in the
paths is 2%, and for ring stability, typically ξ ≈ 1/3, resulting
in a difference of much less than one percent for all realistic
geometries.

We may consider the validity of the approximation of a
constant velocity of the star behind the rings. The maximum
velocity, vmax, of the star is when the star crosses the centre line
of the disk S P at ϕ = 0, and the projected velocity on the sky
plane, v = vmax cos ϕ ≈ vmax(1−ϕ2/2). The fractional decrease in
the velocity ∆v/vmax = ϕ

2/2, and in the most extreme case cross-
ing the full diameter of the disk this is where R3

D = ξ
3a3(m/3M∗),

leading to

Fig. A.1. Sketch of geometry used in the exoring software. There are
two views of the same system, indicating the relevant distances and
quantities used in the derivation of the distance BC.

tan ϕ ≈ ϕ = RD/a = ξ(m/3M∗)1/3

The fractional decrease in velocity is therefore

∆v/vmax =
ξ2

2

(
m

3M∗

)2/3

.

For ξ = 1/3 and m/M∗ = 0.1, this is approximately 0.6%, so we
find that the assumption of constant velocity is reasonable.
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