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Abstract

As planning for the next generation of high contrast imaging instruments (e.g., WFIRST, HabEx, and LUVOIR,
TMT-PFI, EELT-EPICS) matures and second-generation ground-based extreme adaptive optics facilities (e.g.,
VLT-SPHERE, Gemini-GPI) finish their principal surveys, it is imperative that the performance of different
designs, post-processing algorithms, observing strategies, and survey results be compared in a consistent,
statistically robust framework. In this paper, we argue that the current industry standard for such comparisons—the
contrast curve—falls short of this mandate. We propose a new figure of merit, the “performance map,” that
incorporates three fundamental concepts in signal detection theory: the true positive fraction, the false positive
fraction, and the detection threshold. By supplying a theoretical basis and recipe for generating the performance
map, we hope to encourage the widespread adoption of this new metric across subfields in exoplanet imaging.
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1. Introduction

The contrast curve describes an imaging system’s sensitivity
for a given detection significance in terms of the planet/star flux
ratio and angular separation. A consistent methodology for
computing the contrast curve, however, is lacking: a variety of
approaches to throughput, small sample-size, and non-Gaussian
noise corrections are represented in the literature (e.g., Marois
et al. 2008a; Wahhaj et al. 2013; Mawet et al. 2014; Pueyo 2016;
Otten et al. 2017; Cantalloube et al. 2015). As inner working
angles are pushed below 5λ/D, these details dominate the
calculation of the contrast curve. Second, the contrast curve’s
information content is limited: by fixing the detection significance
for all separations, the contrast curve conceals important trade-
offs between the choice of detection threshold, false positive
rates, and detection completeness statistics.

The purpose of this paper is to critically examine the contrast
curve and present alternative figures of merit for the ground- and
space-based exoplanet imaging missions of the coming decades.
In Section 2, we summarize the key points of signal detection
theory, which provide the basis for our discussion of performance
metrics. Section 3 describes the strengths and weaknesses of the
contrast curve as a general purpose performance metric. Finally,
Sections 4 and 5 give our proposal for a new figure of merit
based on signal detection theory.

2. Overview of Signal Detection Theory

Our task as planet hunters is to decide whether the data at each
location in a “high contrast” image meets our threshold for a planet
detection. Regardless of the details of the data set (e.g., field
rotation, spectral coverage, etc.), the presence of noise will interfere
with the accuracy of our detection decisions. Signal detection
theory provides a precise framework for describing the relation-
ships between detections, nondetections, and detection thresholds.
If we assume that a planet is present at a location of interest

in our data (the H1, or “signal present” hypothesis), and we
succeed in detecting that planet, our result is a true positive
(TP). If we fail to detect the planet, our result is a false negative
(FN). Clearly, we aim to maximize the number of true positives
while minimizing the number of false negatives. Hence, we
define a true positive fraction, or TPF:
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where τ is the detection threshold and ( ∣ )pr x H1 is the
probability density function (PDF) of the data x under the
hypothesis H1. Our goal is to approach TPF=1.
If we instead assume that no planet is present in the data (the

H0, or “signal absent” hypothesis), and we fail to make a
detection, our result is a true negative (TN). If we incorrectly
claim to detect a planet, however, our result is a false positive
(FP). We are then interested in achieving a false positive
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fraction (FPF) close to zero:
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These various hypotheses and outcomes are summarized in the
“confusion matrix” (Figure 1). An early review of signal
detection theory is given by Swets et al. (1961).

To make these relationships concrete, consider a post-
processed image in which the intensities, x, in a series of
photometric apertures located at a certain distance from the
central star are drawn from a normal distribution (μ= 0 and
σ= 1, where the choice of an annular region is justified by the
symmetry of the star’s point-spread function). The PDF of the
noise is shown in Figure 2(a). Now let us assume that our goal
is to detect a planet with a mean intensity of x=3 inside the
annulus of interest. Because the intensity in the photometric
aperture at the planet’s location is also affected by the noise, it
is described by a PDF identical to that of the noise, but with a
mean of x=3 (here we ignore the contribution of the planet’s
shot noise). The PDF of the signal is shown in Figure 2(b).

Given our knowledge of the PDFs of the noise and the
signal, we now wish to choose a detection threshold. Let us
assume that because our detection follow-up resources (e.g.,
telescope time) are limited, we wish to achieve an FPF of
0.001. We therefore choose a detection threshold of 3σ because
a fraction 0.001 of the area of the noise PDF falls above this
value (2(a), dotted line). A second consequence of this choice
of detection threshold is that we will only detect half of all
planets with a mean intensity of x=3 (TPF=0.5; 2(b), dotted
line). If we wish to increase the TPF, we must lower the
detection threshold and hence unfavorably raise the FPF.

Our choice of detection threshold therefore allows us to trade
between the FPF and TPF, within the constraints imposed by the
noise PDF and the signal mean. The receiver operator characteristic
(ROC) curve allows us to visualize this trade by plotting the TPF as
a function of the FPF, with each parameter varying between 0 and
1 as we move the detection threshold from large to small values
(Tanner & Swets 1954 give an early example of an ROC curve;
Krzanowski & Hand 2009 provide an updated discussion of the
topic). The black line in Figure 3 shows the ROC curve associated
with our example. The (TPF, FPF) pair corresponding to our
example threshold of 3σ is labeled, along with a broader range of
possible detection threshold choices. We note that the detection
threshold must be less than the mean of the noise distribution to
produce FPF values greater than 0.5. Because the mean is zero in
this example, such thresholds are negative. While mathematically
consistent, negative thresholds have no observational relevance.

The shape of the ROC curve is determined by the shape of
the noise distribution as well as the signal mean. For example,
if we change the mean of the signal distribution in Figure 2(b)
from x=3 to x=1, we obtain the gray ROC curve shown in

Figure 3. Because the noise distribution was unchanged, the
black and gray curves’ (TPF, FPF) pairs corresponding to
detection thresholds of 0σ–3σ share identical FPF values.
Alternatively, if we had chosen a positively skewed rather than
a normal noise distribution, the nearly vertical part of the black
ROC curve at small FPFs would tilt to the right.
We may now describe our goal of characterizing the

detection statistics of an exoplanet imager in the vocabulary
of signal detection theory: we wish to determine the maximum
FPF and minimum TPF that satisfy our resource limitations and
science goals—in other words, we must choose a target
location in (TPF, FPF) space. Our goal in designing an
instrument, observing strategy, or post-processing routine is to
produce a noise distribution for which the ROC curve will
reach that location for a signal of interest.
An ROC curve, however, only represents a single noise

distribution (i.e., image location) and signal level. In the
sections that follow, we will discuss methods for representing
the performance of a full image.

Figure 1. The confusion matrix. Figure 2. (a) The normally distributed PDF of a noise source with a mean of
zero and standard deviation of one. Here, the detection threshold is arbitrarily
set to 3σ (dashed line), which corresponds to x=3 for this distribution.
Because the noise PDF falls above the detection threshold, a fraction 0.001 of
the time, the false positive fraction in this example is 0.001. (b) The Gaussian
PDF of a signal source with a mean of x=3 and a standard deviation of one.
Because half of the signal distribution’s area falls above the detection
threshold, the true positive fraction is 0.5.

Figure 3. Black line: an ROC curve corresponding to a range of detection
thresholds applied to the normal noise and signal distributions in Figure 2. The
(TPF, FPF) locations corresponding to thresholds of 0σ–3σ are labeled to
demonstrate the trade-offs between these key parameters. Gray line: the
equivalent ROC curve for a signal distribution centered at x=1.
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3. Contrast Curves as Performance Metrics

3.1. The Definition of the Contrast Curve

The contrast curve is a means of representing the true and
FPFs associated with a range of signals and positions in a final
image. Schematically, we can define the contrast as

=
´⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )contrast

factor noise

stellar aperture photometry

1

throughput
, 3

where the numerator is the detection threshold, expressed as a
multiple of the noise distribution’s width. Often, the width of
the noise distribution (here, the “noise”) is chosen to be the
standard deviation of the resolution element intensities at a
given separation from the star (e.g., Figure 4), while the
multiplicative “factor” is chosen to be three or five to produce a
3σ or 5σ contrast curve. In Figure 2, factor=3 and noise=
σ=1. The detection threshold is then converted to a fraction
of the parent star’s brightness via the “stellar aperture
photometry” term. Finally, the “throughput” term corrects this
brightness ratio for any attenuation of the off-axis signal
relative to the star’s (e.g., due to field-dependent flux losses
imposed by the coronagraphic system and post-processing
algorithms). The final contrast is therefore the planet-to-star
flux ratio of a planet whose brightness is equal to the detection
threshold. Figure 2 illustrates that the TPF associated with such
a signal is 0.5. Hence, the contrast curve can be interpreted as
the signal for which we achieve 50% completeness given our
choice of detection threshold in the numerator. The numerator
also fixes the FPF—for example, choosing factor=3 for a
white noise distribution gives FPF=0.001. Finally, it is
important to note that the contrast curve’s statistics refer to
planet detectability, and not to the photometric accuracy
associated with any given planetary signal.

3.2. Where the Contrast Curve Falls Short

Both practical and fundamental shortcomings, however,
undermine the utility of the contrast curve as a general purpose
performance metric. First, the contrast is inflexible: by fixing
the TPF to 0.5 and the FPF to a value set by the numerator, we
cannot explore the (TPF, FPF, detection threshold) trade space.
Even if we were to plot multiple contrast curves on the same
figure to show different detection thresholds, we could not
escape the arbitrary choice of TPF=0.5. Similarly, if we were
to plot a 90% detection completeness curve as a function of
separation, we could not access a range of false positives
fractions. Finally, fixing the TPF, FPF, and detection threshold
for all separations may not be desirable for all applications—
because the number of resolution elements, the PDF of the
noise, and the predicted population of planets all vary as a
function of separation, a particular imaging program’s science
goals may be better served by a detection threshold that also
varies with separation.
More problematic, however, is the calculation of the terms in

Equation (3). As mentioned above, the “noise” term is typically
chosen to be the standard deviation of resolution elements in a
region of the image, whose shape and size widely varies in the
literature. This approach is valid if two conditions are met: (1)
if the region includes enough statistically independent realiza-
tions of the noise to allow for an accurate measure of the
distribution’s standard deviation, and (2) if the underlying
noise distribution is Gaussian. While there is no hard and fast
rule for deciding whether the first condition is met, statisticians
generally consider 30 independent samples to be the boundary
between large and small sample statistics (Wilcox 2009). For
the case of 1 λ/D-wide annular regions, 30 samples correspond
to a separation of ∼5λ/D. Below this threshold, the sample
standard deviation is an increasingly uncertain estimate of the
width of the underlying noise distribution (Student 1908;
Mawet et al. 2014). The mitigating strategy proposed by
Mawet et al. (2014), however, also requires that condition #2
(Gaussian noise) is met. Aime & Soummer (2004) and many
others have shown that uncorrected low-order wavefront
aberrations cause the noise at small separations to follow a
positively skewed modified Rician distribution rather than a
normal distribution (Perrin et al. 2003; Bloemhof 2004;
Fitzgerald & Graham 2006; Hinkley et al. 2007; Soummer
et al. 2007; Marois et al. 2008a). While numerous observing
and post-processing strategies have been employed to whiten
this skewed distribution (e.g., Liu 2004; Marois et al. 2006;
Lafrenière et al. 2007; Amara & Quanz 2012; Soummer
et al. 2012), their success at small separations is limited by the
temporal and spectral variability of the noise (the Appendix
discusses the difficulty of testing for normality using methods
such as the Shapiro–Wilk test). The result is that the noise
distribution at small angles retains an unknown skewness at
small separations that increases the FPF compared to a
Gaussian distribution. Hence, neither condition for the use of
the standard deviation as a proxy for the FPF is met at small
separations.15 In Section 5.2, we will address alternative

Figure 4. Number of resolution elements of width λ/D at a distance r from the
central star is 2πr, where here we consider only whole numbers of resolution
elements.

15 It is worth noting that some authors interpret the numerator of Equation (3)
as an empirical signal-to-noise threshold without reference to the distribution of
the noise or an FPF. This interpretation, however, robs the contrast curve of
much of its practical use—the knowledge that we can achieve TPF=0.5 for a
given planet:star flux ratio does not guide our observing or science if the
associated FPF can fall anywhere from zero to one.
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methods for probing the distribution of the noise without the
assumption of normality.

3.3. Inconsistencies in Contrast Curve Computations

We further note that the contrast and its constituent terms are
inconsistently computed in the literature, in particular, the noise
and throughput terms. While many authors (e.g., Wahhaj
et al. 2013) account for spatially correlated speckle statistics by
defining the noise to be the standard deviation of resolution
elements in an annulus, others do not. For example, Otten et al.
(2017) define the noise in relation to the standard deviation of
pixel values inside of a single 1 λ/D aperture of interest. The
region within a few λ/D of the inner working angle, however, is
fundamentally sensitive to azimuthally correlated speckle noise:
effects such as pointing jitter, thermal variations, and noncom-
mon path aberrations induce low-order wavefront aberrations,
and hence close-in, variable speckles, on the timescale of an
observation (Shi et al. 2016). Second, the definition of the term
“throughput” is context dependent. Authors computing contrast
curves for angular differential imaging (ADI) data sets typically
define the throughput in terms of the flux losses imposed by
signal self-subtraction (e.g., Wahhaj et al. 2013). However, in
discussions of coronagraph design trades, throughput refers to the
often field-dependent flux losses caused by the coronagraphic
system itself (e.g., Guyon et al. 2006; Krist et al. 2015). Finally,
the small sample correction presented by Mawet et al. (2014) has
been adopted by some authors (e.g., Wertz et al. 2017), but not
others (e.g., Uyama et al. 2017). Such a variety of methodologies
inhibit meaningful comparisons of instrument performance.

In this section, we have described three shortcomings of the
contrast curve: (1) its inability to illustrate the (TPF, FPF,
detection threshold) trade space, (2) its potential inconsistency
with the shape of the underlying noise distribution, and (3) its
inconsistent treatment in the literature. In the sections that
follow, we will discuss strategies for computing the FPFs and
TPFs associated with an unknown noise distribution and
present a new figure of merit for the performance of high
dynamic range imaging systems.

3.4. The Raw Contrast

The above discussions concern what we might call an
“observer’s” definition of the contrast. Users of exoplanet
imaging testbeds, however, refer to the “raw contrast,” which is
typically defined as

=
[ ( )]

[ ( )]
( )R x y

x y
raw contrast

mean ,

max PSF ,
, 4

star

where mean[R(x, y)] is the mean number of photons per pixel
over a region of interest (for example, a dark hole) and
max[PSFstar(x, y)] is the number of photons in the pixel
corresponding to the peak of a stellar PSF offset to a
representative location inside of the region of interest. The
key difference between the raw contrast and the observer’s
contrast is that the raw contrast does not refer to an
astrophysical flux ratio—a raw contrast of 10−10 does not
indicate that a planet with an astrophysical flux ratio of 10−10 is
in any sense detectable. Rather, it simply indicates that the
mean intensity of the background in a certain region is 1010

smaller than the peak of the offset stellar PSF. Hence, while the

raw contrast is a useful shorthand for describing an
instrument’s starlight suppression, it should not be interpreted
as a detection limit. Obtaining a detection limit by estimating
the noise inside of the region of interest carries with it the
attendant dangers of small sample statistics and non-Gaussian
noise described in Section 3.2 as well as exposure time
dependencies and signal throughput effects.

4. Representing the (FPF, TPF, separation) Tradespace
with the Performance Map

In Section 3.2, we argued that the contrast curve’s limited
information content—the astrophysical flux ratios of those
planets that give TPF=0.5 for a single detection threshold as
a function of separation—obscures the much richer (FPF, TPF,
separation) trade space. Here, we propose two modifications to
the contrast curve: (1) a detection threshold (and hence FPF)
that varies with separation, and (2) the inclusion of all possible
TPFs as a heatmap.
When the detection threshold is held constant with

separation, the radial distribution of false positives is not
uniform because the number of resolution elements varies with
separation. If the expected number of false positives NFP is
given by NFP(r)=FPF×2πr for separation r, then a constant
detection threshold (and hence a constant FPF) allows more
total false positives at wide separations than at small
separations. If we instead keep the radial distribution of false
positives constant, we allow the detection threshold to adapt to
the changing number of resolution elements with separation
(see Ruane et al. 2017 for a similar approach).
Next, we plot the astrophysical flux ratios of those planets

that give any desired TPF as a function of separation. Rather
than choosing a single TPF contour, we propose to show the
full 0�TFP�1 space as a heatmap. A representative TPF
contour can be overplotted for clarity.
We call this modified figure the performance map (e.g.,

Figure 6). We argue that the performance map highlights the
most scientifically and programmatically relevant quantities,
namely the TPFs of the signals of interest for a given number of
false positives. The contrast curve, on the other hand,
highlights the detection threshold, which has no intrinsic
meaning beyond pointing to an FPF.

5. Generating the Performance Map

Constructing the performance map requires knowledge of
the FPF, which in turn requires knowledge of the underlying
noise distribution. As discussed in Section 3.2, the distribution
of the noise at small separations is often unknown. In the
following subsections, we consider two limiting cases: (1) the
PDF of the noise is Gaussian (Section 5.1), and (2) the PDF of
the noise is completely unknown (Section 5.2).
Following Mawet et al. (2014), we define a resolution

element to be a circular aperture with a diameter of λ/D. The
number of resolution elements, Nr at a distance r from the
central star is 2πr, where r is also expressed in terms of λ/D
(Figure 4). We consider only whole numbers of resolution
elements (e.g., six resolution elements at 1λ/D.).
To illustrate the construction of a performance map in detail,

we consider a set of HR 8799 observations taken by the Spectro-
Polarimetric High-contrast Exoplanet REsearch (SPHERE, Beuzit
et al. 2008) at the Very Large Telescope (VLT). The data were
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acquired in 2014 December during science verification of the
Infra-Red Dual-band Imager and Spectrograph (IRDIS; Dohlen
et al. 2008) instrument, and have been extensively described in the
literature (Apai et al. 2016; Zurlo et al. 2016; Wertz et al. 2017).
We adopt a 200 frame broadband H filter (1.48–1.77μm)
sequence from 2014 December 4, where the detector integration
time was 8 s and the total amount of parallactic angle rotation was
8°.7. We choose to include only the data taken on the left-hand
side of the IRDIS detector.

Following Wertz et al. (2017), we use an off-axis broadband H
image of β Pictoris (2015 January 30th, PI: A.-M. Lagrange) as
our PSF template due to the absence of an off-axis exposure in the
original observing sequence. We fit a 2D Gaussian function to the
β Pictoris template PSF to obtain FWHM=4.0 pixels=0 049
for a plate scale of 12.251mas (Wertz et al. 2017). Because this
measured FWHM is slightly larger than the diffraction limit
would suggest (0.98× λ/D=0 040), we conservatively adopt
the FWHM as the resolution element diameter rather than 1 λ/D.

For the purposes of this demonstration, we are interested in
estimating the FPFs and planet-injected TPFs. Hence, we begin
our reduction by subtracting HR 8799bcde from the data set.
This is accomplished via the Vortex Image Processing (VIP,
Gomez Gonzalez et al. 2017) package’s functions for injecting
negative fake companions into the data and optimizing their
flux and positions using a Nelder–Mead based minimization.

Next, we use VIP’s implementation of the PCA-ADI
algorithm to subtract a reconstructed data cube from our set
of 200 images. The reconstructed cube was generated using
three principal components (chosen to maximize the SNR of
HR 8799 c in a full reduction of the data set prior to planet
subtraction). We median-combine the residual data cube to
obtain our final reduced image. We compute the algorithmic
throughput (signal self-subtraction) as a function of separa-
tion by injecting fake planets at separation intervals of
1 FWHM and azimuthal intervals of 120°. For each sep-
aration interval, the data is PCA-ADI reduced, and the
signals’ flux attenuation in the three azimuthally separated
apertures are averaged.

Here, we consider only the first 10 separation intervals after
the inner working angle (in this case, FWHM=2–11).
Figure 5 shows a 3σ contrast curve generated with VIP (where
algorithmic throughput and small sample statistics are properly
accounted for).

5.1. The Gaussian Assumption

We first consider the most straightforward path to construct-
ing the performance map: assuming that the PDF of the noise
follows a Gaussian distribution with a width corresponding to
the measured standard deviation of the resolution elements as a
function of separation (acknowledging the uncertainty in the
standard deviation due to small sample statistics). Because any
calculation of the FPF requires the hypothesis H0 (signal
absent), we are assuming that any detections are false, despite
the reality that there may be true planets in the data.
To choose the FPF (and hence the detection threshold) for each

separation, we must first choose the total number of false positives
that we are willing to accept in the FWHM=2–11 region of
interest. For example, perhaps we have sufficient telescope time to
follow-up one false positive for every 10 observations. Hence, we
can accept 0.1 false positives per image, or FPF=0.01/Nr. For
each separation, we then derive the corresponding detection
threshold that will connect the FPFs to the TPFs of the injected
signals. Here, the threshold is given by the quantile (inverse CDF)
function of the Student T distribution with Nr degrees of freedom
and a width scaled by the measured standard deviation of the
resolution elements at r. We can then inject planet signals to
determine the TPF of a given signal at a given separation. For the
purposes of this simplified demonstration, the TPF is computed
using the CDF of the scaled Student T distribution representing
the noise, but shifted by the throughput-corrected test signal.
The resulting performance map is shown in Figure 6 with the

TPF=0.5 contour overplotted.
We emphasize that the “depth” of the TPF=0.5 contour in

Figure 6 is different from that of the contrast curve in Figure 5
because the performance map is illustrating a lower false
positive rate in this example. Furthermore, the performance

Figure 5. Contrast curve representing the observation of HR 8799 with
SPHERE described in Section 5.

Figure 6. Example performance map where the FPFs have been calculated
under the assumption that the noise is Gaussian at all separations. Here, the
detection thresholds that connect the FPFs to the TPFs of the injected signals
were chosen to give 0.01 false positives per separation interval, or 0.1 total
false positives in the FWHM=2–11 region.
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map allows the detection threshold to vary with separation,
while the contrast curve holds the detection threshold fixed.

5.2. The Empirical Performance Map

In the preceding section, we considered an ideal scenario in
which the PDF of the noise was known and the FPFs could be
computed analytically. In Section 3.2, however, we argued that
the PDF of the noise at small separations is difficult to
determine given the effects of imperfect speckle subtraction.

To address this effect, we now consider an extreme case
where the PDF of the noise is completely unknown, and the
FPFs must be determined empirically: for each separation, we
will simply count the number of resolution elements that
exceed a test detection threshold. For a single 1 λ/D-thick
annulus in the final, post-processed image, the possible values
of the empirical FPF are therefore constrained to i/Nr, where i
is an integer between zero and Nr (inclusive). Accessing
desirable FPFs between zero and 1/Nr require additional
realizations of the noise—for example, data from the same
instrument can provide additional resolution elements if the
distribution of the noise is assumed to be constant with time.
Ruffio et al. (2017) describe the application of this technique to
the Gemini Planet Imager Extra Solar Survey campaign.
Another possibility for the case of ADI data is obtaining an
additional image “for free” by reversing the order of the
parallactic angle assignments (Wahhaj et al. 2013). This
produces an image with similar azimuthal noise characteristics
to the science image, doubling the number of noise realizations.
Further angle randomization, however, will artificially whiten
the speckle noise and fail to capture the temporal speckle
evolution that de-rotation translates into azimuthal variation.

To generate a performance map from a single image using
this empirical FPF approach, we first make a list of FPFs for a
range of detection thresholds and separations by the following
recipe.

1. Draw rings of FWHM-diameter apertures around the
central star (see Figure 4) and sum the fluxes inside of the
apertures. The result is a list of 2πr aperture sums for
each separation r.

2. Choose a detection threshold.
3. For each separation, find the fraction of resolution

elements whose sum exceeds the detection threshold.
These are the FPFs.

4. Vary the detection threshold and repeat Step 3 to produce
all possible FPF values for all separations.

Using the same set of detection thresholds and separations as
the preceding recipe, we can find the associated TPFs for a
range of planet signals of interest. This is accomplished by the
following steps.

1. Sum the flux inside of an FWHM-diameter aperture
around the unocculted stellar PSF.16

2. Choose an astrophysical flux ratio and multiply by the
star’s aperture sum (previous step) to obtain the planet’s
signal.

3. For each separation, multiply the planet’s signal by the
algorithmic throughout (previous paragraph), and add the
result to each resolution element.

4. Choose a detection threshold from the same list of
threshold used to generate the FPFs above.

5. For each separation, find the fraction of resolution
elements whose sum exceeds the threshold. These are
the TPFs.

6. For the same range of detection thresholds used to
calculate the FPFs, repeat Step 5.

7. Repeat Steps 2–6 for different astrophysical flux ratios.

To plot the performance map, we elect to consider the
smallest detection thresholds associated with the least non-zero
FPFs (1/Nr), giving 1.0 false positive per 1 λ/D separation
interval. For each injected signal at each separation, we then
plot the TPFs corresponding to these detection thresholds.
Figure 7 shows the resulting performance map. For each
separation, we also plot the signal with the TPF nearest to
TPF=0.5 for these detection thresholds.
We may now compare the total number of false positives in

the empirical performance map above with that of the contrast
curve. The choice the 3σ detection threshold used to compute
the contrast curve implies an FPF of 0.0013 under the
assumption that the noise is Gaussian. To obtain the total
number of false positives in the image under this assumption,
the FPF is multiplied by the total number of whole resolution
elements, NT. For the 2–11 λ/D region of the image considered
here, NT=403 and the total number of false positives is
NFP=FPF×NT≈0.54. In comparison, the empirical per-
formance map approach makes no assumptions about the PDF
of the noise, and gives one false positive per separation, or
NFP=10 in this example. Given additional realizations of the
noise (e.g., observations of other targets in a homogeneous
survey), however, the least non-zero FPF is ( )N N1 r f , where Nf

is the total number of frames. In this example, reducing NFP

from 10 to the 3σ white noise case of NFP=0.54 would
require 10/0.54≈19 additional images to increase the total
number of resolution elements available at each separation.
While the empirical approach described here does require

many observations to reach the small FPFs promised by the
Gaussian noise assumption, it will eventually yield the correct

Figure 7. Performance map shows the astrophysical flux ratio vs. the
separation, color-coded by the true positive fraction. The solid black line
represents the approximate TPF=0.5 contour.

16 As mentioned above, our example data set lacks an unocculted image, but
we fit the positions and fluxes of the HR 8799 planets using a later off-axis
observation of β Pictoris. For the purposes of this example, we estimate HR
8799ʼs unocculted aperture sum based on the fitted flux of HR 8799 b and the
H-band planet-to-star flux ratio given in Marois et al. (2008b).

6

The Astronomical Journal, 155:19 (8pp), 2018 January Jensen-Clem et al.



connections between the FPFs, detection thresholds, and TPFs
as the number of images increases, regardless of the underlying
PDF of the noise. Hence, such an approach is particularly
appealing for large surveys, and less appealing for a single
observation.

6. Hypothesis Testing

In the discussion above, our calculation of the true and FPFs
required a choice of hypothesis: either H1 (signal present;
planet-injected data), or H0 (signal absent; planet-free data).
This approach allowed us to characterize the performance of
the instrument by probing the range of possible TPFs and FPFs
for various positions and signals.

We may also consider a different objective: deciding
whether a particular bright spot in our final science image is
a planet. In this scenario, we must decide which hypothesis, H1

or H0, applies to our location of interest. While hypothesis
testing is beyond the scope of this paper, we refer to the
detailed discussions in Kasdin & Braems (2006), Section 5, and
Young et al. (2013).

7. Conclusion

As the cost and complexity of ground- and space-based
exoplanet imaging missions increase, so too must the fidelity
and relevance of our diagnostic tools improve. We argue that
the drawbacks of the contrast curve—its lack of transparency,
flexibility, and connection to the data—motivate a re-evalua-
tion of its use as a general purpose performance metric. Our
proposed “performance map” is one among many possible
methods for visualizing the true and FPFs associated with a
high dynamic range image. The performance map is an
opportunity for displaying the results of planet search programs
in a consistent and statistically correct way as well as
comparing the performance of various post-processing algo-
rithms within a well-defined statistical framework. By
encouraging the scrutiny of this new metric, we hope to

improve the prediction and evaluation of the performance of
the next generation of high contrast imaging instruments.
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European Research Council Under the European Union’s
Seventh Framework Program (ERC Grant Agreement No.
337569) and from the French Community of Belgium through
an ARC grant for Concerted Research Action.
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2017).

Appendix
The Shapiro–Wilk Test

For a given post-processed data set, we may be interested in
testing whether our data has been successfully whitened at
small separations. The Shapiro–Wilk test (Shapiro &
Wilk 1965) tests the null hypothesis that a data set was drawn
from a normal distribution; it returns a p-value that specifies
that probability of obtaining the data set given the null
hypothesis. In order to test the utility of the Shapiro–Wilk test
at small separations, we consider data drawn from two different
distributions: a normal distribution (Figure 8(a), black line),
and a positively skewed Rayleigh distribution (Figure 8(a), red
line). At face value, we expect to easily reject the Shapiro–Wilk
test’s null hypothesis when testing data drawn from the
dramatically nonwhite Rayleigh distribution.
We first compute the Shapiro–Wilk test p-value using a

normally distributed data set with 2πr elements. We then draw

Figure 8. Even though the Rayleigh distribution (scale parameter=2) is highly skewed compared with the normal distribution, the Shapiro–Wilk test cannot reliably
distinguish it from a normal distribution for the sample sizes shown here. For separations less than 15 λ/D, the Shapiro–Wilk test gives the wrong outcome (fails to
reject the null hypothesis) for more than half of all trials. (a) The PDF of a normal distribution (black line) and Rayleigh distribution (red line) with a scale parameter of
two. (b) The fraction of all trials that reject the null hypothesis (p�0.01) for the normally distributed data (black circles) and Rayleigh distributed data (red stars). The
black dotted line indicates the expected fraction of trails for which the normally distributed data is expected to reject the null hypothesis (p=0.01).
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new sets of 2πr elements to repeat the test 104 times, giving 104

p-values per separation. We arbitrarily choose p�0.01 as our
threshold for rejecting the null hypothesis. As expected, we
find that for all separations, the normally distributed test data
gives p�0.01 a fraction 0.01 of the time (Figure 8(b), black
points).

Next, we repeat this procedure for the Rayleigh distributed
data. We find that these data reject the null hypothesis for a
much larger fraction of trials than the normally distributed
data (Figure 8(b), red points). However, we quickly see a
problem: at 15λ/D, the Rayleigh distributed data only rejects
the null hypothesis about half of the time. This means that in
any one science image, the probability of erroneously
accepting the null hypothesis that the data is normally
distributed is also 50%. At smaller separations, we draw the
wrong conclusion most of the time—hence, the Shapiro–
Wilk test cannot be used to test for normality at small
separations.

Some tests (e.g., the Kolmogorov–Smirnov test) perform
better in these respects than the Shapiro–Wilk test, while others
(e.g., the Anderson-Darling test) are similarly problematic. The
purpose of the example given here is to demonstrate that the
outcomes of normality tests cannot be taken at face value, and
must be rigorously validated in order to be applied to
observational data sets.
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