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Abstract. The Lagoon Nebula is an HII region in the Sagittarius Arm, about 1.3 kpc
away, associated with the young (1–3 Myr) open cluster NGC 6530, which contains
several O stars and several dozen B stars. Lower-mass cluster members, detected by
X-ray and Hα emission, and by near-IR excess, number more than a thousand. Myr-old
star formation is traced by the optically-visible HII region and cluster; observations of
infrared and submillimetre-wave emission, and of optical emission features, indicate
ongoing star formation in several locations across the Lagoon. The most prominent of
these are the Hourglass Nebula and M8 E. Submillimetre-waveobservations also reveal
many clumps of dense molecular gas, which may form the next generation of stars. The
complex structure of the region has been shaped by the interaction of the underlying
molecular gas with multiple massive stars and episodes of star formation. NGC 6530
is the oldest component, with the newest stars found embedded in the molecular gas
behind the cluster and at its southern rim. A degree to the east of the Lagoon, Simeis 188
is a complex of emission and reflection nebulae, including the bright-rimmed cloud
NGC 6559; the presence of Hα emission stars suggests ongoing star formation.

1. Introduction

The Lagoon Nebula — M 8 — is the most prominent of a number of star-forming
regions and supernova remnants in the section of the Sagittarius-Carina Arm lying
near our line of sight towards the Galactic centre (Figs. 1 & 2). Other members in-
clude: The Trifid Nebula (M 20); the supernova remnant W 28, near the Trifid at a
kinematic distance of 1.9 kpc (Velázquez 2002); the nearbyoptically-invisible HII re-
gion W28 A2 (G 5.89–0.39), lying between the Lagoon and TrifidNebulae at a distance

1



2

Figure 1. A widefield colour image covering M 8, M 20 and Simeis188: Hα
emission is red and reflection nebulae are blue; north is up and east is to the left;
field of view (FOV)∼ 2.5◦× ∼ 2.2◦. Courtesy Gerald Rhemann.

of 2.0 kpc (Acord 1998); and the complex of nebulae to the eastof the Lagoon known
as Simeis 188. The Eagle Nebula (M 16, NGC 6611) and M 17 lie about 10◦ further
along the Sagittarius-Carina arm.

M 8 consists of a rich open cluster with several O-type stars and a prominent HII
region (about half a degree in diameter), the core of the cluster superimposed on the
eastern half of the HII region. The HII region is surrounded by bright rims and at least
one dark ‘elephant trunk’ structure; these are most prominent at the southeastern edge
of the HII region. A dark lane splits the optical nebula from NE to SW (the ‘Great Rift’);
the lack of background stars in the Rift implies that it is an obscuring dust lane rather
than a lack of material, but it does not show up clearly in submillimetre- or millimetre-
wave maps, either of spectral lines of CO or of the dust continuum; the Rift presumably
has a high enough column density to obscure optical wavelengths significantly, but not
enough to be obvious in emission.

The open cluster is fairly young (a few Myr). It is centred on 18:04:24, –24:21:12
(J2000.0), with a radius of around 30′, but a core radius of only∼4′ (Chen et al. 2007).
It contains several O stars and about 60 B stars: One of its probable members, the O4
star (and probable binary, Rauw et al. 2005) 9 Sagittarii, isthe chief source of ionising
flux for the HII region. The western half of the HII region is concentrated into a bright
core which contains the Hourglass Nebula, a distinctively-shaped window into a com-
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Figure 2. A2.5◦ × 2.5◦ field in Sagittarius at 4 wavelengths:Upper Left: Digi-
tised Sky Survey (DSS, blue), dominated by stellar emission; Upper Right: DSS2
(red), showing Hα emission as well;Lower Left: IRAS 12µm; Lower Right:IRAS
100µm. Arrows denote the directions of Galactic longitude and latitude (each arrow
is 0.5◦ long). The Lagoon Nebula and nearby regions are annotated.

pact HII region with much denser ionised gas than the main body of the Lagoon Nebula,
powered by the young O7 star Herschel 36 (HD 164740, Woodwardet al. 1986).

Southeast of the cluster core, a structure of bright rims anddark lanes stretches
west to east. CO and dust maps clearly show this to be a dense molecular cloud; at
its eastern end, at least two massive stars are being formed in the optically-invisible
M8 E cluster which rivals the brightness of the Hourglass at infrared and submillimetre
wavelengths (see Fig. 3).

The nomenclature of nebulae and clusters in the area is quiteunclear, since the
complex has been observed and catalogued since the 17th century (Burnham 1978). Ac-
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cording to the NGC/IC Project1, NGC 6533 refers to the whole nebula and NGC 6523
is the bright core of the nebula, lying NW of the Great Rift; the SE part of the nebula
comprises NGC 6526 in the south and NGC 6530 in the north; and IC 1271 and 4678
are small condensations to the east of the main nebula (IC 1271 may refer to the O star
HD 165052).

Although Messier referred to it as‘amas’, a cluster (M 8, Messier 1781), we will
use M 8 to refer to the whole complex of stars, HII regions and molecular gas, and
‘Lagoon Nebula’ to be synonymous. The NE of the region is dominated by the open
cluster, so NGC 6530 is now always used to refer to the clusterrather than any sur-
rounding nebulosity. We take NGC 6533 to refer to the HII region only, comprising
NGC 6523 and 6526. HII region studies have generally concentrated on the brighter
eastern core (i.e. NGC 6523), and so it is this designation that is found in the litera-
ture: For most practical purposes, NGC 6533 and 6523 are the same. It is not clear that
IC 1271 and 4678 refer to real structures, and we will not use these designations.

Much further east of the Lagoon lies an ‘R association’: a scattering of smaller
reflection and emission nebulae, often known as Simeis 188. Just to the north of the La-
goon, there is an area of diffuse nebulosity (Fig. 2); on purely morphological grounds,
this looks like a diffuse northern extension of NGC 6533, separated by a dust lane.

This review is structured as follows: An overview of M 8 as a whole (Sect. 2.),
broken down into the main HII region NGC 6523/6533 (Sect. 2.1.), the young stellar
cluster NGC 6530 (Sect. 2.2.), its pre-main-sequence population (PMS, Sect. 2.3.) and
the interstellar medium (Sect. 2.4.), followed by an overview of the distance estimates
to M 8 (Sect. 2.5.). Then, major components of the region are discussed in more detail:
NGC 6530 (Sect. 3.), including the PMS stars (Sect. 3.2.) andreviews of age and dis-
tance estimates (Secs. 3.4. & 3.5.); the Hourglass Nebula (Sect. 4.); M8 E (Sect. 5.); a
few other candidate star-forming regions (Sect. 6.); and Simeis 188 (Sect. 7.). Finally,
we briefly discuss the structure and evolution of the region as a whole (Sect. 8.).

2. Overview of M 8

2.1. The HII region NGC 6523/33

The HII region is about 10 pc in radius and requires about1051 ionising photons per
second; 9 Sgr appears to be its principal source of ionising radiation, with the binary
HD 165052 (O6.5 V + O7.5 V; Arias et al. 2002) contributing as well. Optical spec-
troscopy suggests that the bulk of the ionised gas has electron temperature (Te) about
6000 K (Bohuski 1973a), and electron densityne ∼500 cm−3 increasing to a few
103 cm−3 in small condensations and bright rims (Bohuski 1973b). Both density and
temperature increase towards the centre of the HII region. Lada et al. (1976) identi-
fied the star Herschel 36 as being responsible for ionising the core of the nebula, an
area about 4′ across; it also ionises the Hourglass Nebula, embedded behind this core.
The Hourglass is even hotter and denser, withne of 2000–4000 cm−3 andTe of 7000–
9000 K, and fluctuations of about 1500 K (Woodward et al. 1986;Esteban et al. 1999).
NGC 6523/33 seems to be a cavity on the front of a large molecular cloud; the optical
emission comes from the working surface of ionisation fronts moving into a clumpy
medium (Fig. 4; Elliot & Meaburn 1975; Dufour 1994). Meaburn(1971) tentatively

1http://ngcic.org
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Figure 3. Upper: Four-colour infrared mosaic of the Lagoon Nebula fromSpitzer
IRAC data. Red, orange, green and blue correspond to the 4 IRAC wavelengths
(8.0, 5.8, 4.5 & 3.6µm respectively). North is up and East to the left; FOV is
36′ × 21′. Based on archive data fromSpitzerprogramme 20726, P.I. J. Hester.
Lower: The same field at optical wavelengths, from the Digitised SkySurvey: Red,
green and blue correspond toI andR-bands (from DSS2) andB-band (from DSS)
respectively. Hα emission (in theR-band) appears greenish. M8 E is only visible in
the opticalI-band, but is saturated in the infrared. ‘The Dragon’ (Sect.2.4.) is the
prominent ‘elephant trunk’ to the SE of the core of NGC 6530 (see also Fig. 7).
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detected ionised gas moving at∼–50 km/s, between us and the nebula, and UV ab-
sorptions due to ionised gas were found at about –30 and –50 km/s (Welsh 1983). The
stellar wind of 9 Sgr alone would be enough to drive the –50 km/s shell (Welsh 1983),
although other O-stars probably contribute. The ionised gas in the Lagoon Nebula
may be considered as a superposition of four HII regions: the Hourglass, the core of
NGC 6523 (both powered by Herschel 36), the rest of NGC 6523 and 6533 (ionised by
9 Sgr), and the largest and most tenuous component, ionised by HD 165052 (Lynds &
O’Neil 1982; Woodward et al. 1986). More detailed discussion of the HII region is
beyond the scope of this work: The review by Goudis (1976) covers radio, optical and
IR data.

Figure 4. Three-colour optical emission-line image of the central part of M 8 us-
ing interference filters: Hα (green), [SII ] (red), and [OIII ] (blue). North is up and
east is to the left; FOV is55′ × 39′. Courtesy Richard Crisp.

2.2. The Open Cluster NGC 6530

Although the core of NGC 6530 lies on the line of sight towardsa concentration of
molecular gas, the cluster is rather decoupled from the molecular cloud — the stars
seem to be unobscured, and Johnson (1973) showed that the far-IR luminosity of M 8
is significantly less than the integrated light of an incomplete census of OB stars in the
cluster; hence, the cluster is not significantly embedded inthe molecular gas. Optical
studies all show significant and variable reddening towardsthe stars, indicating that
there is some interstellar material in front of the cluster.McCall et al. (1990) noted that
a shell of expanding gas is seen in absorption against the stars (Welsh 1983), implying
that NGC 6530 lies within the HII cavity. However, this result is based on UV spectra
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Figure 5. 25′×15′ portion of the DSS, covering M 8, with a square root stretch.
The approximate centre of NGC 6530 is annotated, as are the Hourglass Nebula,
M8 E, and the brightest stars.

of 4 OB stars; membership probabilities for 3 of them are 0.01, 0.08, and 0.39 (van
Altena & Jones 1972), so this argument is not conclusive.

The surface density of cluster stars, derived from X-ray data (Damiani et al. 2004),
shows a compact core about 10′ across, surrounded by a broad extended component to
the southeast, south and west. To the northeast, the surfacedensity of X-ray sources
falls off very quickly, and there is a secondary density peakto the southeast, near the
M8 E star-forming region. Many optical studies of the cluster, however, include stars
within a field of about a degree, many of which are probable cluster members, based on
proper motion (van Altena & Jones 1972).

The cluster includes at least 3 O-type stars (see Fig. 5): Thebinary HD 165052,
probable binary 9 Sagittarii, and Herschel 36. HD 164816 andHD 164906 (also known
as MWC 280) are usually classified as O-type (e.g. Hiltner et al. 1965), but have been
reclassified as B3Ve and B0Ve, respectively (Levenhagen & Leister 2006); HD 164906
may also be binary (Roberts et al. 2007).

2.3. The Young Stellar Population

Studies of the stellar population of NGC 6530 can be used to estimate the age and
distance of the cluster and thus to characterise the star formation history of the region,
and, by isolating the pre-main sequence, the young stellar population may be studied.
It is difficult to distinguish the stellar population of NGC 6530 from foreground and
background stars, since it lies close to the Galactic plane,and is projected on top of
the Galactic bulge. Most studies of the cluster have been carried out with broadband
optical photometry, and newer studies have extended the photometry into the near-IR.
It is then possible to isolate the cluster in a statistical sense, e.g. as a separate population
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in a colour-magnitude diagram. Detailed studies of the young stars require individual
stars to be identified as being young. Historically, this hasusually involved looking for
Hα emission, but modern X-ray imaging with XMM-Newtonand the ACIS-I camera
on Chandra(Rauw et al. 2002; Damiani et al. 2004) are a much more efficient way
to identify young stars in the cluster: The X-ray to bolometric flux of T Tauri stars is
at least 100 times higher than it is for most of the foregroundand background stars
which dominate optical and infrared images. Earlier-type stars in the cluster are likely
to lie on the ZAMS already, and may not show up in Hα or X-ray emission. One of the
few possible methods for identifying individual early-type cluster members is through
proper motion analysis, which relies on the availability ofold data. Fortunately, these
early-type stars are rather bright, and thus quite likely tobe visible on old photographic
plates (see, e.g., van Altena & Jones 1972).

Quite apart from foreground contamination (in the optical)and background con-
tamination (in the near-IR), we face the problem that there are signs of multiple popula-
tions of YSOs in the M 8 region. Near-IR and X-ray imaging bothsuggest that there are
small dense clusters associated with the Hourglass Nebula,with M8 E (both regions of
ongoing massive star formation), and possibly with the Central Ridge. Disentangling
these very young clusters from NGC 6530 is likely to be difficult.

2.4. The Interstellar Medium in the Lagoon Nebula

Large-scale structure The large-scale structure of the molecular ISM in the Lagoon
can be seen in maps of CO 1–0 (Lada et al. 1976) and far-IR continuum emission
(Lightfoot et al. 1984), both with resolutions of 1′–2′. Lada et al. found 3 bright spots,
BS 1–3: The most prominent (BS 1) corresponds to the inner core of the HII region,
centred on the Hourglass (clump HG and surroundings in Fig. 6); BS 2 (SC 8 and sur-
roundings in Fig. 6) lies at the southern edge of the nebula, coincident with the ‘South
Eastern Bright Rim’ (an ionisation front eroding a concentration of gas). BS 3 lies on
the western edge of the core of NGC 6530: The continuum map shows it as an elon-
gated structure, or ‘eastern bar’ (which we call the ‘central ridge’, clumps EC 1–5 in
Fig. 6). Lada et al. also found a CO cloud with significantly redder velocity (28 km/s)
lying between the core of NGC 6530 and the bright rim linking the Lagoon Nebula to
M8 E. A near-IR extinction map with comparable resolution shows very similar struc-
ture (Damiani et al. 2006).

Small-scale structure Maps of the molecular ISM (submillimetre continuum and low-
J CO) covering a similar area to those of Lada et al. (1976), butwith resolution of order
10′′ were published by Tothill et al. (2002); some of the maps are shown in Figure 6.
The molecular emission is clearly dominated by the Hourglass and M8 E, but many
other concentrations become visible. BS 2 (and the SEBR) cannow be resolved as a
clump of gas (SC 8) with a very sharp transition from the molecular gas to the ionised
gas of the HII region, consistent with the picture of a structure dominated by the progess
of an ionisation front. The Central Ridge (BS 3), by contrast, shows up as a complex
extended structure of molecular material (EC 1–5) running approximately N–S, without
the sharp edges seen in the former. It is possible that this complex has a similar ioni-
sation structure, but that we observe it face on, the ionisation front covering the whole
of the complex, rather than seeing a cross-section as with the southern rim. In the Cen-
tral Ridge, the brightest continuum emission is seen in a compact condensation at the
northern end, while the CO emission peaks further south along the extended ridge. This
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Figure 6. Top: 450 µm continuum emission (grayscale, cuts at –1 and
4 Jy beam−1) with 12CO maps overlaid. Dotted contours are at CO 2–1 integrated
intensities of 25 and 50 K km s−1 (black), and 100 and 150 K km s−1 (white); solid
contours are at CO 3–2 integrated intensities of 50 and 100 K km s−1 (black), and
150, 200, 250, 350 and 400 K km s−1(white). Bottom:850µm continuum emission
(grayscale, cuts at –0.1 and 0.7 Jy beam−1) with core names annotated. All data
from Tothill et al. (2002)

may reflect structural differences, with a dense but relatively cool clump at the northern
end of the warmer, more diffuse ridge. The lower-resolutioncontinuum data showed
a western extension of the Hourglass emission (Lightfoot etal. 1984), and the newer
data resolve this into a series of clumps running WNW from theHourglass, also seen
in molecular data (White et al. 1997).

The Hourglass Nebula and M8 E are known to be regions of very recent or ongo-
ing star formation. The Central Ridge lies close to a clusterof X-ray sources, suggest-
ing that it too is a locus of star formation within the Lagoon Nebula. The ionisation-
dominated structure of BS2/M8 SC8 should also be considereda candidate for star
formation, possibly triggered by the compression of the molecular gas by the ionisation
front.

In addition, there are many other molecular clumps scattered throughout the neb-
ula. Most of them are not particularly dense, but Tothill et al. (2002) suggested that star
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formation might be triggered in them by the effect of ionisation fronts (based on the
assumed ionising flux from 9 Sgr and Herschel 36). Brand & Zealey (1978) studied a
dark ‘elephant trunk’ structure (which they call ‘The Dragon’) lying south of the ridge
that connects M8 SE1 to M8 E (see Fig. 3), using stellar intensity profiles to model the
cloud as a1× 0.1 pc structure of density a few103 cm−3, and total mass> 9 M⊙. The
Dragon can also be seen in the 850µm continuum (Tothill et al. 2002) as a very faint
structure just visible over the noise. Based purely on its position, it would seem to lie
outside and in front of the arc of dense gas seen in the submillimeter continuum. The
question of whether or not the Dragon is associated with starformation remains open.

In the course of a larger survey of high-mass protostar candidates, Beltrán et al.
(2006) mapped the M 8 area at 1.3 mm wavelength with a beam about twice the size of
that of Tothill et al. (2002). The structure seen in their mapis similar, and their pub-
lished brightnesses are comparable to those seen at 1.3 mm inthe earlier study. Table 1
lists the clumps seen in the two studies, cross-referenced where possible. Beltrán et
al. also examined the MSX images, and found that all of the clumps in their map are
associated with mid-IR emission, almost all of them with point sources.

The clump masses derived by Beltrán et al. are systematically higher than those
from Tothill et al. (2002), by up to 2 orders of magnitude (averaging about a factor of
10). This very large discrepancy can be explained by a combination of factors: Beltrán
et al. (2006) often find larger fluxes from a clump— the most extreme example is the
Hourglass clump (M8 HG/Clump 1) with 1.3 mm fluxes of 2.6 and 14Jy measured
by Tothill et al. and Beltrán et al. respectively. These larger fluxes reflect the larger
beamsize of the later observations and the use of CLUMPFIND to decompose the
maps into clumps. CLUMPFIND packs all the flux in the map abovea certain limit
into the various clumps it finds, whereas decomposition intogaussian clumps (used
by Tothill et al.) tends to leave residual flux. There are further discrepancies, due
to differences in the conversion from continuum flux to gas mass between the two
papers. For M 8, Beltrán et al. useM/S1.3 = 99, whereas Tothill et al. use a range
of about10 − 30. This difference arises from assumptions about the mm-waveopacity
of dust (1 cm2 g−1 against 1.3 cm2 g−1), the temperature of the dust, and the distance
to M 8. Beltrán et al. assume a temperature of 30 K for all clumps, while Tothill et
al. derive individual clump temperatures from CO observations. Since the mass/flux
ratio is inversely proportional to the temperature (in the Rayleigh-Jeans limit), this is
not a large effect, but can reach almost a factor of two: for the Hourglass, Tothill et al.
adopted a temperature of 48 K. By comparing the velocity of CSemission to a Galactic
rotation curve, Beltrán et al. estimated the distance to M 8to be 3.1 kpc, compared
to the 1.7 kpc assumed by Tothill et al. Since the mass-to-fluxratio is proportional
to the square of the distance adopted, this produces a discrepancy in mass of more
than a factor of 3. The combination of all these discrepancies is enough to account
for the differences in the mass estimates. The distance adopted by Beltrán et al. is
inconsistent with the accepted range (see later in this review), and the distance adopted
by Tothill et al. is also a bit further than the most likely current estimate of 1.3 kpc.
The gas masses quoted in Table 1 have been rescaled to a fiducial distance of 1.3 kpc;
remaining discrepancies reflect the uncertainties in the absolute derivation of mass from
dust emission.

Optical Features in the Interstellar MediumOptical images of M 8 reveal a region
rich in optical ISM features, such as Bok globules, bright-rimmed clouds, proplyd-
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Table 1. Submillimetre Molecular Gas Features in M 8

Namea No.b R.A.c Dec.c Ma,d M b,d T e Db Da

(J2000.0) (J2000.0) (M⊙) (M⊙) (K) (pc) (pc)

M8HG 1 18:03:40.7 −24:22:40 7.8 241 48 1.0 0.2
M8WC1 18:03:36.6 −24:22:14 5.5 30 0.2
M8WC2 18:03:33.7 −24:21:49 9.7 24 0.3
M8WC3 18:03:44.8 −24:21:23 1.3 25 0.2
M8WC4 18:03:44.6 −24:22:16 0.6 36 0.3
M8WC5 18:03:35.9 −24:23:10 1.3 31 0.2
M8WC6 18:03:34.6 −24:23:25 4.5 16 0.2
M8WC7 22 18:03:26.2 −24:22:34 7.3 2.1 20 0.2 0.2
M8WC8 18:03:28.5 −24:21:50 10.1 16 0.2
M8WC9 18:03:25.3 −24:21:39 4.9 13 0.2
M8SW1 21 18:03:25.8 −24:28:11 4.3 3.5 15 0.3 0.2
M8EC1 12 18:04:21.6 −24:24:27 4.3 23.6 25 0.5 0.2
M8EC2 18:04:22.5 −24:23:25 3.0 35 0.2
M8EC3 13 18:04:22.4 −24:22:57 4.2 14.6 36 0.4 0.2
M8EC4 6 18:04:19.2 −24:22:26 8.0 15.5 30 0.2 0.2
M8EC5 5 18:04:18.0 −24:22:05 3.6 18.8 31 0.2 0.2
M8E 2 18:04:52.6 −24:26:35 20.0 127 29 0.7 0.2
M8SE1 10 18:04:21.6 −24:28:17 6.4 49.5 23 0.8 0.2
M8SE2 18:04:24.4 −24:28:39 1.2 31 0.2
M8SE3 11 18:04:31.1 −24:28:53 7.3 25.0 21 0.7 0.3
M8SE4 18:04:32.9 −24:29:08 0.5 21 0.1
M8SE5 18 18:04:34.4 −24:29:05 2.8 6.2 23 0.2 0.2
M8SE6 19 18:04:43.1 −24:28:32 3.8 7.2 22 0.4 0.2
M8SE7 7 18:04:48.5 −24:27:33 7.2 66.2 30 0.9 0.2
M8SE8 18:04:50.5 −24:26:59 3.2 29 0.2
M8SC1 18:03:47.5 −24:25:31 1.8 38 0.2
M8SC2 3 18:03:48.1 −24:26:18 7.2 41.7 28 0.3 0.3
M8SC3 18:03:47.3 −24:26:33 4.7 16 0.2
M8SC4 18:03:43.9 −24:27:28 4.1 21 0.3
M8SC5 18:03:40.7 −24:27:59 1.3 29 0.2
M8SC6 8 18:03:57.6 −24:26:22 1.9 11.1 21 0.2
M8SC7 18:03:57.0 −24:28:12 1.0 25 0.2
M8SC8 9 18:04:09.5 −24:27:30 7.5 57.9 37 0.9 0.3
M8SC9 18:04:12.2 −24:28:58 2.9 28 0.3
M8C1 18:03:54.1 −24:25:40 1.5 16 0.2
M8C2 18:03:51.2 −24:24:14 0.2 41 0.2
M8C3 18:04:08.2 −24:24:30 0.9 21 0.1

4 18:03:49.8 −24:26:07 29.4 0.2
14 18:04:19.1 −24:23:27 6.9 0.1
15 18:04:54.8 −24:25:27 15.5 0.4
16 18:03:36.9 −24:26:07 5.8 0.3
17 18:04:17.9 −24:24:15 8.5 0.4
19 18:04:23.7 −24:22:47 7.2 0.4

a Tothill et al. (2002);b Beltrán et al. (2006)
c taken from Tothill et al. (2002) unless it occurs only in Beltrán et al. (2006)
d gas masses revised to assumed distance of 1.3 kpc
e derived from CO data (Tothill et al. 2002)
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Figure 7. Optical ISM features in the Lagoon:Left: [SII ] image of HH 896/897:
HH 896 is at the top, and HH 897 at the bottom. Axes are in arcseconds, and numbers
refer to T Tauri stars identified by Arias et al. (2007). IRAS 18014–2428 is embed-
ded in the bright-rimmed clump (M8 SE3, Tothill et al. 2002).From Barbá & Arias
(2007).Right: Broadband colour optical image of ‘The Dragon’, an elephanttrunk
lying in front of the SE rim. North is up and East is to the left;FOV is∼ 5′× ∼ 7′.
Excerpt from a mosaic obtained at the CFHT by Jean-Charles Cuillandre.

like objects, Herbig-Haro (HH) objects, etc. (Table 2), many of which are generally
associated with star formation.

The presence of dark markings against the nebular background was noted by
Barnard (1908) and Duncan (1920)2. Out of 23 dark areas, Bok & Reilly (1947) con-
sider 16 to be “true globules”, being regular and round, withdiameters ranging from 6′′

to 1′ — mainly in the 10′′–30′′ range.

2Duncan claims that the name ‘Lagoon Nebula’ refers to these structures.
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Sugitani & Ogura (1994) examined the ESO Schmidt atlas, finding two bright-
rimmed clouds in M 8 (and one in Simeis 188) associated with IRAS sources, which
they consider to be good candidates for sites of star formation caused by radiatively-
driven implosion. The first (near IRAS 17597–2422) has a tightly-curved bright rim,
about 200′′ across; the second (near IRAS 18012–2407) has a gentler curvature, the rim
being about 280′′ by 120′′. These clouds are significantly larger than the globules found
by Bok & Reilly, which may simply reflect different decisionsas to what constitutes
a cloud or globule within the structure of the interstellar medium. A lack of accurate
IRAS fluxes (probably due to confusion) prevented Sugitani &Ogura from classifying
the associated IRAS point sources. These bright-rimmed clouds lie well to the north
and west of the main emission region of M 8, where they have notbeen studied by
other authors, although Lada et al. (1976) note a ‘bright rim’ to the north of NGC 6530,
which may well be the same as the northern bright-rimmed cloud of Sugitani & Ogura.
These structures raise the possibility of ongoing star formation significantly outside the
core of the complex.

At least one proplyd has been found in the Lagoon Nebula, around the B star at
the centre of the UCHII region G 5.97–1.17 (Stecklum et al. 1998). De Marco et al.
(2006) found 4 proplyd-like objects in an HST image of a smallpart of M 8, but none
of them have visible central stars, suggesting that they arenot true proplyds. Near the
Hourglass, there are two T Tauri stars with bow-shocks around them, pointing towards
Herschel 36, but these are more likely produced by collisions between the stellar winds
(Arias et al. 2006).

The first HH object noted in the Lagoon Nebula (HH 213, Reipurth 1981) lies
> 10′ W of the Hourglass. Recent wide-field narrow-band optical imaging has revealed
HH objects around the Hourglass (Arias et al. 2006) and the southern and southeastern
bright rims (Barbá & Arias 2007). One of these, HH 894, has anaxis pointing towards
the PMS Fe/Ge star ABM 22, which lies at the bright rim of the molecular clump SC 8;
HH 896 and 897, meanwhile, seem to come straight out of another molecular clump,
SE 3 (Fig. 7; Arias et al. 2007). Three more PMS stars — ABM 21, 27 and 29 — are
found within knots of high-excitation gas (Arias et al. 2007). Only a small fraction
of the Lagoon Nebula has been studied in this way, so there maybe many more HH
objects to be found.

2.5. The Distance to the Lagoon Nebula

Determination of the distance to M 8 is based on the distance to NGC 6530. The physi-
cal association of NGC 6530 with M 8 is based not just on the fact that the two lie along
the same line of sight; the reddening of the cluster stars is small but significant, sug-
gesting that they are neither background nor foreground objects (van den Ancker et al.
1997). The radial velocities of the cluster stars are also fairly close to that of the nebula.
The various distance determinations for NGC 6530 are reviewed in detail in Sect. 3.5.:
To summarise the discussion, we recommend a distance of 1.3 kpc, with an error of
maybe 0.1 kpc. However, there are also several distance estimates of 1.8 kpc. The
discrepancy of about 30% between the two is very significant:Many derived quantities
depend ond2, and may therefore suffer systematic errors of> 50%.

Recently, distances have been derived to star-forming regions by measuring the
parallax of 22 GHz H2O masers with VLBI (e.g. Hirota et al. 2007). Despite multiple
searches, no 22 GHz masers have been found towards M 8, but M8 Econtains very
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Table 2. Optical Interstellar Medium Features in M 8

Name R.A.(J2000.0) Dec.(J2000.0) Notes

HH 213 18:02:30.5 –24:17:12 HH Objecta

IRAS 17597–2422 18:02:51.6 –24:22:08 Bright-rimmed cloudb

HH 869 18:03:35.7 –24:22:30 HH Objectc

HH 868 18:03:36.0 –24:22:49 HH Objectc

HH 867 18:03:36.8 –24:22:33 HH Objectc

ABMMR-CG 18:03:36.9 –24:23:58 Globulec

G 5.97–1.17 18:03:40.5 –24:22:44 UCHII & Proplydd

ABMMR 334-BS 18:03:40.5 –24:23:32 Bow-shock around starc

ABMMR 349-BS 18:03:40.7 –24:23:16 Bow-shock around starc

HH 870 18:03:41.4 –24:23:25 HH Objectc

NGC 6530 PLF 4 18:03:44.2 –24:19:23 Proplyd-like featuree

NGC 6530 PLF 3 18:03:44.8 –24:19:47 Proplyd-like featuree

NGC 6530 PLF 2 18:03:45.3 –24:19:45 Proplyd-like featuree

NGC 6530 PLF 1 18:03:45.6 –24:19:41 Proplyd-like featuree

HH 895 A 18:03:57.2 –24:28:04 Bow shockf

HH 895 B 18:03:59.2 –24:27:53 Knotty filamentf

B 296 18:04:04.4 –24:32:00 Barnard dark nebula, 6′
×1′

HH 893 B 18:04:06.0 –24:24:47 SII knotf

HH 893 A 18:04:06.1 –24:24:46 SII knotf

ABM 21/SCB 418 18:04:10.3 –24:23:23 PMS star in knotg

ABM 27/SCB 486 18:04:16.0 –24:18:46 PMS star in knotg

ABM 29/SCB 495 18:04:16.4 –24:24:39 PMS star in knotg

IRAS 18012–2407 18:04:16.8 –24:06:59 Bright-rimmed cloudb

HH 894 C 18:04:17.7 –24:26:16 filamentf

HH 894 B 18:04:22.0 –24:25:55 knotsf

HH 894 A 18:04:22.9 –24:25:52 bow shockf

HH 896 A 18:04:28.6 –24:26:38 bow shockf

HH 896 B 18:04:29.8 –24:26:57 bow shockf

HH 896 C 18:04:30.4 –24:26:20 faint bow shockf

HH 897 C 18:04:30.9 –24:28:59 arcs and knotsf

HH 897 B 18:04:31.0 –24:29:33 filamentsf

HH 897 A 18:04:31.4 –24:30:27 knotty bow shockf

B 88 18:04:35.0 –24:06:52 Barnard dark nebula, 2′
×30′′

‘The Dragon’ 18:04:45.2 –24:30:00 Dark elephant trunkh

B 89 18:04:59.8 –24:21:50 Barnard dark nebula, 30′′
×30′′

a Reipurth (1981);b Sugitani & Ogura (1994);c Arias et al. (2006);d Stecklum et al. (1998)
e De Marco et al. (2006); positions taken directly from FITS WCS f Barbá & Arias (2007);g

Arias et al. (2007);h Brand & Zealey (1978)
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strong methanol masers. It may therefore be possible to measure the distance to the
sites of star formation in M 8 directly.

Humphreys (1978) derived a mean distance to Sgr OB1 of1.8 ± 0.1 kpc, but
adopted a distance of 1.6 kpc. Georgelin & Georgelin (1970a)cited a distance of
1.6 kpc, although their fitted trace of the Sagittarius-Carina spiral arm (Georgelin &
Georgelin 1970b) passes 1.9 kpc away from the Sun at a Galactic longitude of 6◦.
The spiral arm trace is based, in this longitude range, on a group of bright optical
HII regions (including M 8) with a mean distance of 2.2 kpc. A distance estimate of
1.3 kpc suggests that NGC 6530, and hence M 8, are located somedistance in front of
the Sagittarius-Carina arm.

3. NGC 6530

3.1. The Main-sequence Population

Walker (1957) publishedUBV photometry for 118 stars, concentrated towards the core
of the cluster, as well as a smaller list of variable stars. Kilambi (1977) extended
Walker’s list to a total of 319 stars3, largely to the west and north, and van Altena
& Jones (1972) used proper motions to find membership probabilities (PM ) for the
brighter members of the cluster. SubsequentUBV studies (Götz 1972; Sagar & Joshi
1978; Chini & Neckel 1981) found similar colour-magnitude diagrams: earlier-type
stars (to about A0) along the zero-age main sequence (ZAMS),with later stars lying
above it, although Hiltner et al. (1965) classified the central B-stars of the cluster as
mainly Be-type, and placed them above the ZAMS. Sung et al. (2000) identified a
ZAMS down to about 3 M⊙, and Damiani et al. (2004) suggest that all stars earlier
than G-type and withV < 13 should be considered probable cluster members. Many
stars in the field were excluded from membership by van Altena& Jones (1972), but
Damiani et al. considered only a17′×17′ field in the centre of the cluster, compared to
the half-square-degree field of van Altena & Jones (1972). New proper-motion studies
of the cluster used photographic plates of NGC 6530 taken at Shanghai Astronomical
Observatory in 1912 to obtain a baseline of 87 years (Zhao et al. 2006; Wen et al. 2006;
Chen et al. 2007), yielding a very clear separation between cluster and field stars. Based
on this selection, Chen et al. (2007) measured core and half-number radii of4.3′ ± 0.9′

(1.6± 0.3 pc) and21′ (7.6 pc), respectively; they estimated the cluster radius (at which
the cluster population disappears into the field star population) to be around20′. The
cluster density profile is consistent with either a King or1/r model.

Most stars near the cluster centre withV < 11 have known spectral types (e.g.
Hiltner et al. 1965), but few withV > 11 (Sung et al. 2000); Damiani et al. (2004)
found only 68 spectral types in the literature over their 300square arcmin X-ray field
of view around the cluster centre, most withV < 13. Thus there are few intermediate-
to late-type stars with known spectral types. van den Anckeret al. (1997) published
photometry from the near-UV to near-IR for all 132 stars withPM > 0.1, and optical
spectroscopy for some of them. Their Table 1 is a comprehensive summary of stellar
data from the literature for this sample. They generally used photometric measurements
to estimate the spectral type, unless the spectroscopic classification was very different.

3the combined Walker-Kilambi numbering system is the one adopted by WEBDA, and is referred to as
‘Walker’ in this work
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Table 3. Optical/IR studies of the stellar content of NGC 6530

Survey Refa Area Stars Selection Photometry Other Data

Walker 1 NGC 6530 118 V < 16 UBV
HMN 2 NGC 6530 25 V

∼
< 11 — Spectroscopy

VAJ 3 NGC 6530 363 V
∼
< 13 Photographic Proper Motion

Kilambi 4 NGC 6530 319 V
∼
< 15 UBV b

SJ 5 NGC 6530 88 PM > 0.5 UBV
CN 6 NGC 6530 110 PM > 0.01c UBV d

MRV 7 NGC 6530 81 V
∼
< 12 — Polarization

VdA 8 NGC 6530 132 PM > 0.1 WULBVRIJHKe Spectroscopy
SCB 9 NGC 6530 887 V < 17 UBVRI, Hα

KSSB 10 NGC 6530 45 PM > 0.5
UBVRIf, JHKs

g, Spectroscopy
mid-IRh

Damiani 11 NGC 6530 731 X-ray/NIR BV If, JHKs
g X-ray

PDMS 12 NGC 6530 828 V < 22 BV I, JHKs
g X-ray

ABMMR 13 Hourglass 763 Ks ∼
< 16 JHKs

ZCW 14–16 NGC 6530 364 B
∼
< 13 Photographic Proper Motion

ZW 17,18 NGC 6530 30 HR Diag. BV Time-domain
ABM 19 NGC 6530 46 — Spectroscopy
PDMP 20 NGC 6530 332 Spectroscopy
Mayne 21,22 NGC 6530 – X-ray, Hα V, I
a References: (1) Walker (1957); (2) Hiltner et al. (1965); (3) van Altena & Jones (1972); (4) Kilambi
(1977); (5) Sagar & Joshi (1978); (6) Chini & Neckel (1981); (7) McCall et al. (1990); (8) van den
Ancker et al. (1997); (9) Sung et al. (2000); (10) Kumar et al.(2004); (11) Damiani et al. (2004);
(12) Prisinzano et al. (2005); (13) Arias et al. (2006); (14)Zhao et al. (2006); (15) Wen et al. (2006);
(16) Chen et al. (2007); (17) Zwintz & Weiss (2006); (18) Guenther et al. (2007); (19) Arias et al.
(2007); (20) Prisinzano et al. (2007); (21) Mayne et al. (2007); (22) Mayne & Naylor (2008)
b photographic;c 4 sources have no knownPM

d Non-standard photometric systeme Walraven,
Johnson-Cousins and near-IR systemsf from literature;g from 2MASS;h from ISO, MSX, IRAS

3.2. The Pre-Main Sequence Population

Walker (1957) suggested that stars lying significantly above the ZAMS in NGC 6530
were still contracting onto the main sequence, but Thé (1960) disagreed, arguing that
only bright stars showed any sign of clustering (following Wallenquist 1940), and that
data from nearby non-cluster fields produced colour-magnitude diagrams very similar
to Walker’s, but without the early-type ZAMS. The problem with the clustering argu-
ment is that, towards the cluster centre and HII region, only the brightest stars were
readily visible on photographic plates, giving rise to selection effects. Chini & Neckel
(1981) obtainedUBV photometry for stars with high probability of cluster member-
ship (van Altena & Jones 1972), which showed probable members in the earlier-type
ZAMS and probable non-members in the later-type population, consistent with Thé’s
scepticism. Spectroscopic classifications of 11 of these stars (Walker 1961) ruled out
their being background giants, but did not exclude their being foreground stars.

Kilambi (1977) added stars to the Walker sample: Early-typestars were added
by membership probability (van Altena & Jones 1972), and later-type stars by look-
ing for a population whose apparent magnitudes were linearly related to their absolute
magnitude (and hence, presumably, at the same distance). The colour-magnitude di-
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agram derived from this expanded list was similar to Walker’s, suggesting that there
was indeed a PMS population. Sagar & Joshi (1978) carried outa very similar study
(UBV photometry of 88 stars with high membership probability) and again found an
early-type ZAMS and late-type PMS.

Damiani et al. (2004) found that optical sources do not cluster significantly (apart
from OB stars), whereas X-ray sources in NGC 6530 cluster rather strongly. In addition,
the age spread of PMS stars smears them out over the H-R diagram. They conclude that
the optically-visible cluster stars are diluted so much by the field star population, both
on the sky and in a colour-magnitude diagram, that they are unlikely to show up. In
other words, although there is a PMS population, it probablywas not detected by the
early optical surveys.

Hα Observations of the PMS PopulationA popular method of isolating the PMS
population in the cluster is to select stars by their Hα emission. Earlier, shallower,
studies found brighter objects, mainly HAeBe stars: Herbig(1957) found 19 Hα stars
in the cluster (LkHα 102–119 and the OB star MWC 280/HD 164906). An objective-
prism survey (Velghe 1957), covering a5◦ field (including both M 8 and M 20), revealed
66 Hα emission objects, mainly early-type stars. van den Ancker et al. (1997) found 5
stars with intrinsic Hα emission and near-IR excess (probably HAeBe) in their early-
type spectroscopic sample.

Sung et al. (2000) conducted a deeper search, comparing narrow-band Hα to a
broad-bandR photometry, and finding 37 PMS stars and 9 candidates from ground-
based observations (of which 8 are members of the Herbig list) and a further 21 much
fainter PMS stars (with another 8 candidates) from archivalHST images. Arias et al.
(2007) confirmed several of these stars to be PMS by spectroscopy, and estimated their
masses to be in the range 0.8–2.5 M⊙, in agreement with their position on an H-R
diagram.

X-ray Observations of the PMS PopulationRauw et al. (2002) detected a total of
220 X-ray sources with XMM (119 with high confidence), primarily in and around
NGC 6530, including 9 Sgr and Herschel 36. Nearly all of thesehigh-confidence XMM
sources are associated with candidate cluster members in the optical catalog of Sung et
al. (2000); few of the XMM-detected stars have strong Hα emission, suggesting that
most are low-mass, weak-lined T Tauri stars. The short exposure time and the relatively
large XMM PSF meant that only a small fraction (less than 10%)of the cluster members
were detected.

Deeper wide-field images have been obtained withChandra-ACIS (see Fig. 8):
NGC 6530 was observed in 2001 (Damiani et al. 2004) and another field centred on
the Hourglass in 2003 (Castro et al. 2008). Damiani et al. (2004) found 884 X-ray
sources in their 17′×17′ NGC 6530 field: only 220 of these have optical counterparts
in the SCB survey (Sung et al. 2000), but the great majority (731) have counterparts in
the 2MASS point source catalog. With 30–50 of these expectedto be spurious, at least
90% are T Tauri stars in the cluster, many of them showing IR excess and some with UV
excess (Damiani et al. 2004; Prisinzano et al. 2005; Damianiet al. 2006). The resulting
optical H-R diagrams of X-ray selected T Tauri stars suggestan age gradient from the
northwest to the south in NGC 6530, with the youngest stars located near the southern
edge of the HII region. This result is supported by optical spectroscopy ofPMS stars
(Arias et al. 2007), which shows younger stars along the southern rim and near the
Hourglass. Damiani et al. (2004) also noted thatChandrasources at the southern edge
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Her 36

M8
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JCMT SCUBA 850-micron (30'x21')

Deep NIRM8

NGC 6530

Chandra (2001 June)
Chandra (2003 July)

Figure 8. Submillimetre continuum map of M 8 (grayscale), overlaid with: The
combinedChandrafield of view (large squares), positions of bright stars (open cir-
cles), extent of bright nebular continuum emission (brokenoutlines), and the field of
the deep near-IR imaging in Castro et al. (2008). North is up and East to the left;
eachChandrafield is 17′ on each side.

of the cluster near the ionization front were harder and moretime-variable than those
near the center of NGC 6530 inside the cavity. These results suggest both sequential
star formation and increased flare activity among newly-formed stars.

This sample increases the number of probable cluster members known, and mas-
sively increases the number of low-mass (and hence PMS) cluster members known, by
more than an order of magnitude. Prisinzano et al. (2005) obtained deeper optical data
than that of Sung et al. (2000) to compare with the X-ray sources: The X-ray-selected
subsample of their optical sample is strongly concentratedspatially to the centre of the
cluster and, in colour-magnitude space, to an isochrone. Prisinzano et al. used the Orion
Nebula as a well-studied surrogate to argue for a completeness ranging from below half
(for stars below 0.25M⊙) to about unity for stars of solar mass and above.

Chandracan detect only a fraction of the YSOs because of exposure time limita-
tions and intrinsic variations in X-ray luminosity. The total (detected and undetected)
population of NGC 6530 and the Hourglass Nebula may be estimated by comparison to
the COUP sample of YSOs in the Orion Nebula (Getman et al. 2005): For stars with
relatively low obscuration, the COUP data are essentially complete to the hydrogen-
burning limit. The complete Orion X-ray luminosity function (XLF) may then be com-
pared to the (censored) XLF in NGC 6530 and the Hourglass Nebula, using limits on the
distance and extinction to estimate minimum and maximum numbers of cluster stars:
If d ∼ 1.8 kpc, then the limiting X-ray luminosities, given as log(LX/erg s−1), near
NGC 6530 and Herschel 36 are 29.9 and 29.4, assumingAV ≈ 4 (probably too high
for NGC 6530, but appropriate for the Hourglass). In this case, the Hourglass would
contain approximately 400 cluster members and NGC 6530 nearly 3000. Ifd ∼ 1.3 kpc
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and assuming low to medium obscuration, then 70% of cluster members should have
been detected byChandra. The low X-ray detection fraction of IR sources in the Hour-
glass is probably due to high obscuration, but could also be explained by the distance
being> 1.3 kpc. Our adopted distance of∼ 1.3 kpc suggests fewer NGC 6530 cluster
members:∼ 2000 in the field of the 2001Chandraobservation.

Damiani et al. (2004) found that a significant fraction of strong Hα emission stars
are not detected in X-rays, which suggests that the different methods of selecting PMS
stars are complementary. While Hα is expected to trace Classical T Tauri stars preferen-
tially, they suggested that X-ray flaring sources are an evenbetter tracer of very young
pre-main-sequence populations, and that deeply embedded (and hence very young)
stars might be detected as hard X-ray sources. The two hard, flaring X-ray sources
they found are both in the southeast of the cluster, near M8 E (a major locus of star
formation).

Optical/near-IR Observations of the PMS PopulationSince X-ray detection does not
provide a complete census of the PMS population, Damiani et al. (2006) combined
their previous X-ray and optical data (Damiani et al. 2004; Prisinzano et al. 2005) with
2MASS to search for more young stars. Constructing reddening-free optical-IR colour
indices (by analogy withQ4), they find 196 stars, of which 120 were not previously
detected in X-rays. The majority of these seem to be young stars with circumstellar
disks, but a small subset have rather different colours: These ‘strongQV IIJ ’ objects,
are interpreted as candidate Class I objects. Their very lowX-ray detection rate would
then be due to their still being surrounded by an envelope, and their optical brightness
would be due mainly to reflection nebulosity.

These candidate Class I objects are mainly found in the northwest of the Damiani
et al. Chandrafield, i.e. just northeast of the Hourglass. This is difficultto reconcile
with earlier results (Damiani et al. 2004; Prisinzano et al.2005) which show older stars
in the north and the youngest sources in the southeast, potentially associated with the
molecular gas there. Damiani et al. (2006) suggest that thisnorthern region of the
cluster might be undergoing a prolonged process of star formation with star formation
rates and long disk lifetimes (due to a lack of nearby OB stars), in contrast to the faster
star formation elsewhere in the cluster. The claim of long disk lifetime needs to be
examined carefully, since the position of these sources NE of the Hourglass places
them fairly close to 9 Sgr. It would also be useful to check whether these sources might
be associated with the Hourglass Nebula Cluster.

Optical Spectroscopy of PMS StarsUntil recently, spectroscopy of individual clus-
ter members was restricted to the brightest stars, generally already on the MS. In their
sample of 45 early-type stars, Kumar et al. (2004) found only4 probable PMS stars
— One classical Be and 3 HAeBe (including LkHα 112 and MWC 280). Recently,
larger telescopes and multi-object spectrographs have enabled spectroscopic studies of
lower-mass PMS stars. Arias et al. (2007) selected 46 targetstars by their Hα emission
(from Sung et al. 2000), near-IR colours or proximity to optical nebular features. They
classified all but 7 of them as PMS stars: 2 HAeBe, 3 PMS Ge, 27 CTTS and 7 WTTS
(the preponderance of CTTS presumably being due to the Hα selection criterion). Pris-

4Johnson & Morgan (1953) definedQ as a reddening-free linear combination ofU −B andB−V , which
acts as a spectral-type diagnostic; Damiani et al. (2006) defineQV IIJ as a similar combination ofV − I
andI − J



20

inzano et al. (2007) obtained lithium spectra of 332 PMS candidates, selected to lie in
the same part of theV ,V − I diagram as the bulk of detected X-ray sources (Damiani
et al. 2004), and Hα spectra of 115 of them. Using X-ray detection, radial velocity, and
lithium equivalent-width criteria, they found 237 stars tobe certain cluster members (of
which 53 are binaries), and another 10 possible members. The71 certain members for
which they have Hα spectra comprise 31 CTTS, 9 possible CTTS, and 31 WTTS.

Time-domain Observations of PMS StarsZwintz & Weiss (2006) monitored two
fields towards NGC 6530 to look for PMS pulsating stars (similar to the post-MSδ Scuti
stars). Their fields cover the core of the cluster (extendingout to M8 E and including
the SE rim) and the area NE of the Hourglass. Of the 30 stars lying in the classical
instability strip of the HR diagram, 6 were confirmed to be pulsating, with one further
candidate. The oscillation spectra of 5 of the confirmed pulsating PMS stars were then
modelled (Guenther et al. 2007): The best-fit models were somewhat redder than the
stellar colours taken from the literature, but the luminosities were very similar to those
expected, assuming the distance to the cluster to be 1.8 kpc.

Individual PMS Stars Pereira et al. (2003) identified LkHα 117 with SS73 125 (Sand-
uleak & Stephenson 1973), and, based on optical spectroscopy, classified it as a mid-K-
type T Tauri star. MWC 280/HD 164906 (see Sect. 2.2.) seems tobe a very high-mass
HAeBe star (Herbig 1957; Kumar et al. 2004), with uncertain membership. LkHα 108,
112 and 115 are Herbig Be stars with high cluster membership probabilities and IR
excesses (Boesono et al. 1987; van den Ancker et al. 1997; Sung et al. 2000; Kumar et
al. 2004), while NGC6530-VAJ 45 and NGC6530-VAJ 151 are HAeBe candidates (van
den Ancker et al. 1997). LkHα 113 had the strongest Hα emission in the cluster at the
time of the Sung et al. (2000) survey, but not much else is known about it. LkHα 109
(SV Sgr) is a variable Hα star whose proper motion is inconsistent with that of the
cluster, and hence is either a foreground star or a cluster member ejected by dynamical
processes (Sung et al. 2000), and Walker 29 (V5100 Sgr) is a classical Be star (Kumar
et al. 2004), with only a 20% probability of membership.

Arias et al. (2007) found 37 new PMS stars by spectroscopy. Stars of particular
interest are: ABM 22 (SCB 422), which displays Herbig-Haro emission; and ABM 21,
27 & 29 (SCB 418, 486 & 495), which appear to be located in knotsof highly-excited
gas. Among their PMS stars are LkHα 108, 111 & 115 (Table 4); data for the rest may
be found in the original publication.

3.3. Extinction and Reddening towards NGC 6530

Extinction Since NGC 6530 has largely been studied by opticalUBV photometry,
estimates of the optical extinction towards it are usually obtained by derivingE(B−V ),
the colour excess, and multiplying byR = AV /E(B−V ), the ratio of total to selective
extinction. Table 5 shows the estimates of colour excess towards the cluster from the
various photometric surveys, generally around 0.3. Most ofthese studies estimate the
intrinsic colour from broadband photometry, which may be very inaccurate, although
Sung et al. (2000) used 30 early-type stars with known spectral types. van den Ancker
et al. (1997) used their photometry (checked against optical spectroscopy) to fit a model
SED:E(B −V ), R, and distance were among the fitted parameters. This approach has
the advantage of using more than one or two data points in wavelength to determine
stellar parameters.
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Table 4. Selected PMS Stars and Candidates in NGC 6530

Primary R.A. Dec. Classification Other Membership
Name (J2000.0) (J2000.0) Name Prob.

LkHα 103 18:02:51.1 –24:19:23b

LkHα 102 18:02:52.5 –24:18:44a

HD 314900 18:02:53.3 –24:20:17c HAeBe (B5Ve)d Walker 5 2%e, 90%f

LkHα 104 18:02:54.3 –24:20:56a

LkHα 106 18:03:40.3 –24:23:20g

LkHα 108 18:03:50.8 –24:21:11f HAeBe (B6Ve)h 77%e, 99%f

LkHα 109 18:03:57.7 –24:25:33i SV Sgr 0e

Walker 13 18:04:00.2 –24:15:03p pulsatingq

Walker 28 18:04:09.9 –24:12:21p pulsating?q 99%f

Walker 29 18:04:11.2 –24:24:48g B2ed V5100 Sgr 20%e

LkHα 110 18:04:11.4 –24:27:16g

Walker 38 18:04:14.0 –24:13:28p pulsatingq 68%e, 99%f

LkHα 111 18:04:17.5 –24:19:09a CTTS (K5)h

Walker 53 18:04:20.7 –24:24:56p pulsatingq 78%e, 99%f

Walker 57 18:04:21.8 –24:15:47p pulsatingq 0e

LkHα 112 18:04:22.8 –24:22:10f HAeBe (B2Ve)d Walker 58 81%e, 98%f

HD 164906 18:04:25.8 –24:23:08j HAeBe (B0Ve)k MWC 280 94%f

LkHα 113 18:04:26.1 –24:22:45g

Walker 78 18:04:30.8 –24:23:42p pulsatingq

LkHα 114 18:04:33.2 –24:27:18g

LkHα 107 18:04:36.5 –24:19:14b

Walker 159 18:04:42.3 –24:18:04p pulsatingq

LkHα 115 18:04:50.6 –24:25:42f HAeBe (B2Ve)h 79%e, 98%f

LkHα 116 18:04:58.6 –24:24:36l

LkHα 117 18:05:39.0 –24:30:40m TTS (K)n

LkHα 118 18:05:49.7 –24:15:21o 98%f

LkHα 119 18:05:56.5 –24:16:00f 0e, 97%f

a from Ducourant et al. (2005);b position from 2MASS catalogue
c from USNO catalogue (UCAC2);d from Kumar et al. (2004)
e from van Altena & Jones (1972);f from Zhao et al. (2006), Chen et al. (2007)
g from Prisinzano et al. (2005);h from Arias et al. (2007); i from HBC
j from PPM (Roeser & Bastian 1988);k see section 2.2.
l from WCS of DSS image;m from Sanduleak & Stephenson (1973)
n from Pereira et al. (2003);o from Teixeira et al. (2000)
p from Sung et al. (2000);q from Zwintz & Weiss (2006)
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The extinction varies from star to star: van Altena & Jones (1972) found 3 stars
with E(B − V ) = 0.5, significantly higher than the rest of their sample, and Sagar &
Joshi (1978) found some evidence for systematic extinctiongradients (0.25–0.48 mag)
over the cluster field, though most of their more extreme values are based on very few
stars. van den Ancker et al. (1997) found a foreground extinction of 0.3 mag, along
with large, variable (and presumably circumstellar) extinction towards individual stars.
Sung et al. (2000) derived an averageE(B − V ) of 0.35 (also adopted by Prisinzano
et al. 2005), although the stars in their sample span the range from 0.25 to 0.5. They
dereddened later-type stars in their study by assuming themto have the same extinction
as the nearest early-type star with an extinction estimate;if van den Ancker et al. are
correct that the variable extinction is circumstellar, this approach is unlikely to be accu-
rate. Mayne & Naylor (2008) used a modified Q-method5 to fit individual extinctions
to the stars in their sample, and found an averageE(B−V ) of 0.33, agreeing well with
the extinction of 0.32 that they found by isochrone-fitting.

McCall et al. (1990) used optical polarisation towards bright cluster members to
analyse the extinction: Observations of two foreground K giants give a foreground
extinction ofE(B − V ) = 0.17 mag. The lack of cluster stars withE(B − V ) < 0.27
led them to postulate the existence of an additional sheet ofobscuring material in front
of the cluster, withE(B − V ) = 0.1; the value ofR for this sheet is unclear. Thé
(1960) estimatedAV ∼ 2.2 for the background cloud to NGC 6530, but this is an
underestimate, at least in the central regions: Prisinzanoet al. (2005) and Arias et al.
(2006) found background stars in their near-IR samples withAV of 10 to 20, and the
near-IR extinction map of Damiani et al. (2006) shows consistently higher values.

The extinctionAV towards the proplyd G 5.97–1.17 is about 5 mag (Stecklum et
al. 1998), consistent with most determinations of the extinction towards Herschel 36
(assumingR = 5.6). Arias et al. (2006) found a foreground extinction ofAK =
0.36 mag (AV = 3.2 mag, for normal reddening) towards the Hourglass region. By
selecting probable background stars and estimating their extinction, they also mapped
the extinction, showing a strong congruence with the molecular data.

Reddening Reddening is usually measured byR, whose canonical value of about 3.1
appears to be valid over most of our Galaxy. However, larger values ofR have been
found in and around star-forming regions. A larger value implies slightly larger dust
grains, which do not block blue light quite as efficiently. Anomalously high values ofR
in M 8 may be explained by selective evaporation of small grains by the radiation from
hot stars, or by grain growth in circumstellar environments. The former could explain
abnormal reddening throughout NGC 6530 (if there is any), and the latter might produce
the star-to-star variations seen by van den Ancker et al.

Walker (1957) suggested that the extinction law might be abnormal, but later at-
tributed the effect to photometric error (Walker 1961). Chini & Neckel (1981) found
no evidence of abnormal reddening, and Neckel & Chini (1981)used photometric ob-
servations fromU to I to show that 4 OB stars in NGC 6530 had normal extinction
(R = 3.1), whereas similar stars in other HII regions had larger values ofR. Although
their photometric system is non-standard (Taylor et al. 1989), this result is probably still
valid. Based on multiwavelength data towards the double O-star HD 165052, Arias et

5The modified Q-method uses updated reddening vectors and isochrones in colour-colour space, and con-
siders the effects of binarity and metallicity
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al. (2002) found reddening consistent with a standard reddening law, though their result
assumes a distance of 1.8 kpc, which probably too high (see sec. 3.5.); Further observa-
tions towards 6 other OB stars (Arias et al. 2006) yield a range of reddening estimates,
from 3.3 to 5.4 (for Herschel 36). UV observations show uniformly low extinction to-
wards early-type stars, but normal extinction in optical wavebands (Böhm-Vitense et
al. 1984; Torres 1987), implying that the small grains are depleted; the UV extinction
towards early-type stars is quite variable, with some evidence of systematic variation
(Boggs & Böhm-Vitense 1989). Removing a foreground extinction (assumed to have
normalR of 3.2), McCall et al. (1990) used the cluster method to fitR = 4.64 ± 0.27
to the remaining extinction, inconsistent with the standard extinction laws or, indeed,
with the anomalous extinction found around Herschel 36. Kumar et al. (2004) adopted
a similar approach, and derived a similar foreground-subtracted reddening (4.5 ± 0.1).
van den Ancker et al. (1997) found that the majority of their fitted SEDs were consis-
tent withR = 3.1; the exceptions (R > 3.2) also have high extinction, so they attribute
anomalous reddening to circumstellar material. Sung et al.(2000) found a large range
of reddening for their sample of 30 stars, with some sign of correlation between red-
dening and extinction, which would tend to support the circumstellar hypothesis of van
den Ancker et al.. For their recent photometric studies, Prisinzano et al. (2005) as-
sumed standard reddening, while Arias et al. (2006) used a standard reddening law in
the near-IR (Rieke & Lebofsky 1985) to avoid the non-standard optical reddening.

3.4. The Age of NGC 6530

The usual way to estimate the age of a very young cluster like NGC 6530 (whose H-R
diagram has no giant branch) is to isolate the PMS stars and tocompare them to theo-
retical isochrones. The earliest attempts to do this (Walker 1957; van Altena & Jones
1972; Kilambi 1977; Sagar & Joshi 1978) may not have includedany PMS stars in
their samples: The stars that these studies found to the right of the ZAMS are probably
background giants, and the PMS has likely only been isolatedby more recent research.
Therefore, these older isochrone-based age estimates are unlikely to be useful. The
Hα-selected PMS population clusters around isochrones of order 1 Myr (Sung et al.
2000), and almost none are older than 3 Myr (Arias et al. 2007). Both Damiani et al.
(2004) and Prisinzano et al. (2005) placed the X-ray selected sample on a(V/V − I)
diagram: Damiani et al. (2004) derived a median age of 0.8 Myr, with a spread of about
4 Myr; Prisinzano et al. (2005) found almost all of their stars to lie between the 0.3 Myr
and 10 Myr isochrones, the distribution peaking around 2 Myr. The derived ages are al-
most unaffected by reddening (Damiani et al. 2004), but are strongly model-dependent
— according to some models, the median age is just 0.1 Myr. TheHα-selected PMS
population may not be entirely the same as the X-ray selectedone: Hα is strongest in
classical T Tauri Stars, whereas X-ray emission mainly comes from weak-line T Tauri
Stars. However, no systematic difference between the populations is evident on an H-R
diagram (e.g. Arias et al. 2007).

Mayne et al. (2007) and Mayne & Naylor (2008) take a differentapproach: By
comparing the (V , B−V ) colour-magnitude diagrams of multiple young clusters, they
obtain a relative age ladder. According to their results, NGC 6530 is indistinguishable
from the Orion Nebula Cluster (ONC) in age, older than IC 5146, and younger than
NGC 2264. This corresponds to an absolute age of 1–2 Myr.

Although NGC 6530 has no giant branch, some of the OB stars have started to
evolve off the ZAMS: by fitting 10 OB stars to theoretical tracks, Böhm-Vitense et al.
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(1984) estimated an age of5± 2 Myr. However, this estimate assumes a distance mod-
ulus of 11.5 mag, probably∼1 mag too high. A lower distance reduces the calculated
luminosities, and hence the estimated ages, though not enough to place the stars on the
ZAMS. Walborn (1973) classified 9 Sgr as O4 V((f)), i.e. stillon the main sequence.
van den Ancker et al. (1997) found at least one star in their sample with an age of
15 Myr and a high probability of cluster membership, leadingthem to suggest that star
formation has been going on in NGC 6530 for a few107 years. On dynamical grounds,
van Altena & Jones (1972) placed a lower limit of 0.6 Myr on thecluster age. Chen
et al. (2007) measured an intrinsic velocity dispersion of 8km s−1; if this is taken to
be the expansion velocity, it suggests a dynamical age of about 1 Myr. This velocity
dispersion also suggests that NGC 6530 could survive as a cluster for some hundreds
of Myr, although external perturbations (which are very likely, given its position in the
Galaxy) could disrupt it earlier (Chen et al. 2007).

It seems that the main burst of star formation in NGC 6530 occurred about 1–2 Myr
ago. However, there may have been significant star formationactivity beforehand;
whether it stretched back over the tens of Myr proposed by vanden Ancker et al. is
unclear.

The confirmed O-stars in NGC 6530 (HD 165052, 9 Sgr & Herschel 36) all lie
well outside the bright core of the cluster, where the brightest star is B0. Arias et
al. (2007) found that their younger PMS stars (< 1 Myr) were preferentially located
towards the southern rim, and in the west, around the Hourglass. There is evidence
of similar age separation in the X-ray selected PMS population (Damiani et al. 2004;
Prisinzano et al. 2005), with older stars (a few Myr) concentrated to the northeast, and
the youngest stars (less than 0.5 Myr) in an arc running from the southeast (near M8 E)
to the southwest of the cluster, stretching towards Herschel 36. This fits very well with
the submillimetre maps that show a broad arc of dense gas to the south of the cluster
centre, and which might be loci of ongoing star formation (Tothill et al. 2002). This
interpretation suggests that at least the youngest part of NGC 6530 is still embedded
within its natal molecular cloud.

3.5. The Distance to NGC 6530

Many authors have estimated the distance to NGC 6530 by fitting an offset ZAMS to
their colour-magnitude diagrams, where the offset gives the distance modulus (Walker
1957, 1961; van Altena & Jones 1972; Chini & Neckel 1981; Sagar & Joshi 1978).
However, the effects of extinction must be removed, which requires the determination
of AV , in this case about 1 mag. This process gives considerable room for error, es-
pecially in light of the uncertainty over the amount and nature of extinction towards
NGC 6530.

McCall et al. (1990) used published spectral types for early-type stars to derive
the extinction and distance, using the ‘cluster method’, which attempts to distinguish
binaries from single stars. Sung et al. (2000) also used stars with known spectral types,
finding the stars to have either low (∼ 10.75) or high (∼ 11.25) distance moduli. They
adopted the higher value on the grounds that the low distanceestimates are probably
binaries. van den Ancker et al. (1997) do not use a distance modulus at all, but instead
directly fit a theoretical SED to their (spectroscopically-checked) multi-band photome-
try, with distance as one of the parameters. They base their distance estimate of 1.8 kpc
on the histogram of fitted distances.
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More recent studies have generally found smaller distances: Prisinzano et al.
(2005) fitted a ZAMS at 1.3 kpc to the blue edge of the stellar distribution in colour-
magnitude diagrams. They argue that any field stars significantly further away than
NGC 6530 will lie behind the molecular cloud, and thus be highly reddened, moving
away from the ZAMS on the colour-magnitude diagram. Thus theblue edge of the
distribution should be defined by the ZAMS at the distance of NGC 6530. Arias et
al. (2006) also derive a low distance (1.3 kpc), based on halfa dozen early-type stars
near the Hourglass, whose distance moduli and extinctions were derived by fitting stel-
lar models to their SEDs. The spread in derived extinctions is large, probably due to
the highly variable interstellar and circumstellar extinction, as is the spread in distance
modulus. All three O stars in the sample are binaries (including 9 Sgr and Her 36), and
this only seems to have been taken into account for one of them; the three B stars have
rather higher distance moduli. Damiani et al. (2004) also note that their estimate of the
number of foreground field stars is close to that which might be expected if the cluster
were 1.3 kpc away; if it were 1.8 kpc away, the expected numberof foreground stars
would be twice as high. Mayne & Naylor (2008) used a modified Q-method (see also
Sect. 3.3.) to analyse NGC 6530, rather than their preferredτ2 (Naylor & Jeffries 2006),
because of the large spread in extinction over the differentcluster members. They de-
rived a distance of about 1.3 kpc, with an error range of< 0.1 kpc, using photometry
from Sung et al. (2000).

One recent study, however, supports a greater distance: Guenther et al. (2007)
found that their modelling of the oscillation spectra of PMSpulsating stars gave lumi-
nosities consistent with their assumed distance of 1.8 kpc.Hipparcosparallax measure-
ments, on the other hand, suggest a distance of only about 600pc (distance modulus
9.01± 0.26, Loktin & Beshenov 2001) towards NGC 6530. Parallax measurements are
generally considered to be robust only for nearby objects, and this determination is so
different from all other estimates as to be hard to believe. The measurement is based on
only 7 stars; since they are presumably rather bright, it is entirely possible that they are
all foreground stars. Loktin & Beshenov were able to fit a straight line to the relation-
ship between distance moduli determined fromHipparcosdata and those determined
photometrically, but the NGC 6530 measurement is inconsistent with that straight line;
moreover, they consider 1 kpc to be the greatest distance at which their technique is
accurate. In the absence of more detailed results, this distance estimate should not be
adopted.

Most recent distance determinations agree on a distance of about 1.3 kpc, which
is used throughout this review. The Sung et al. estimate of 1.8 kpc is based only on
early-type stars for which a spectral type was known: Essentially, they fitted a ZAMS
to the top (the blue end) of the colour-magnitude diagram. AsPrisinzano et al. point
out, the blue end of the ZAMS is almost vertical on a colour-magnitude diagram, so
the distance modulus (a vertical offset on the diagram) is not very well-constrained. By
contrast, Prisinzano et al., by fitting to the blue envelope,are able to use the redder part
of the ZAMS to constrain the distance modulus, at the cost of the additional assumption
that the blue edge of the colour-magnitude diagram constitutes the cluster, or field stars
at the same distance. Mayne & Naylor, by using the modified Q-method, were also
able to use fainter stars without spectroscopic data, and infact used the photometric
data from Sung et al. (2000) to derive their nearer distance.The van den Ancker et al.
(1997) estimate (also 1.8 kpc) is similarly dependent on rather bright stars. However,
the differences in stellar samples used for the various distance determinations may not
be the whole story: Sung et al. (2000) found a distance modulus of 11.2 mag towards
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Table 5. Cluster Parameters of NGC 6530

Surveya E(B − V )/mag R Age/Myr d.m./mag Distance/kpc

Walker 0.33 − 0.37 — 3b 10.7 − 11.5 1.4 − 2.0
VAJ 0.35 — 2b 11.0 − 11.25 1.6 − 1.8
Kilambi 0.35 ± 0.01 3.0 1 − 3b 10.7 1.4
SJ 0.35 — > 2b 11.3 ± 0.1 1.8 ± 0.1
CN 0.36 ± 0.09 — — 11.4 1.9
MRV 0.17c 4.6 ± 0.3 — 11.35± 0.08 1.86 ± 0.07
VdA 0.3 3.1 few×10 — 1.8 ± 0.2
SCB 0.35 > 3d 1.5, 5e 11.25 ± 0.1 1.8 ± 0.1
KSSB — 3.9 ± 0.05f — — —
Damiani — — 0.8, 4e — —
PDMS — — 2, 5e 10.5 1.3
ABMMR 0.34, 0.30g — — 10.5 1.3
Mayne 0.33 — 1–2 10.50+0.10

−0.01 1.26+0.06
−0.01

a References as for Table 3;b probably unreliable — see section 3.4.
c foreground extinction only;d anomalous, non-uniform
e median age and age spread, respectively
f subtracting foreground reddening yieldsR = 4.5
g foreground extinction towards Hourglass and mean extinction towards early-type

stars, respectively

Herschel 36, while Arias et al. (2006) estimated 10.5 mag. Both determinations used
the same observed magnitude (V = 10.297), and their assumed absolute magnitudes
only differ by 0.1; the rest of the discrepancy presumably lies in the assumptions used
to deredden theV -band data. Herschel 36 is probably an extreme example, as itis
known to have anomalous extinction, but it illustrates someof the problems that bedevil
distance estimation.

Most of these distance estimates are variations on fitting a ZAMS to a colour-
magnitude diagram, but the two recent works which use independent methods find dif-
ferent distances. As noted above, we do not consider the parallax measurement (Loktin
& Beshenov 2001) to be sufficiently accurate to be useful, butthe asteroseismology of
PMS pulsating stars (Guenther et al. 2007) raises some intriguing possibilities. Guen-
ther et al. assumed a distance of 1.8 kpc in their analysis, and found well-fitting models.
It is unclear to us whether or not they could have assumed a distance of 1.3 kpc and still
have modelled the cluster stars successfully. The stars whose oscillations were mod-
elled were selected because they lay on the instability strip of the HR diagram at an
assumed distance of 1.8 kpc (Zwintz & Weiss 2006), and it might be useful to search
for pulsating stars outside this region, since the positionof the instability strip on a
colour-magnitude diagram could add additional distance constraints. Further distance
estimates could perhaps be obtained from spectroscopy of known intermediate- and
low-mass cluster members (selected by further proper motion studies, X-ray emission,
Hα emission, IR excess etc). If the distance could be shown to be1.3 kpc rather than
1.8 kpc, this might further constrain the PMS models used to analyse the pulsating stars
in the cluster.
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3.6. Stellar Masses in NGC 6530

Prisinzano et al. (2005), by placing their X-ray-selected sample on a(V/V − I) di-
agram, estimated the stellar masses. Correcting for the incompleteness of the X-ray
sample, they fitted a mass function with a power law of index1.22 ± 0.17. Sung et al.
(2000) also fitted power law mass spectra to their (much smaller) sample, using three
different suites of stellar models, giving indices of 1.2, 1.3 and 1.4. They suggest an
overall index of1.3 ± 0.1. Both of these estimates are consistent with the Salpeter
mass function (1.35) and shallower than the mass function ofsubmillimetre clumps
(1.69 ± 0.45, Tothill et al. 2002), although the stellar and clump mass functions are
formally consistent with one another. PMS mass estimates are strongly affected by red-
dening (Damiani et al. 2004); since the reddening is poorly characterised in the cluster,
this could be a significant source of error, especially for stars which might be embedded.

Prisinzano et al. (2005) estimated a total stellar mass for NGC 6530 (down to
0.4M⊙) of 700–930M⊙. However, a Salpeter IMF with sufficient amplitude to supply
60 B-stars has a total mass of> 2000M⊙, which suggests that the X-ray sample is very
incomplete. The total stellar mass of NGC 6530 appears to be of order103M⊙. Chen
et al. (2007) found significant mass segregation in the cluster, with more massive stars
concentrated in the centre.

4. The Hourglass Nebula

The surface brightness peak of the HII region, lying just to the east of the O7 V star
Herschel 36, was described by John Herschel as“a kind of elongated nucleus, just
following a star. . . The proper nucleus is decidedly not stellar. . . ” (Thackeray 1950).
Later observations showed it to have a narrow-waisted bipolar appearance (Thackeray
1950), very much like an hourglass (see Fig. 9). Nearby to theNE, in the outskirts of the
nebular emission, is the star Cordoba 124036 (B2 V, van den Ancker et al. 1997): van
Altena & Jones (1972) found this star to have a membership probability (in NGC 6530)
of 86%, so it might be associated with the Hourglass, or mightlie in front of the nebula,
although still within the NGC 6530 cluster. Thackeray (1950) found several point-
like condensations in the Hourglass, and mid-IR emission (10–20µm) has been found
towards one of these condensations (IRS1, Gillett & Stein 1970; Dyck 1977), towards
Herschel 36 (Woolf et al. 1973; Dyck 1977) and Cordoba 12403 (Woolf et al. 1973),
and towards IRS2 (Dyck 1977), located just to the east of the optical Hourglass, within
the obscuring material that defines the eastern edge of the structure.

Tentative early suggestions that the Hourglass might be a bipolar nebula around a
central star (e.g. Allen 1986) are not borne out by detailed observations. Although the
biconical shape of the nebula is maintained at 2µm (Allen 1986, and Fig. 10), it disap-
pears at longer wavelengths, becoming a more rounded blob (Woodward et al. 1986).
In this latter work, Woodward et al. combine multi-wavelength observations to show
that the Hourglass is an interestingly-shaped window into acompact HII region lying
within a molecular cloud, ionised by Herschel 36. The delicate curves and traceries that

6also SCB 182, CD –24◦ 13810; the designation Cordoba 12403 is not used in SIMBAD
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Figure 9. HST/WFPC2 image of the Hourglass Nebula and the young massive
star Herschel 36 (in center of image). North is towards the top right, East towards
the top left; FOV is 34′′ on each side. Courtesy STScI.

we see in high-resolution images (e.g. from HST, Fig. 9) indicate the complexity of the
interstellar medium7.

Although the clear symmetry of the Hourglass disappears at longer wavelengths,
there is a much larger structure with a N–S axis of symmetry surrounding it — the
Super-Hourglass Structure (SHGS) of Lada et al. (1976). This structure is most promi-
nent in e.g. [SII ], and is probably associated with an ionisation front, mostlikely due
to 9 Sgr.

4.1. Molecular Gas in the Hourglass

Molecular gas is found in abundance towards the Hourglass Nebula, and the discovery
of a strongly contained HII region inside a clump very close to Herschel 36 suggests
that the young stars and gas are intimately associated.

7It has been suggested (outside the refereed literature) that such shapes may indicate processes analogous
to a terrestrial tornado, but, in the absence of any theoretical justification, we consider these claims to be
implausible.
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Extinction data (Arias et al. 2006) suggest very high columndensity to the north
and east of the Hourglass, reflected in a significant deficit ofbackground field stars. This
is consistent with the molecular line data of White et al. (1997), who found very high
CO brightness temperatures of CO (of order 100 K) to the N and Eof the Hourglass,
with weaker emission to the NW, in M8WC1.

White et al. (1997) estimated that the underlying cloud has amass of about 31 M⊙,
with a column densityN (H2)∼ 1023 cm−2. The large suite of CO lines observed al-
lowed White et al. to use a Large Velocity Gradient (LVG) model to estimate the volume
densityn(H2)≈ 7× 103 cm−3. Tothill et al. (2002) used submillimeter continuum data
to estimate a mass of 10–30 M⊙; the column density estimated from this measurement
agrees with the earlier figure, but the volume density is 30 times higher than the LVG
estimate. A gas temperature of 48 K can be derived from transitions of isotopically-
substituted CO (13CO and C18O, Tothill et al. 2002). The discrepancy between this
temperature and the brightness temperature of12CO may reflect the effect of external
heating (by the OB stars of the Hourglass Nebula Cluster) on the molecular cloud, giv-
ing rise to a hot outer layer which dominates the12CO spectrum, but is too thin to make
much difference to the more optically-thin isotopically-substituted transitions.

4.2. The Stellar Population of the Hourglass Nebula

Near-IR observations (e.g. Fig. 10) reveal a large stellar population around the Hour-
glass Nebula covering a few arcminutes, with a concentration (a few arcseconds across)
around Herschel 36 itself.

Herschel 36 Woolf et al. (1973) found strong extended emission around this young
O7 star throughout the near- and mid-IR spectral range, and this was confirmed at 4µm
by lunar occultation data (Stecklum et al. 1995). Extensionalong a roughly SE–NW
axis has been seen in high-velocity molecular gas (White et al. 1997) and more clearly
in imaging spectroscopy of excited H2 (Burton 2002); these results are consistent with
outflow from the star, but by no means conclusive: The broadband near-IR extension to
the SE (Stecklum et al. 1995) is actually a separate object (Stecklum et al. 1999; Goto
et al. 2006, discussed below), the submm data lack resolution, and Burton points out
that the H2 may be excited by fluorescence rather than shocks. If the H2 emission does
come from an outflow, however, the mechanical luminosity is∼ 300 L⊙.

The Surroundings of Herschel 36The first near-IR observations of Herschel 36 (Allen
1986; Woodward et al. 1990) revealed a small cluster of stars, and later high-resolution
adaptive-optics (AO) observations (see Fig 10, and Goto et al. 2006) resolved more
stars.

Woodward et al. (1990) found the two pointlike sources at thewaist of the Hour-
glass (their KS3, 4), along with KS2 which lies between Herschel 36 and the Hourglass,
to be consistent with reddened B stars. The AO image, however, shows KS2 to consist
of at least 2 or 3 stars. 3′′ N of Herschel 36, KS1/Her 36B is also resolved into two
sources, one visible atJ , H, andKs, and the other only becoming prominent atKs and
longer wavelengths (Stecklum et al. 1999; Goto et al. 2006).

Stecklum et al. (1999) found that the SE extension seen inK ′ is separated from
Herschel 36 by about 0.3′′ (400 AU) in L-band. A more comprehensive study of this
source (Goto et al. 2006) found it to be just 0.25′′away from Herschel 36, extended in
broadband emission, but compact (< 100 AU) in Hα, Brackett-γ and radio continuum
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Figure 10. POSS image of the Lagoon Nebula with outlines to show the extent of
the near-IR (Ks) images of M8 E and the SE rim (lower left) and of the Hourglass
Nebula (mid right). The outline around the Hourglass shows the field covered bythe
adaptive-opticsKs image (upper right, from Stecklum et al. 1998). M8 E and its
surroundings (outlined) are magnified (lower right).

emission. Goto et al. inferred the existence of an early-type star surrounded by a
highly-confined HII region within a dense clump, and suggested that a B2 star inside a
clump with gas density of order107 cm−3 would be consistent with their observations.
Further to the SE, Stecklum et al. (1998) showed that theK ′ source lying 3′′ away from
Herschel 36, and coincident with the radio source G5.97–1.17 (Wood & Churchwell
1989), is a young star (later than B5) surrounded by a circumstellar disc which is being
photoevaporated by the UV flux of Herschel 36, i.e. a proplyd.

Most of these nearby objects lie within a few arcseconds of Herschel 36, and could
account for its supposed unusual reddening, based on aperture photometry (Woodward
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Figure 11. Near-IR colour-colour diagram of the Hourglass Nebula cluster with
X-ray detections (diamonds), from Castro et al. (2008).

et al. 1990). Indeed, the closest source lies within half an arcsecond, and will contami-
nate all but the highest-resolution data.

The development of AO imaging, by allowing the Hourglass to be studied at much
higher spatial resolution than before, has reinforced the similarities between this region
and the Trapezium in Orion, the prototypical massive star-forming region. More than
one massive star is found in close proximity, and nearby star-forming structures are
strongly influenced by the UV flux of the massive stars.

The Hourglass Nebula Cluster Near-IR imaging of the surroundings of the Hourglass
Nebula (e.g. Fig. 10, Bica et al. 2003; Arias et al. 2006) reveals a much richer young
stellar cluster than previously appreciated. In X-rays, a very deepChandraobservation
(Castro et al. 2008), centered on the Hourglass Nebula, revealed a soft X-ray source at
the location of Herschel 36, surrounded by a tight cluster ofharder sources.

Arias et al. (2006) obtainedJHKs photometry for 945 stars in a2′ × 2′ region
around Herschel 36, of which 102 are detected withChandra. Castro et al. (2008) used
near-IR data from Stecklum et al. (1998, see Fig. 10) to obtain a catalog of 1290J-, H-
andKs-band sources in a3.′5 × 3′ region centered on Herschel 36, of which 205 have
goodJ , H andKs photometry, and 128 are detected withChandra. The near-IR colour-
colour diagram (Fig. 11) shows a cluster containing numerous reddened T Tauri stars
with large H–K colour excess from disks, lying to the right ofthe reddening vector and
above the locus of T Tauri stars. The diagram also shows a number of YSOs below the
T Tauri locus, including the proplyd G5.97–1.17 and the bright IR source KS 1. Most
of these sources are detected withChandra; the X-ray sources are tightly clustered near
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the 850µm emission peak, and may be Class I protostars, representingone of the most
recent bursts of star formation in M 8.

Arias et al. (2006) used their photometry to disentangle theHourglass cluster from
the reddened background giant population. Of the 700 or so stars identified in about 4
square arcminutes around the Hourglass, they found about 200 potential cluster mem-
bers, of which about 100 have an infrared excess (similar to the∼100 stars detected
by Chandra), and should therefore be considered probable cluster members. Subdivid-
ing their field into 9 areas, they found a large overdensity ofpotential young stars in the
vicinity of the Hourglass, compared to the outer areas, confirming the presence of a sig-
nificant cluster, about 1–2 Myr old. The IR-excess sources tend to cluster together in a
few locations: Around Herschel 36, around the molecular clump to the NW (M8 WC1),
and on the NE rim of the Hourglass molecular clump. The subcluster near Herschel 36
extends over about an arcminute to the south, but hardly at all to the north. This could
reflect the distribution of young stars (suggesting that theHourglass itself is the north-
ern extremity of this star-forming region), or it could be that the southern extension is
the only visible part of a more symmetrical cluster embeddeddeep in the molecular
gas (the southern part of the cluster lying in the cavity excavated by Herschel 36). The
lack of visible background field stars towards the centre of the clump implies that the
molecular gas is dense enough to extinguish stars even in thenear-IR. High-resolution
mid-IR imaging of the Hourglass cluster might find more deeply embedded members.

5. M8 E

The high-mass star-forming region M8 E was first reported by Wright et al. (1977) as
a 70 µm continuum source and as a strong CO peak off the eastern edgeof earlier
maps (Lada et al. 1976). An 11µm source whose position is consistent with M8 E
appears in the AFCRL catalogue (CRL 2059, Walker & Price 1975). The CO data
suggest that M8 E lies within a large (few arcmin) cloud of molecular gas, with mass
of order104 M⊙. Bolometric luminosity estimates of1.5 − 2.5 × 104 L⊙ are roughly
equivalent to a B0V star (Thronson et al. 1979; Mueller et al.2002). The available IR
to submillimetre continuum data have been summarised by Mueller et al. (2002).

Within the molecular gas, there is a small, but quite rich, embedded cluster: 7
IR sources in a region of less than a square arcminute have been catalogued (see Ta-
ble 6), including a ZAMS B2 star powering a very small (0.6′′ diameter) HII region
(M8E-Radio), and, only 7′′ away, M8E-IR, a massive YSO likely to become a B0 star
(Simon et al. 1984, 1985; Linz et al. 2008). M8E-Radio is heavily-obscured and, if it is
expanding at the sound speed, has a dynamical age of only 150 years. It has a cometary
morphology, whose leading edge points approximately towards the bright rim of the
M8E clump, although Linz et al. (2008) suggest that it could have been shaped by the
outflow from M8E-IR (discussed below).

Although M8E-Radio is visible in the infrared (Simon et al. 1985), the cluster lu-
minosity is dominated by M8E-IR up to a wavelength of 24.5µm (Linz et al. 2008). At
longer wavelengths, we lack observations with sufficient angular resolution to distin-
guish the fluxes of the two main objects, up to cm-wave radio, where the HII region is
dominant. It is still unclear how the total luminosity of M8 Eis divided between these
two dominant sources (Simon et al. 1985; Linz et al. 2008).

The IR spectral lines observed by ISO (White et al. 1998) seemto arise from
the HII region and suggest a density of about104 cm−3. Longward of about 80µm,
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photometric data (measuring the sum of the luminosities of both components) are well
fitted by a model of a spherical dust envelope with radius of 0.06 pc, temperature 28 K,
mass about 80 M⊙, and bolometric luminosity of order104 L⊙. Submillimetre-wave
continuum mapping (Tothill et al. 2002; Mueller et al. 2002)finds a source very close
to the position of the HII region, with 450µm and 850µm fluxes broadly in line with
those reported by White et al. (1998). M8 E lies at the extremeeastern edge of the
SCUBA maps, where image fidelity is dubious, but is at the centre of the 350µm map
(Mueller et al. 2002).

Figure 12. CO 2–1 map of M8 E from Zhang et al. (2005). Solid contours denote
blueshifted emission, and dashed contours denote redshifted CO. The star marks the
position of the IRAS source (M8E-IR) and the triangle denotes the UCHII region
(M8E-Radio).

As IRAS 18018–2426, M8 E has been extensively studied as partof a programme
to identify candidate high-mass protostars. It is classified as ‘Low’ (e.g. Beltrán et al.
2006), meaning that its IRAS colours are not consistent withthose of UCHII regions,
even though it does contain an HII region with electron density at least 5000 cm−3

(Molinari et al. 1998), which is consistent with the ISO data. Based on NH3 emission,
the kinetic temperature of the molecular gas is estimated at31 K (Molinari et al. 1996),
similar to the 29 K estimated from CO lines (Tothill et al. 2002). The clump has also
been detected in HCN 1–0 (St. Clair Dinger et al. 1979) and CS 7–6 (Plume et al.
1992). No H2O masers have been detected towards M8 E, but OH maser emission has
been detected at 1.665 GHz (Cohen et al. 1988), along with methanol masers at 44 GHz
and 133 GHz (Slysh et al. 1997; Kogan & Slysh 1998).

The high-velocity molecular gas around M8 E has been mapped in CO 2–1 (Mitch-
ell et al. 1991; Zhang et al. 2005, see Fig. 12): The red- and blueshifted gas masses are
offset from one another by about 15′′, which suggests a bipolar outflow with a dynam-
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ical timescale of 104 years (Mitchell et al. 1992). Mitchell et al. (1991) studiedthe
high-velocity molecular gas by the IR absorption of ro-vibrational transitions, tracing
younger (100 year-old, Mitchell et al. 1988), hotter material. On this evidence, Mitchell
et al. suggest that M8E-IR may be a FU Orionis-type object. The shortwards end of the
ISO data (which should be dominated by M8E-IR) suggests a B0 star surrounded by
a disk (White et al. 1998); the best-fitting models to mid-IR interferometric visibilities
(Linz et al. 2008) are composed of a bloated central star (10–15 M⊙, equivalent to an
early B star) with a small to non-existent disc (<50 AU) surrounded by an envelope
with bipolar cavities. Linz et al. point out that the massiveaccretion events causing
FU Orionis-like outbursts could also cause the bloating of the central star.

Table 6. Stellar sources in M8 E

Source R.A. (J2000.0) Dec. (J2000.0)

Mid-IR sourcea 18:04:52.7 –24:26:41
M8E-Radiob,c 18:04:52.8 –24:26:36
M8E-IRb 18:04:53.3 –24:26:42
S85-4b 18:04:53.3 –24:26:15
S85-3b 18:04:53.7 –24:26:59
S85-2b 18:04:53.7 –24:26:22
S85-1b 18:04:54.1 –24:26:24

a Linz et al. (2008);b Simon et al. (1985)
c Dec. is misprinted in the original paper

6. Other Candidate Star-Forming Regions

M8 SE3/IRAS 18014–2428Along with M8 E, this IR source lying within the M8 SE3
clump, has been extensively studied as a candidate high-mass protostar. Like M8 E,
it is classified as a ‘Low’-type source, is detected in NH3 emission, giving a kinetic
temperature of 27 K (compared with 21 K from CO lines), and is not associated with
an H2O maser (Molinari et al. 1996). It is not detected in the radiocontinuum and shows
no sign of outflow in molecular lines; however, the implied axis of the HH 896–7 jet
passes very close to the IRAS source (see Fig. 7). Whether or not IRAS 18014–2428
is a protostar, it seems very likely that the M8 SE3 clump is a site of ongoing star
formation.

The Central Ridge Submillimetre continuum maps of M 8 (e.g. Fig. 6) reveal a ridge
of dense gas running N–S, lying between the Hourglass and M8 E, including the sub-
millimetre clumps EC 1–5. The X-ray data (Fig. 16) show an overdensity of sources
near this ridge, suggesting that there may be star formationassociated with it.
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Figure 13. The complex of nebulae to the east of M 8 is known as Simeis 188
(Herbig 1957), shown here in a three-colour broadband image. Individual nebulae
are identified in Fig. 14. North is towards the top left, and east towards the bottom
left; FOV is∼ 35′× ∼ 55′; see also Fig. 14. Courtesy Tony Hallas.
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7. Simeis 188

About a degree to the east of the Lagoon Nebula, Simeis 1888 comprises emission and
reflection nebulae and dark clouds (Fig. 13; also Barnard 1892), and lies near a loose
open cluster, Collinder 367, located within the HII region IC 4685. The nebular fea-
tures are identified in the annotated red-light DSS image (Figure 14) and their positions
listed in Table 7 IC 4685 is a large diffuse nebula centred on V3903 Sgr (HD 165921),
an eclipsing binary comprising two main-sequence O stars (O7 V + O9 V), also dis-
cussed below (Vaz et al. 1997). On the southeastern edge of IC4685, NGC 6559 is
a bright-rimmed cloud, with the rim running NE–SW (see Figs.13 & 14), and lying
close to IRAS 18068–2405 (Sugitani & Ogura 1994; Ogura et al.2002). The north-
eastern edge of Simeis 188 is dominated by two bright emission nebulae: IC 1274 in
the north, illuminated by two stars, and IC 1275; these two are separated by the dark
cloud B 91. North of IC 1274 lies IC 4684, a very small reflection nebula around the
9th magnitude B3 star HD 165872. There are two more Barnard dark nebulae lying in
front of IC 4685: B 302 and B 303, just NW and SE of V 3903 Sgr, respectively. They
seem to be components of a long thin dust lane lying across andin front of the emission
nebula.

Table 7. Nebulae in Simeis 188

Nebula RA (J2000.0) Dec (J2000.0)

IC 4684 18:09:06 –23:25
IC 4685 18:09:18 –23:59
IC 1274 18:09:30 –23:44
IC 1275 18:10:00 –23:50
NGC 6559 18:10:00 –24:06
B 302 18:09:14 –23:58
B 303 18:09:29 –24:00
B 91 18:10:08 –23:42

Nebula data from Cragin & Bonanno (2001)

Collinder 367 is older than NGC 6530, but still fairly young,and lies at a similar
distance (∼7 Myr and∼1.2 kpc; Kharchenko et al. 2005). V 3903 Sgr is much younger,
with an age (2 Myr) and distance similar to NGC 6530 (Vaz et al.1997), and may rep-
resent a later generation of star formation. There is some evidence that this complex
could be related to the Lagoon: Herbst et al. (1982) found that the various stars illumi-
nating the nebulosity show reddeningR = 4.2, quite similar to the abnormal reddening
found towards M 8, and the nebulosity around M 8 extends all the way out to Simeis 188
(Fig. 1; also Barnard 1908).

Herbig (1957) found 6 Hα emission stars (LkHα 125–130) in the Simeis 188 re-
gion, of which he suggests that LkHα 125 is unlikely to be associated with the nebulae.
Based on the finding charts and instructions from that paper,positions of all 6 stars have
been taken from the Digitised Sky Survey (or 2MASS in the caseof LkHα 130), and
are given in Table 8. Ogura et al. (2002) found a further 23 Hα emission stars (but no

8The designation comes from the catalogue of Gaze & Shajn (1955) developed at the Simeiz Observatory
in Ukraine; these objects are traditionally spelled Simeis.
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Figure 14. DSS2 red image of the Simeis 188 region. The loose cluster
Collinder 367 is found within the diffuse HII region IC 4685, centred on the O-star
V 3903 Sgr.

Herbig-Haro objects): These fainter stars (Fig. 15) are probably T Tauri stars, whereas
the 6 stars from Herbig (1957) are more likely to be HAeBes.

8. The Structure and Evolution of the Lagoon Nebula

The Structure of Star Formation Combining theChandraimages towards the Hour-
glass (Castro et al. 2008) and NGC 6530 (Damiani et al. 2004) yields a catalogue of
1482 X-ray sources spanning most of the region observed at 450 and 850µm by Tothill
et al. (2002). Figure 16 suggests that X-ray sources tend to cluster near sub-mm emis-
sion cores, which is confirmed by Figure 17: This shows the spatial correlation of the
850µm flux to the location of each of the 1119 X-ray sources lying within the SCUBA
map, and the same statistic for the 9805 2MASS sources in the map and for a set of
105 random sources. The distributions show that the X-ray source locations are non-
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Figure 15. Hα stars in the bright-rimmed cloud NGC 6559 (BRC 89). North is up
and East is to the left; FOV is∼ 4′× ∼ 6′; the thick tick marks denote the position
of IRAS 18068–2405. From Ogura et al. (2002).

Table 8. Hα emission stars in Simeis 188, from Herbig (1957)

Star R.A. (J2000.0) Dec. (J2000.0)

LkHα 125 18:07:58.3 –23:33:38a

LkHα 126 18:09:23.6 –23:27:46a

LkHα 127 18:09:35.7 –23:25:19a

LkHα 128 18:09:45.5 –23:38:03a

LkHα 129 18:09:46.1 –23:38:52a

LkHα 130 18:09:47.3 –23:38:43b

a from WCS of DSS image
b from WCS of 2MASSJ-band image
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Figure 16. ChandraX-ray sources overlaid on the sub-mm continuum structure
of the Lagoon Nebula, from Castro et al. (2008).
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Figure 17. Spatial correlation between 850µm emission andChandra X-ray
sources, 2MASS sources, and a random distribution, from Castro et al. (2008).
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random and correlated with 850µm flux, as are about 20% of the 2MASS sources. In
particular, Fig. 16 shows strong clustering around (but slightly offset from) M8 E (near
18:04:54, –24:26:30), the central ridge (near 18:04:20, –24:23), and Herschel 36 and
the Hourglass (near 18:03:40, –24:23). In the central ridge(M8 EC1–5), three lines
of X-ray sources are seen separated by∼ 1′ from northeast to southwest. A number
of smaller X-ray clusters appear close to 850µm cores along the southern rim, specifi-
cally: M8 SC8, SC1, SE1, SE3, and SE7. Barbá & Arias (2007) also found H-H objects
associated with M8 SC8, SE3 and C3.

There are other bright rims and globules in and around the Lagoon, most of which
seem to be due to the action of 9 Sgr, such as the bright rims of Sugitani & Ogura (1994),
the globule near the Hourglass (Arias et al. 2006) and the elephant trunk found near
M8 E (Brand & Zealey 1978). These structures, along with the widespread T Tauri star
population (Prisinzano et al. 2005; Arias et al. 2007), suggest pervasive star formation
in the Lagoon, in addition to the young clusters found aroundthe Hourglass and M8 E.

Star Formation History While most authors ascribe an age of a few Myr to NGC
6530, the oldest element of the Lagoon Nebula, van den Anckeret al. (1997) argue
for a much older cluster (by an order of magnitude), based on the probable cluster
members found in the giant branch of the H-R diagram. These members seem to be
worth investigation: If star formation has really been going on for a few tens of Myr,
and is still ongoing at a significant rate, M 8 would be a very long-lived star-forming
region. van den Ancker et al. also suggest, because of the lack of massive stars on
the ZAMS, that massive star formation has essentially ceased. This may be true of
NGC 6530, but massive star formation in M 8 as a whole is not over.

Lightfoot et al. (1984) identified a possible sequence of triggered star formation
in M 8: NGC 6530 is the oldest feature, and some of its members are still ionising
the main HII region, NGC 6523, while younger features are found around the edge of
the region, most obviously in the Hourglass and M8 E. The O stars in the cluster are
also found at the periphery, while the core contains only B stars and later, and it is not
clear why this should be so: Do the peripheral O stars represent a later generation of
star formation? If so, it is odd that there are no signs of any Ostars corresponding to
the∼60 B stars in the core, either as main-sequence O stars or as post-MS objects.
However, the basic picture of star formation proceeding outwards from the core of
NGC 6530 is well-supported by evidence of age gradients (e.g. Damiani et al. 2004;
Arias et al. 2007) as well as the prevalence of massive young stars, X-ray sources and
H-H objects around the dense molecular cores around the edgeof the Lagoon. There
are also signs of star formation elsewhere in M 8, e.g. the sample of candidate Class I
sources concentrated to the northeast of the Hourglass (Damiani et al. 2006).

The Structure of the Lagoon NebulaCompared to the clumps along the southern and
southeastern rims of the Lagoon Nebula, the EC clumps seem tofall off fairly shallowly
on all sides. This suggests that the central ridge may lie behind the HII region, and we
see the structure face-on, rather than the edge-on view of the southern clumps (see
Fig. 18). Woodward et al. (1986) argue convincingly that theHourglass is embedded in
the molecular cloud behind the Lagoon, whereas M8 E shows a steep fall-off into the
HII region. So we see ongoing star formation both behind and to the southeast of the
ionised gas, suggesting that the ionisation front is movingaway from us and to the south
and east, compressing and warming the molecular gas (givingrise to submillimetre and
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Figure 18. Schematic diagram showing a possible structure of the Lagoon Nebula,
in the form of two cuts through the Central Ridge and Hourglass regions (shown on
a∼ 20′× ∼ 10′ section of the 850µm emission map). From Tothill (1999).
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CO emission) and presumably triggering star formation, with X-ray emitting YSOs
appearing tightly clustered in the wake of the front.

There are indications of a thin screen of material between usand M 8, somewhat
blueshifted. This might be the last remnants of the front of the molecular cloud, exca-
vated by a blister HII region on the front side of the cloud, and accelerated towards us
by the ionised gas.

9. Closing Remarks

Bok & Reilly (1947) commented, at the end of their paper on globules in the Milky Way,
many of them in M 8, that every one of the globules they had justdescribed merited fur-
ther careful study “with the largest available reflecting telescopes”. We believe that this
advice is still valid, 60 years later. New observing facilities and techniques at many
different wavelengths are giving us new opportunities to understand this region: The
impact of the latest X-ray observations is immense, since itmakes it much easier to dis-
entangle young stars from the background. The wider availability of large telescopes,
allowing photometry and spectroscopy of faint stars, enables proper classification of
the lower-mass PMS population (e.g. Arias et al. 2007).Spitzerdata (e.g. Fig. 3) offer
further opportunities to select sources of interest out of the crowded background. Using
time-domain photometry, asteroseismology allows detailed modelling of PMS stars in
NGC 6530 (Guenther et al. 2007). Aperture-synthesis observations at millimetre- and
submillimetre-wavelengths may be used to compensate for the effects of distance, in
order to search for protostars in the molecular cores aroundthe Nebula; mid-IR inter-
ferometry is already yielding new insights into the massiveyoung stars in M8 E (Linz
et al. 2008).
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