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Finally Cutangle spoke, very slowly and carefully.
“l look at it like this? he said!Before | heard him talk, | was like
everyone else. You know what | mean? | was confused and unce
about the little details of life. But noWwhe brightened ugwhile I'm
still confused and uncertain it's on a much higher pldiymu see, an
at least | know I'm bewildered about the really fundamental and
important facts of the universe.

Treatle nodded:I hadn’t really looked at it like thdthe said,
“but you're absolutely right, He's really pushed back the boundar
ignorance. There’s so much about the universe we don’t know.

--- Equal Rites, Terry Pratchett
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1. Introduction

1.1 Introduction

Integrd field spedroscopy is arapidly expanding field in astronamicd instrumentation. This
powerful technigue dlows astronamers to gain new insights into the structures and dyramics of
astronaomicd objeds on al scdes, from the amospheres of Jovian moors, through the stellar
dynamics of globuar clusters to analysing the gravitationaly distorted images of distant galaxies.
The eplanation d integral field spedroscopy is given in §1.2, showing haw it improves over more
classcd methods of observing. A brief review of the different IFStechniquesis given in §1.3 and the
individual advantages and disadvantages for each technique are discussed.

This thesis explores the techniques neaded to build an integral field spedrograph and reduce
the data taken with it. The layout of the thesis is giverlid. §

1.2 What isIntegral Field Spectroscopy?

Integrd field spedroscopy (IFS) is the recording o spedrd information for every imaged
pixel over agiven areaof sky, where idedly the size of a pixel islimited by the seeéng condtions or
the diffradion limit of the telescope. The two most common olservational technigues (imaging and
long dlit spedroscopy) record data on two dmensional detedors, such as a charge wupded device
(CCD).

Astronamicd imaging rewrds the spatial distribution d an oljed for a given wavdength
range, and is used for phaometry and morphdogy studies where detail ed spedral information is not
required. Multiple expasures using dfferent colour filters then allow simple spedra properties of the
objed to be determined, but for greaer spedral resolution a long dlit spedrograph is used. Long dlit
spedroscopy isided for paint-like sources or for looking at a spedfic aut acossan extended oljed,
but it cannot simultaneously record both spectral and two-dimensional spatial information.

IFS differs from imaging and long dlit spedroscopy in that it requires recmrding d three
dimensions of data (x, y and A), otherwise known as a ‘data abe'. This data abe needs to be
reformatted before it can be recorded onadetedor, and the various techniques used to generate adata

cube are reviewed in the next section.
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CHAPTER1 INTRODUCTION

1.3 Areview of IFStechniques

The growth of IFSinstruments over the past few yeas has been prodigious. Astronamers are
fully aware of the new research that data aubes can bring - the internal dynamics of galaxies, velocity
maps howing the distribution and motion d gas within star clusters and jets from galadic cores, and
the recmnstruction d gravitationally lensed star forming galaxies are just a few of the reseach aress
that have benefited.

Broadly spe&king, there ae two dfferent methods used to form a data abe. The first is a
scanning technique, where two o the threedimensions (one spatial and ore spedral, or both spatial)
are recorded in ore eposure and the third dmension d the data aibe is filled in by taking
subsequent expaosures. The other technique is integral field spedroscopy, where dl three dimensions
are recorded simultaneously with a single exposure. Both techniques are known as ‘imaging
spectroscopy’, ‘bidimensional spectroscopy’ or sometimes ‘spectral imaging’.

The methods which nead successve exposures to make up a data wbe ae susceptible to
systematic arors. Sources of error include variability in atmospheric transmisson, variation in image
quality between succesdve exposures and flexure in the telescope instrumentation, these reguire extra
flat fielding and cdibration frames. Even temporal variability in the objed being olserved can cause
extra data reduction dfficulties. IFStechniques do na suffer from these arors as al threedimensions
are recorded simultaneously.

The three most common scanning methods are the scanning long dit spedrograph, the
scanning Fabry-Perot and the Fourier transform spedrograph. The most common IFS techniques can
be separated into thase which use mirrors as image dicers (micro mirrors) and thase which use lens
arrays or opticd fibres to segment the image plane. In some IFS instruments, opticd fibres and lens
arrays are used in combination. A brief review of al these methods and their advantages and

disadvantages are given below.

1.3.1 Scanning long slit spectrograph

The data aube is built up by scanning the long dlit in a diredion perpendicular to its length,
and taking an exposure for ead pasition such that the step size between exposures is equa to the
width of the dlit. This is the simplest method d generating a data abe with existing long dlit
spedrographs. One example of a scanning long dlit spedrograph is the ASFECT mode (Clark &
Wallace 1984 for the Anglo Australian Telescope's RGO spedrograph and Integrated Photon
Counting System (IPCS). The fidd of view was ~3 arcminutes long per exposure, with a typicd
spatial resolution o 2.4 arcsemnds. The size of the aea scanned was limited by the number of
separate exposures neaded to cover the aeawith the dlit, and the spedral range was typicdly 3500
7500A for the low dispersion grating.
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The core of NGC 5128 was imaged with 71 exposures and a 2.4 arcsecond dlit, forming an
observed area of 120 by 200 arcseconds (Wilkinson et al. 1986) but this technique has not been
developed since.

The mgjor limitations to this method is due to various seeing losses with the spectrograph
and the non-uniformity of the dlit jaw, resulting in lost flux and variable photometry from one
exposure to the next. A degradation in seeing aso results in variable image quality throughout the
data cube.

1.3.2 Scanning Fabry Perot

The Fabry Perot etalon consists of two plane paralld pieces of glass with a thin partially
reflective coating on the inside faces. Light passing through the etalon undergoes multiple reflections
between the two surfaces and interference takes place in the emerging beam. If an extended
monochromatic source is viewed through an etalon a series of circular fringes can be seen super-
imposed on the light from the source, and the radius of these fringes varies with the optical distance
between the two plates and the wavelength of the incident light.

Astronomical etalons offer medium to high spectral resolution capabilities (R ~ 5000-20000)
with an imaging field of view of 1-10 arcminutes, depending on what telescope the etalon is on and
how hig the etalon is. The spectral resolution and free spectral range (the distance between two
adjacent spectral orders measured in Angstroms) are defined by the spacing t and reflectivity R of the
plane surfaces. The derivation of the Fabry Perot formulae are given in many standard optics books
(for example, Pain 1993) but the relevant expressions for spectral resolution are:

A 2nt

—=—N 1-1
and the free spectral rangeis
AZ
FSR=—— 1-2
2nt (t-2)

where nt is the optical distance between the etalon platesand N_ is defined as:

/R

Ne=1-R)

(1-3)

with R being the reflectivity of the plates.

The free spectra range shows the range of wavelengths that the etalon can scan without the
orders of successive interference fringes being confused with each other. The transmission profile of
an etalon is caled the Airy function, and the free spectral range divided by the FWHM of this
function gives the finesse of the etalon. The quantity N_ is the finesse of the etalon, and it shows how
many scanning steps can be taken with the etalon to cover the free spectral range. The finesse for

astronomical etalons is approximately 20-30, but due to non-paralelism of the plates and other
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aberrations in the optics this vaue is degraded. The finesse also gives the minimum number of
exposures needed to be taken with the etalon to sample the free spectral range.

The etalon sitsin a collimated beam between the camera and tel escope, and the spacing of the
etalon plates is controlled with closed loop e ectronic equipment. For each of the data exposures the
etalon gap is adjusted so that the free spectral range is eventually covered. Each image represents a
complicated cut through the (x,y,A\) data cube, with each pixel on the image being a function of x, y
and A. Variations in seeing and atmospheric transmission mean that many flat fields are needed for
the accurate reconstruction of the data cubes.

The advantages of etalons are the high spectral resolution and large fields of view that they
can offer. Their limited free spectral range means that only a few Angstroms can be observed for a
given band pass, and narrow band filters are needed to avoid confusion with overlapping orders.
Etaons are mainly used for mapping out emission lines in cores of gaaxies and stellar clusters. Their
instrumental profile is known as an Airy function, with a narrow transmission peak at the centra
wavelength with faint extended wings over the rest of the spectral range. This makes the mapping of
absorption lines difficult and so etalons are not often used for this type of mapping.

The accuracy of the coatings and control of the etalon spacing limited their astronomical use
for many years, but due to advances in eectronic control and new coating deposition techniques,
scanning Fabry Perot etalons are now in regular use, such as Taurus-Il (Taylor & Atherton 1980,
Atherton 1982) at the AAT and CIGALE (Boulesteix 1984) and HIFI (Bland 1990) both at the
CFHT.

1.3.3 Fourier Transform Spectrographs

Fourier transform spectrographs (FTS) have been used in laboratories for many years to
obtain high (R > 10°) spectral resolutions. The only FTS in common astronomical use today is the
CHFT FTS (Maillard 1995), which uses a Michelson interferometer (see Figure 1-1). The telescope
beam from the focus is passed through a collimator lens to form a plane paralel beam. A beam
splitter takes the collimated light and sends it down two different paths. One path has a fixed mirror,
and the other has a mirror that can alter its distance from the beam splitter. The beams are sent back
to the beam splitter and form interference fringes. The beams are then imaged onto the detector with a
cameralens.

By varying the path length of the movable mirror, each pixd on the detector records an
interferogram for each point on the sky. The movable mirror is held stationary whilst an exposure is
taken, then the mirror moves to the next position and the next integration begins. Eventually, a data
cube of interferograms is generated and by taking the Fourier transform of the data cube the spectral

information can be recovered.
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The Michelson interferometer loses 50% of the incoming light due to the beansplitter, but
due to a caeful design (Maill ard 1982 the interferometer is built such that beans from both sides of
the splitter are imaged and a very high efficiency can be attained.

The resolution d the interferometer is a function d the maximum path dfferenceintroduced
between the two mirrors, the wavelength of the incident light and the fidd of view of the
interferometer on the sky. In the cae of the CFHT instrument, the maximum spedral resolution is
~30,000for afidd o view of 20 arcseaonds and a maximum path dfference of 30cm. The spedral
coverage of the FTS is determined by a bandpessfilter placel in the @llimated beam, and the anount
of time needed to perform al the exposures needed to construct the interferograms. The number of
steps in the interferogram also set the number of points in the resultant spectral image.

The positional acarracy and required flatness of the mirrors nealed is dependent on the
wavelengths being olserved. For opticd wavelengths the tolerances are very high and dfficult to
achieve, so FTS is better suited to the infra-red region, from 1.0um - 2.5um.

The main limitation o the FTS is the signa-to-noise requirements on the detedor. Each
mirror position reals to have a integration such that the dominant source of naise is the phaon shot

noise. Unfortunately, infrared detedors have high read-out naises and this implies long integration

L N Fixedmirror

Beam splitter

. Movable mirror
Collim ator

B

: AN Telescope focal plane

_

L < Camera

Detedor

Figure 1-1 An imaging Michelson interferometer.
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times, but on the other hand most targets are brighter in the infra-red. Since eab pixd is receving
light from the whole night spedrum, there is a cntribution from the OH night sky emisgon lines on

top of which are the fringes of interest. These are usually limited by using a narrow bandwidth filter.

1.3.4 Multi-pupil spectroscopy

A method poposed by Courtes (1982 uses a focd enlarger to projed an image of the
telescope focd plane onto a microlens array. This microlens then segments the enlarged focd plane
and produces a pupil image on the badk of the lens array. A spedrograph then takes the aray of pupl
images, disperses them with a grating and images the resultant spedra onto a detedor (see Figure 1-
2).

| Imaging stage | | Spedrographic stage |

-

A

\J

Collim ator
Bandpassfilter Detedor

OIi ﬂ@ m m “«l
b sene UL( o

Telescope focal plane

Figure 1-2 The multi-pupil spectrograph.

This methodis used in the prototype TIGER spedrograph (Bamn 199% axd Bamn 1995h.
The lendet array is made up o 564 circular lenses arranged in a 24 by 21 lexagoral matrix, eah
1.3mm diameter lens prodwing a 45um diameter image of the eit pupl of the CFHT. The
spedrographis unwsua in that it disperses the pupl images of the telescope, with the advantage that
the paint spread function onthe detedor is now independent of the spatial information within the
image.

With no dspersing dement in pace the ollimator and camera optics form a regular
hexagordl array of pugl images on the 1024 15pm pixel CCD. When these pupls are dispersed, the
ends of the spedra overlap eat ather on the detedor. A dlight rotation ketween the dispersion axis
and the micro-lens array, combined with a broad band interferencefilter inserted in the focd reducer,
avoids overlapping between spedra and limits the spedral range possble with this type of
spedrograph. The only disadvantages are the truncation d spedra a the alge of the detedor and the
limited number of pixels used per spedrum. For a spedral resolution o 1800 at 68504, the

wavelength range is 540A.
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The success of the original prototype system has produced many similar integrad field
spedrographs, aong with an improved and enlarged version d TIGER incorporated as part of a
larger multi-mode spedrograph knavn as OASIS. This common wser instrument has a greaer variety
of wavelength ranges and dispersions available, building on the original TIGER design.

One design that allows higher spedra resolutions is PYTHEAS (Le Coarer 1995 and
Georgelin 1995 which uses a similar layout to Tiger but inserts a Fabry Perot etalonin front of the
microlens array. With the d@alonin a allimated beamn, the g@alon ads as a tuneale periodic narrow-
band filter - the spedra produced in the TIGER spedrograph are now moduated by the Airy fringes
to produce a series of evenly separated Fabry ‘spots’ along the path of each spectrum.

The d@alon is then scanned in steps aaossits free spedral range and the detedor read ou at
every step. In this way, spedra resolutions of over 19,000 have been achieved. In this mode,
PYTHEAS is no longer an integral field spedrograph, with the detedor now being wed as a
spedrometer and the scanning time dependent comporent is re-introduced. Nevertheless the
advantages of higher resolution and large fidld of view make this a powerful investigative method for

astronomers.

1.3.5 Micro mirror IFU’s

In this IFSdesignthe focd plane of the telescope is re-formatted into alongdlit by the use of
mirrors. Two sets of mirrors are used, the first set sends horizontal strips of the field off to a seaond
set of distributed mirrors that image the strips at a @mmon focus to form a pseudo it configuration
suitable for entry into a spedrograph (see Figure 1-3). This design hes been used in a nea infrared
spedrograph cdled 3D, built by the MPE group at Garching (Krabbe 1996 Krabbe 1995 Weitzd
1996).

Because the image dli cer uses only refleding surfaces, it is siitable for cryogenic coding - by
building the image dicer in a dewar with a spedrograph the whaoe aparatus can be waed to liguid
nitrogen temperatures and hence reduce the infrared thermal badkground from room temperature
objeds. The metal constructionis more resistant to the thermal cycling processandisless sisceptible
to misalignment, something that has to be considered with cryogenic refractive optics.

The detedor used is a 256 IR array, alowing 16 by 16spatia pixels on the sky and 256
spedral elements per spatia pixel, with two interleared exposures ensuring that the spedra ae
adequately sampled. Ancther advantage to using an all refleding system is that it is completely
achromatic.

In order to match to the plate scde of the telescope, the height of ead dlicing mirror in the
first modue is just 0.4mm high, demonstrating the success of computer aided machining. The
mechanicd tolerances edfied for the mirror surface ad panting is high, and the individua

mirrors have to be aligned with great accuracy to ensure the correct optical path through the slicer.
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Increasing the number of spatial pixels presents a difficult technical challenge - the mirrors
will have an even smaller pitch and the total reformatted dlit length increases, enlarging the second set
of correcting mirrors. It isinteresting to note that the next |FS that the Garching group is intending to
build will be using optical fibres and a lens array to perform the reformatting of the field of view
(Tecza 1998).

Position of dits on object

j::l
Dewar window N
Image of galaxy

\L Second set of mirrors

First set of mirrors

Formatted output
z‘_ﬁ;—f/ of image dicer

Figure 1-3 Image dlicing as used in the 3D spectrometer.

1.3.6 Bare fibre IFU’s

Some of the first image reformatters used on telescopes were made with optical fibres (see
Chapter 2 for a description of optica fibres). The ability of optical fibres to conveniently reformat
light has been known for many years to astronomers, and the versatility of optica fibre and its

possible applications to astronomy has been noted from an early time (for example Angel 1980).
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The principle of the opticd fibre reformatter is sSmple. A bunde of opticd fibresis placed in
the focd plane of a telescope ad the other ends of the fibres are rearanged into a straight line
suitable for dispersion in a spedrograph. This arrangement of fibres is ometimes known as a ‘fibre
dit’. By knowing the relationship between the fibre in the bunde and the fibre on the dit, an image
of the sky can be reconstructed from the spectra on the detector.

Many o these bare fibre feads have been bult, partidly due to their simplicity of
construction and immediate multi plex gain. There ae two main dsadvantages to the bare fibre feeds -
the first is that the fibres do nd completely cover the focd plane of the telescope, resulting in loss of
light in the inter-fibre spaces. The second dsadvantage is that the inpu focd ratio of the telescopeis
not optimal for efficient transmisson o light throughthe fibres (see Chapter 2 and Chapter 3 for
details). These systems are listed with the salient points in rough chronological order below:
» Oneof thefirst bare fibre reformatters was a 53 fibre system tested onthe AAT (Gray 1981, with

200pm diameter fibres arranged in the Cassegrain f/8 focd plane. The length of the fibre feed was
2.5 metres, fealing the RGO spedrograph with a 50mm long fibre dlit. Eac fibre had a diameter
of 1.3 arcseconds on the sky, with the bundle forming a field of view of 17 by 22 arcseconds.

e DensePak | (Barden and Scott 1986 was composed of 49 QSF AS fibres arranged ina 7 by 7
array with ead fibre having a 100um core diameter. The pading fradion losses were large, with
96% of the light lost from the focd plane due to the large buffer diameter of 480um for the fibres.
A dithering method was used to fill in the missing focal plane area.

e DensePak Il (Barden and Wade 1988 was a development of DensePak | and wsed Polymicro
Tedndogies opticd fibres with 320pm core diameter and 415 buffer diameter, resulting in a
significently improved pading fradion d 54%. Used onthe KPNO 4 meter telescope, it gave a
view of 16 by 19 arcseconds with each fibre subtending 2.1 arcseconds.

« HEXAFLEX (Arribas 1991, Arribas 1993and Rasill a 1990 consisted o two fibre bundes which
bath have 61 fibres in them, but the spatial distribution o the fibres was different. The fibre dlits
were aranged so that the fibre bundes could be eaily interchanged acwrding to the observing
programme and telescope andtions. The bundes were used onthe WHT 4.2m telescope, with an
inpu focd ratio of f/11. The spatia coverage and sampling for the first bunde was 13 arcseamnds
and 15 arcsemnds respedively. The sewnd bundle was 60 arcseconds and 17 arcseands
respedively. Both arrangements had low pading fradions but their large scde was considered
useful for various types of science.

e SILFID (Vanderriest 1988 and Vanderriest 1993 is a hexagoral close-padked array of 100um
diameter fibres with 4um cladding arranged in a ompad hexagoral array. The field of view is 16
arcsemnds at the f/8 Cassegrain focus of the CFH telescope, with ead fibre sampling Q7
arcseconds. The length o the fibre dit is 53mm. This is one of the only fibre feeds with over a

hundred fibres in it.
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CHAPTER1 INTRODUCTION

There ae other systems which use bare fibres that have not been mentioned in this text, but
all have the similar problems of packing fraction losses and poor matching of the focal ratio with the
fibre.

1.3.7 Lensarraysand optical fibres

With the poa pading fradion d opticd fibres it seams that the losses are inevitable.
However, by wsing a lens array to feal the opticd fibres a nealy perfead filling fador can be
adhieved. One of the first lens array IFSwas built at the Spedd Astrophysicd Observatory for the 6
metre telescopeAfanasiev 1990).

A focd enlarger converts the f/4 telescope focd ratio into f/124, converting the telescope
scde from 8.6 arcseconds/mm into 0.278 arcsecond/mm. The lens array consists of square lendets
eah 45mm © a side and forming a matrix of 15 by 15lendets. 200um core fibres behind eat
lendet take the mlleded light to a spedrograph dlit and the resultant spedra ae analysed by an
integrated photon counting system.

An dternative is to use amicrolens array to feed the fibres, and this approach has been taken
by the Durham Instrumentation Group. Here, nofocd enlarger is used to change the plate scde of the
telescope. Instead, an array of microlenses diredly samples the focd plane of the telescope and feals
the light into opticd fibres. The Durham unit is cdl ed the SMIRFSIFU (Haynes 1998 and is used as
a fibre feal for the infrared spedrograph CGS4 on the United Kingdan InfraRed Telescope
(UKIRT).

Both methods combine the high filli ng fador achievable with lens arrays with the opticd
reformatting capabiliti es of opticd fibres. This is the method wsed and developed in the rest of this
thesis, and the relative merits of macrolens arrays versus microlens arrays are discussed in Chapter 3.

The different techniques for acquiring data cubes are summarisegline 1-4.

1.4 Conclusions and format of thethesis

Thisthesisis abou the techniques developed for building an integra field spedrograph. The
design is based around the use of opticd fibres as versatile spatial reformatters that alow easy
segmentation o the focd plane of a telescopes into a fibre dlit suitable for fealing into a
spectrograph.

Chapter 2 covers the physicd properties of opticd fibres relevant to their astronamicd use
and efficiency. Test apparatus is explained and the results of tests on various fibres are presented.

Chapter 3 deds with the design aspeds of fibres couged to lens arrays and the relative merits
of maao lens arrays and microlens arrays are compared. It is found that maao lens arrays in

combination with a dedicated fibre-fed spectrograph makes for the best design.
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CHAPTER1 INTRODUCTION

Chapter 4 detalls the mnstruction d the prototype fibre feed ‘SARAL Phase A’ using
maaolenses and a fibre feed with a dedicated spedrograph. The techniques and methods used in
constructing the lens array and fibre feed are discussed, along with tests that investigate their success
and merit.

Chapter 5 presents the cnstruction o two fibre feals for the Cambridge OH Suppresson
Instrument (COHSI). The techniques leant in Chapter 4 are built on and improved, lealing to a

Ay | Scanning Long Slit | y | Multi pupil |

A A

"

X > X

y | Fabry Perot etalon | y | Micromirror |

A A o
X - X
y | Fourier Transform |
Ay | Barefibrebundie |
F(A) A \
ﬁl‘:dataneeds:N
Fourier transformed to
recover the spedral N
information. X - X
y
A
Different shades of grey | Lensarray and fibre feed |
represent the need for A
multi ple exposures. ~

= X
Figure 1-4 Summary of imaging spectroscopy techniques
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successul assembly of four hunded fibre ends into different configurations. Tests performed onthe
COHSI fibre feeds show that the techniques developed with SARAL are successul and produce
results within the stated error budgets.

Chapter 6 covers the different aspeds of data reduction and processng reeded to extrad IFS
information from the raw data frames, deding with two dfferent extremes of IFS data in the form of
well separated fibre spedra and the other with overlapping spedra. Simulations of crosstalk indicae
potential problems for future IFS devices that rely on opimal fibre extradion, and the data reduction
methods are detailed.

Chapter 7 records the performance of the SARAL lens array and fibre feed, showing the
efficiency of the system. Sciencetaken with SARAL ‘A’ isaso presented, alongwith an evaluation
of a novel single object spectrographic mode (the pupil imaging mode) which was being tested.

Chapter 8 presents a design study for SARAL Phase B, a large lens array and fibre feed,
showing the alaptability of the maaolens array with focd reducer. A simple exchange of fore-optics
allows SARAL ‘B’ to be transferred to ather telescopes, demonstrating the versatility of the cosen
focal enlarger system.

Chapter 9 gves the onclusions of thisthesis, the arrent status of other IFS projeds and the

future prospects for integral field spectroscopy in astronomy.

Pagel?2



2. Properties of optical fibres

2.1 Introduction

In this chapter the relevant properties of optical fibres in relation to their astronomical use are
presented. The physical composition of an optical fibre (82.2) leads to an understanding of its optical
properties (82.3) along with some defining parameters for the fibre, such as the presence of foca ratio
degradation (§2.3.2) and internal transmission (82.3.3). These turn out be important considerations for
the optical design of spectrographs involving optical fibres (see Chapter 3).

The methods used for polishing the fibres (82.4) aso determine the efficiency of the fibres, and
optica methods for examining the surface of the fibre and determining the focal ratio degradation are
shown (82.5). Results of the optical tests on different makes of fibres are then presented (82.6).

2.2 Physical propertiesof optical fibres

2.2.1 Physical composition of afibre

The property of total internal reflection has been known and demonstrated in water fountains
(Tyndall 1854) but the practical form of using thin glass strands with an outer transparent layer was
suggested much later (Hed 1954). A fibre consisting solely of a single light transmitting core (see

Figure 2-1) is prone to severe attenuation and scattering, as any imperfection (dirt, scratches, moisture,

ANNN

Core Cladding Buffer Outer layer
%
AN <
N %
= .”, \ %
‘ #\\\
\\}2\\\\

Figure 2-1 Sructure of a step-index optical fibre. The light transmitting core is surrounded by a
lower refractive index cladding. A buffer and outer layer provide environmental protection.

Page 13



CHAPTER?2 OPTICAL FIBRES

contad with aher fibres, etc.) on its outer surface cases loss of tota internd refledion and light
consequently passes out of the fibre. The aldition d an extra layer of lower refradive index materia
(cdled ‘cladding) aroundthe re of the fibre keeps the wre boundry freefrom imperfedions. For the
fibres best suited for astronamy a‘buffer’ is added (usually pdyamide) during the fibre drawing process
for extra protedion o the dadding and a final outer jadket of soft polythene keeps the fibre free from
damage during handling. This type of fibre is cdled a step-index fibre, the name referring to the sharp
radial change in refractive index between the core and cladding.

The other type of fibre in common commercia use isthe GRaded |Ndex (GRIN) fibre. Instead
of using two separate opticd comporents to form an internal refleding surface the GRIN fibre onsists
of asingle mre with an impurity diffused into it. The introduction o impurity into the @re increases the
effedive refradive index of the glass and this diffusion processcreaes agradual reduction d refradive
index with dstancefrom the fibre-axis. Insteal o total internal refledion, the propagating light paths in
the fibre describe sine-like waves. As a @mnsequence of this, GRIN fibres have opticd properties that
make them unsuitable for astronamicd use - most natably, GRIN fibres have large anourts of focd

ratio degradation and poor radial scrambling (s28)§

2.2.2 Thepropagation of light through a step-index fibre

Opticd fibres are waveguides for eledromagnetic radiation at opticd frequencies and can be
fully described by eledromagnetic wave propagation theory. However, their properties can be
approximated and considerably simplified with geometricd optic theory when the wre diameter of the
fibre is much larger than the wavelength of incident light.

A straight fibre with a re refradive index n, is clad with a medium of refradive index n,,
where n > n, (seeFigure 2-2). A ray of light passes throughthe fibre ais from a medium of refradive

index n, onto the perpendicular face @d at an angle a.. The ray is refraded at the face @d and will be

Figure 2-2 Ray of light entering a fibre. A ray entering at the largest possble
angle of acceptance in to the fibee,
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CHAPTER?2 OPTICAL FIBRES

totally refleded at the fibre wall if its angle of incidence is greder than the aiticd angle 6. By

geometry and application of Snell's law, the critical exterior angten be written as:

N.A=n,.sna, =n’ —n; (21)

N.A. isknown as the numerical aperture of the fibre and is a measure of the largest acceptable ane of
light which the fibre will accet. For red fibres there is nat a sharp cut-off angle due to the limits of
geometricd theory, so the working N.A. is usualy defined as the aagle a& which the light inpu or
output falls to 50% of its maximum (radial) value.
The fastest input focal ratio is then given by:
1
f=——
2% N.A

However, the dfeds of diffradion and surfaceirregulariti es tend to reduce the dfedive N.A. for agiven

(2-2)

fibre. A comparison of N.A. with focal ratio and half angle is givemable2-1.

N.A. | f/number | Acceptance cone half angie
0.10 5.00 5.7
0.20 2.45 11.5
0.30 1.58 17.5
0.40 1.14 23.4
0.50 0.87 30.0°

Table 2-1 Conversion table for focal ratios.
2.3 Optical properties of step-index fibres

2.3.1 Radial image and azimuthal scrambling

Idedly, aray transmitted by the fibre in the same aimutha plane @ the ais of the fibre (a
meridoral ray) will remain in the same aizmuthal plane throughou its passage, emerging at the same
angle a from the fibre & it entered (see Figure 2-3). However, in redity a smal but finite diameter
bunde of rays entering a an angle a will gradually disperse in aamuth as the bunde is multiply
refleded by the arved surfaceof the are/cladding boundry. When combined with the large number of
internal refledions atypicd bean makes in a fibre this means that the bean emerges as a hdlow cone
with half-angle a, seen projeded in the far fiedld of the fibre & a ring o light. This is aamuthal
scrambling.

This effed leals to radial image scramblingin the nea field of the fibre. For long peces of fibre
(>10cm) the input image on the fibre forms aradially scrambled image & the output. When thisimageis
dispersed in a spedrograph the resultant point spread function is symmetricd (see Figure 2-4). This
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Input beam from laser \

Coiled length of
optical fibre

Output ‘ring’ of light

Figure 2-3 Azimuthal scrambling. Aninpu beam will undergo azmuthal dispersion and
to a lesser extent radial dispersion. This radial dispersion is due to FRD.

makes them excdlent image scramblers, suitable for high resolution stellar velocity science where

seeing effects and uneven input illumination in slit-based spectrographs can lead to systematic errors.
The boath types of scrambling can be understood in terms of how many refledions a typicd ray

makes. If f istheinpu f-ratio in air, d is the diameter of the fibre and L is the length of the fibre, aray

will undergok reflections in traversing a straight fibre, (Heacox 1983) where:

L

k= 29xd.n.f

(2-3)

An expresgon for the fradion d rays that undergo lessthan ore rotation abou the opticd axis

of the fibre (and to a rough approximation do not undergo radial scrambling) is:

Input fibre face Output fibre face

Figure 2-4 Radial image scrambling. The left hand dagram shows an off-axis ot of light on the
inpu faceof the fibre. For along peceof fibre the output face(shown onthe right) shows that the
light is radially scrambled with respect to the optical axis of the fibre.
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n,.f g
2L @4

which for the shortest fibre feed in COHSI means that lessthan ore in 10 rays passthroughthe fibre

unscrambled.

2.3.2 Focal Ratio Degradation

Focd ratio degradation (FRD) is caused by imperfedions on the cre/cladding boundry that
deviate the shape of the fibre from that of a perfed cylindricd waveguide, causing light to be scatered
into alarger N.A. (seeFigure 2-5). These imperfedions (cdled microbends) can be caised by a badly
fitting cladding, inhamogeneities in the @re materia and changes in core diameter due to the fibre
drawing process Typicd microbend defed sizes are on the order of 1um and in the cae of fused silica

fibres, they can also be caused by stress on the fibre core from the surrounding cladding and jacket.

Figure 2-5 Focal Ratio Degradation. In (a) an ided fibre with no FRD preserves the input
focd ratio at its output. In (b) the dfeda of FRD causes the output bean to fill awider cone
than its associated input beam.

Other losses can be induwced by maaobending, where the fibre is bent into curves with radii of
5cm or less (Clayton 1989. The jaket exerts extra stress on the @re and in extreme caes the

macrobending can cause the N.A. of the fibre to be exceeded, and light to be lost.
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FRD dways causes a lossin efficiency in an astronamicd instrument, as can be seen from
Figure 2-6. Here the throughpu of a fibre is compared with the throughpu of a drcular aperture with
the same diameter as the fibre re. For a given inpu f-ratio the graph shows what output f-ratio is
needed to colled dl the emerging light. The drcular aperture obeys geometric optics with the output f-
ratio equa to the inpu f-ratio, but thisis not the cae for the fibre with FRD. For fast (low numericd
value) inpu beams the output f-ratio is closely matched at first. Beyond fi'5 however the f-ratios quickly
differ, with slower output beams being produced by the fibre, Bijure2-5.

The optimal design for dlit based spedrographs is when the focd ratio of the @llimator optics
match the focd ratio of the telescope. These designs are typicdly matched to the Cassegrain focus
where the f-ratio is typicdly f/8 - f/15. Building an ogticd fibre feed for such a spedrograph then
resultsin light-lossdue to FRD and a deaease in the spedrograph’s efficiency which canna be asoided.
By designing the spedrograph to acammmodate the FRD this loss can be avoided and this method is

discussed in Chapter 3.

A
10 Circular aperture
Output o
f-ratio 5\;
5 Fibre with FRD
0 ! I | > |npu f-ratio

5 10 15
Figure 2-6 Schematic graph comparing a circular apertureto a fibre with FRD.

2.3.3 Internal transmission of fibres

Attenuation in ogicd fibres is due to absorption within the @re material, scatering from
defeds and imperfea refledions from the re/cladding boundry. The transmisdon for a given
wavelength A is charaderised by an attenuation coefficient 8 measured in dedbels per kilometre
(dB/km) - the unusual unit comes from the use of fibre optics in telecommunicaions. The flux a

distancex along the fibre is:

B
T, =T,10 © (2-5)

where T, isthe flux at x = 0 and T, is the flux at distance x in kilometres. The atenuation cen be dso

expressed as:
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T, =T,.e™
where x isin metres, and the conversion from B to Bis:
B= B .In10 023 10‘4.3
10000

The attenuation coefficient is also a function of wavelength (Figure 2-7). These wavelength
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Figure 2-7 Data taken from measurements of different types of step-index fibre. The titles on the right
are the trade names for the fibre from CeramOptec.
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dependent losses are predominantly in the form of intrinsic asorption (lealing to the short wavelength
cut-off in the ultraviolet) and impurity absorption (seen as the absorption dps in Figure 2-7). Intrinsic
absorption is due to charge transfer bands at ultraviolet phaon energies and multiphonon lands in the
near infra-red energy range.

Impurity absorption bands are in the form of transition metal ions in the blue/lUV bands and
2.73um hydroxyl ion bands with overtones appearing at 1.37, 0.95 and 0.72um.

2.4 Polishing the fibres

It isvery important to have high quality end faces for the opticd fibres, sincethat is where light
enters and exits the fibre. Any scratches, chips or imperfedions in these two surfaces cause light to be
scatered ou of the opticd bean, resulting in lossof efficiency. The best way to produce a onsistent,
high quality surfacefinish is by pdishing the fibres. The opticd fibres used in COHSI and SARAL are
listed inTable2-2.

Instrument Made by | Core diameter Cladding Buffer Outer
(um) diameter (um) | diameter (um) | layer
SPIRAL phase A Polymicro 50 70 90 110
COHSI IFS mode | CeramOptec 110 135 155 240
IFU - suppressor Optran WF
COHSI IFS mode | CeramOptec 200 244 262 360
Suppressor - spectrograph Optran WF
COHSI MOS model CeramOptec 150 180 200 300
MOS plate - suppressor Optran WF
COHSI MOS model CeramOptec 250 275 295 400

Suppressor - spectrograpif ~ Optran WF

Table 2-2 Optical fibresused in COHS and SPIRAL.

Polishing is the process of abrading the fibre with a suspension d small,