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Material

Binney and Tremaine, 1987, Galactic

Dynamics:

Section 2: 2.1+2.2, Appendix B.3
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1. Gravitational forces and potentials

A galaxy contains ∼ 1011 stars (plus gas,
dark matter etc.) and is kept from falling
apart by gravity.

Before we study the motions of individual
particles, we show how we can calculate the
gravitation force and potential from a
smoothed and extended density distribution.

The gravitational force ~F (~x) on particle ms

at position ~x is due to the mass distribution
ρ(~x′). According to Newton’s inverse-square
law, the force δ ~F (~x) on the particle ms at
location ~x due to a mass δm(~x′) at location
~x′ is:

δ ~F (~x) = Gms
~x′ − ~x
|~x′ − ~x|3

δm(~x′)

= Gms
~x′ − ~x
|~x′ − ~x|3

ρ(~x′)d3~x′
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The total force on particle ms is now:

~F (~x) = ms~g(~x)

~g(~x) ≡ G
∫

~x′ − ~x
|~x′ − ~x|3

ρ(~x′)d3~x′ (1)

where ~g(~x) is the gravitational field, the
force per unit mass.

Define the gravitational potential:

Φ(~x) ≡ −G
∫
ρ(~x′)d3~x′

|~x′ − ~x|
(2)

Now use (exercise one)

∇~x

(
1

|~x′ − ~x|

)
=

~x′ − ~x
|~x′ − ~x|3

(3)

and find:

~g(~x) = ∇~x
∫
G
ρ(~x′)d3~x′

|~x′ − ~x|

= −∇Φ

So the gravitational vector field is the
gradient of the potential.
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The potential is a scalar field: “easy” to

visualize and to use in calculations.

However, the triple integration is often

expensive.

Therefore we often consider simple and

symmetric geometries, such as:

• Sphere ρ = ρ(r)

• Classical ellipsoid

ρ = ρ(m2) where m2 = x2

a2 + y2

b2
+ z2

c2

• Thin disk
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Intermezzo: divergence and divergence

theorem (BT: B.3)

The divergence of a vector field ~F (~x) is a
scalar field. In Cartesian coordinates:

~∇ · ~F ≡
∂Fx

∂x
+
∂Fy

∂y
+
∂Fz

∂z

If ~F is the velocity field of a fluid flow, the
value of ∇ · ~F at a point (x, y, z) is the rate
at which fluid is being piped in or drained
away at (x, y, z). If ∇ · ~F = 0, then all that
comes into the infinitesimal box, goes out:
nothing is either added or taken away from
the flow through the box

Divergence > 0 Divergence < 0
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The divergence theorem∫
V
~∇ · ~F =

∮
S
d2~S · ~F

The integrated rate at which fluid is being
piped or drained away within a given volume
V is equal to the total flux through the
surface S enclosing the volume. This total
flux is the surface integral of the flux
normal to the each surface element.

(see also:
http://mathinsight.org/divergence idea)

7



Poisson’s equation

If we take the divergence of the

gravitational field (equation (1)):

~∇ · ~g(~x) = G
∫
~∇~x ·

(
~x′ − ~x
|~x′ − ~x|3

)
ρ(~x′)d3~x′

or

~∇2Φ(~x) = G
∫
~∇~x ·

(
~x′ − ~x
|~x′ − ~x|3

)
ρ(~x′)d3~x′ (4)

Using the divergence theorem, the right side

can be evaluated (exercise 2) to find

Poisson’s equation:

~∇2Φ(~x) = 4πGρ(~x)

This equation couples the local density and

gravitational potential.
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Mass

The mass in some volume can easily be

derived from the force field: Integrate both

sides of Poisson’s equation over the volume

enclosing a total mass M. For the right

hand side we obtain:

4πG
∫
V
ρd~x = 4πGM

Using the divergence theorem, we obtain for

the left hand side:∫
V
∇2Φd~x =

∫
S
~∇Φ · d2~S

Combining both sides gives

Gauss’s theorem:

4πGM =
∫
~∇Φ · d2~S

In words: the integral of the normal

component of ~∇Φ over any closed surface

equals 4πG times the total mass contained

within that surface
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Potential energy

The potential energy can be shown to be:

W = 1/2
∫
ρ(~x)Φ(~x)d3~x

“Proof” Assume that we “build” up the

galaxy slowly. We have a galaxy with a

density fρ, with 0 < f < 1. If we add a small

amount of mass δm from infinity to position

~x, the work done is δmΦ(~x). (Note that

Φ(~x) = 0 at infinity).

Ignoring the change in the potential due to

the mass added, this costs an energy∫
δfρ(~x) fΦ(~x)d3~x

where fΦ is simply the potential of density

fρ, and the integral is the integral over the

full galaxy volume.
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We now have to add all the contributions

together to derive the full energy needed to

“build” the full galaxy

W =
∫ 1

0

∫
ρ(~x) fΦ(~x)d3~x df

=
∫
ρ(~x)Φ(~x)d3~x

∫ 1

0
fdf

= 1/2
∫
ρ(~x)Φ(~x)d3~x

For a more precise and elaborate derivation

of the same result, see BT, p. 33+34
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2. Spherical systems

(BT 2.1, 2.2)

Newton’s Theorems

First Theorem: A body inside an

infinitesimally thin spherical shell of matter

experiences no net gravitational force from

that shell
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”Proof” Consider contributions to the force

at point ~r, due to the matter in the shell in

a very narrow cone dΩ. The intersection

angles at 1 and 2, θ1 and θ2, are equal for

infinitely small dΩ. The relative masses in

the cone δm1 and δm2 satisfy

δm1/δm2 = (r1/r2)2. The gravitational

forces are proportional to δm1/r
2
1 and

δm2/r
2
2, and therefore equal, but of opposite

sign. Hence the matter in the cone does not

contribute any net force at the location ~r. If

we sum over all cones, we find no net force !
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Potential within a shell of mass M

Since there is no net force ~g = −~∇Φ = 0,

the potential is a constant.

Using the gravitational potential as already

defined:

Φ(~x) ≡ −G
∫
ρ(~x′)d3~x′

|~x′ − ~x|
(5)

and evaluating the potential at the center

of the shell, where all points on the shell are

at the same distance R, one finds:

Φ = −
GM

R
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Second Theorem The gravitational force on
a body outside a closed spherical shell of
matter is the same as it would be if all the
shell’s matter were concentrated into a
point at its center.

“Proof” Calculate the potential at point ~p
at radius r from the center of an
infinitesimally thin shell with mass M and
radius a. Consider the contribution from
the portion of the sphere with solid angle
δΩ at q′:

δΦp = −
GM

|~p− ~q′|
δΩ

4π
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Now take an infinitesimally thin shell with

the same mass M, but radius r.

Calculate the potential at ~p′. The

contribution of the matter near ~q with the

same solid angle δΩ is:

δΦp′ = −
GM

|~p′ − ~q|
δΩ

4π

Since |~p− ~q′| = |~p′ − ~q|, δΦp = δΦp′. Sum

over all solid angles to obtain

Φp = Φp′

Since Φp′ is the potential inside a sphere

with mass M and radius r, it is equal to

Φp′ = −GM/r, and this is equal to Φp. This

is the same as the potential at r if all the

mass is concentrated at the center.
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Forces in a spherical system

We can now calculate forces exerted by a

spherical system with density ρ(r). From

Newton’s first and second theorem, it

follows that the force on the unit mass at

radius r is determined by mass interior to r:

~F (r) = −
dΦ

dr
~er = −

GM(r)

r2
~er,

where

M(r) = 4π
∫ r

0
ρ(r′)r′2dr′.
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Potential of a spherical system

To calculate the potential, divide system up

into shells, and add contribution from each

shell. Distinguish between shells with radius

r′ < r and shells with r′ > r:

r′ < r : δΦ(r) = −GδM/r

r′ > r : δΦ(r) = −GδM/r′

Hence total potential:

Φ = −
G

r

∫ r
0

dM(r′)−G
∫ ∞
r

dM(r′)

r′

= −4πG
[
1

r

∫ r
0
ρ(r′)r′2dr′+

∫ ∞
r

ρ(r′)r′dr′
]
.

(6)
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Circular velocity and escape speed

The circular speed vc(r) is defined as the

speed of a test particle with unit mass in a

circular orbit around the center, with radius

r. Equate gravitational force to centripetal

acceleration v2
c /r. We derive

v2
c (r) = r

dΦ

dr
= rF =

GM(r)

r
.

The circular speed measures the mass inside

r. It is independent of the mass outside r.

The escape speed ve is the speed needed to

escape from the system, for a star at radius

r. It is given by

ve(r) =
√

2|Φ(r)|

Only if a star has a speed greater than that,

it can escape. It is dependent on the full

mass distribution.
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3. Simple potentials (BT 2.2.2)

Pointmass

Φ(r) = −
GM

r
, vc(r) =

√
GM

r
, ve(r) =

√
2GM

r

If the circular speed declines like 1√
r

we call

it “Keplerian”. The first application was

the solar system.

Homogeneous Sphere

Density ρ is constant within radius a,

outside ρ = 0. For r < a:

M(r) = 4
3πr

3ρ, vc = r
√

4
3πGρ

The circular velocity is proportional to the

radius of the orbit. Hence the orbital period

is:

T =
2πr

vc
=

√
3π

Gρ

independent of radius !
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Dynamical time

Equation of motion for a test mass released

from rest at position r:

d2r

dt2
= −

GM(r)

r2
= −4

3πGρr

This is equation of motion of harmonic

oscillator of angular frequency 2π/T . The

test mass will reach the center in a fixed

time, independent of r. This time is given

by

tdyn =
T

4
=

√
3π

16Gρ

which we call the dynamical time. Even for

systems with variable density we apply this

formula (but then take the mean density).
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Using eq. (6) we find for the Potential:

Φ(r) =

r < a : −2πGρ(a2 − 1/3r2)

r > a : −
4πGρa3

3r

Logarithmic Potential
(for Singular Isothermal Sphere)

assume ρ = ρo/r2. This density distribution
is called the “Singular Isothermal Sphere”.
(We will see later that this is because the
structure of the resulting equations are
similar to an isothermal self-gravitating
sphere).

It is often used to approximate galaxies.
Calculate the mass inside r:

M(r) = 4π
∫ r

0
ρr′2dr′ = 4π

∫ r
0
ρodr

′ =
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= [4πρor]
r
0 = 4πρor

Hence the total mass is infinite. Now

calculate the potential by comparing to

potential at r = 1

Φ(r) = Φ(1)−
∫ r

1
Fdr′ = Φ(1)−

∫ r
1

−GM(r′)

r′2
dr′ =

Φ(1)+
∫ r

1
G4πρo

1

r′
dr′ = Φ(1)+4πGρo

[
ln r′

]r
1

=

Φ(1) + 4πGρo ln r

This model is therefore called the

“logarithmic potential”.
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We have a special relation for the circular

velocity:

v2
c = rF = r4πGρo/r = 4πGρo

vc =
√

4πGρo

The circular velocity is constant as a

function of radius ! We can also express the

potential and density in terms of vc, instead

of ρo:

Φ(r) = v2
c ln r

ρ(r) =
v2
c

4πG

1

r2
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With the circular velocity constant as a

function of radius, the logarithmic potential

gives a description of the circular velocities

in the outer regions of spiral galaxies: In the

first lecture we discussed the rotation curve

of the Milky way:

!"#$%"&'$&('($)*'+$,-)

./
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Axisymmetric models

Generally much more complex, but always

easy to get ρ from Φ:

Miyamoto & Nagai model

Φ(R, z) = −
GM√

R2+(a+
√
z2+b2)2

Special cases:

a = 0 Plummer sphere: density constant at

center, goes to zero at infinity

b = 0 :Kuzmin disk: ρ(R, z) = Σ(R)δ(z)

with Σ(R) =
Ma

2π

1

(R2+b2)3/2
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When b/a ∼ 0.2, light distribution similar to

disk galaxies.
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Axisymmetric logarithmic potential

Extension from spherical symmetric

logarithmic potential that gives a flat

rotation curve at large radius.

Potential:

Φ(R, z) = 1
2v

2
0 ln(R2

c +R2+
z2

q2
) (7)

Circular velocity: vc = v0R√
R2
c+R2

Density distribution:

ρ(R, z) =
v2

0

4πGq2

(1+2q2)R2
c +R2+(2−1/q2)z2

(R2
c +R2+z2/q2)2
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7. Homework assignments

1. Proof the equality in eq. (3)

2. Derive Poisson’s equation starting from

eq. (1). (hint: follow instructions in

BT, page 30-31)

3. Derive the potential from the density for

the point mass, homogeneous sphere,

and logarithmic potential, using

equation (6).

4. The model given by ρ = 1/(1 + r2)2.5 is

a Plummer model. Derive the potential

of this model. What is the total mass ?

5. Give the derivation of the density

related to the axisymmetric logarithmic

potential given in equation 7.
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