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1. Gravitational forces and potentials

A galaxy contains ~ 101! stars (plus gas,
dark matter etc.) and is kept from falling
apart by gravity.

Before we study the motions of individual
particles, we show how we can calculate the
gravitation force and potential from a
smoothed and extended density distribution.

The gravitational force F(Z) on particle mg
at position x is due to the mass distribution
p(Z"). According to Newton's inverse-square
law, the force §F (&) on the particle ms at

location £ due to a mass dém(&’) at location

=/

T IS

S5F (&) = Gms———=8m (&)
|2 — 2|
— Gm3|3_5/ - 3p(:c )d>x



The total force on particle ms IS now:

»_G/Jf‘f%mxxﬁ’ (1)

where ¢(Z) is the gravitational field, the
force per unit mass.

Define the gravitational potential:

B} p(&)d3F
P =G |55 (2)
— 7|
Now use (exercise one)
1 7 —
\ = 3
omm)~wm O

and find:

CBI 3=
(%) = V- /Gp( )d>x

—£E|

= —-Vo

So the gravitational vector field is the
gradient of the potential.



The potential is a scalar field: “easy” to
visualize and to use in calculations.

However, the triple integration is often
expensive.

Therefore we often consider simple and
symmetric geometries, such as:

e Sphere p = p(r)

e Classical ellipsoid ,
2 2
p = p(m?) where m?2 = 22 + ?ZQ + ’22

e [ hin disk



Intermezzo: divergence and divergence
theorem (BT: B.3)

The divergence of a vector field F(&) is a
scalar field. In Cartesian coordinates:

OF, n OFy n OF,

ox oy 0z

If ' is the velocity field of a fluid flow, the
value of V- F at a point (X, vy, z) is the rate
at which fluid is being piped in or drained
away at (X, vy, z). If V- F = 0, then all that
comes into the infinitesimal box, goes out:
nothing is either added or taken away from
the flow through the box

V. F

Divergence > 0 Divergence < 0O



T he divergence theorem

| V- F={ d?5.F
|4 S

The integrated rate at which fluid is being
piped or drained away within a given volume
V is equal to the total flux through the
surface S enclosing the volume. This total
flux is the surface integral of the flux
normal to the each surface element.

(see also:
http://mathinsight.org/divergence_idea)
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Poisson’s equation

If we take the divergence of the
gravitational field (equation (1)):

. . (-3 .
V-g(w)=G/Vf-<|q, )p( a3z

—»/_—»
V2(2) =G [ Vi [——— ) p(@)d3% (4)
A

Using the divergence theorem, the right side
can be evaluated (exercise 2) to find
Poisson’s equation:

V2P (2) = 4nGp(ZF)

T his equation couples the local density and
gravitational potential.



Mass

The mass in some volume can easily be
derived from the force field: Integrate both
sides of Poisson’s equation over the volume
enclosing a total mass M. For the right
hand side we obtain:

4G /Vpdzf’ = 4n7GM

Using the divergence theorem, we obtain for
the left hand side:

/ VQCDd:E’:/ Vo . d25
Vv S

Combining both sides gives
Gauss’s theorem:

4rGM = /ﬁcb 42§

In words: the integral of the normal
component of Vo over any closed surface
equals 4nG times the total mass contained
within that surface



Potential energy

The potential energy can be shown to be:

W = 1/2/p(a§’)d>(:?:)d3a?

“Proof” Assume that we “build” up the
galaxy slowly. We have a galaxy with a
density fp, with 0 < f < 1. If we add a small
amount of mass dm from infinity to position
Z, the work done is ém®d(Z¥). (Note that

o () = 0 at infinity).

Ignoring the change in the potential due to
the mass added, this costs an energy

[ 650 fo@d3z

where f® is simply the potential of density
fp, and the integral is the integral over the
full galaxy volume.
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We now have to add all the contributions
together to derive the full energy needed to
“pbuild” the full galaxy

W= [ [o@ ro@ds
= [s@e@d [ s
— 1/2/p(:ﬁ’)¢(f)d3£

For a more precise and elaborate derivation
of the same result, see BT, p. 33434
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2. Spherical systems
(BT 2.1, 2.2)

Newton’s T heorems

First Theorem: A body inside an
infinitesimally thin spherical shell of matter
experiences no net gravitational force from
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"Proof” Consider contributions to the force
at point 7, due to the matter in the shell in
a very narrow cone dS2. The intersection
angles at 1 and 2, 67 and 6, are equal for
infinitely small d€2. The relative masses in
the cone omq and dmo satisfy

ém1/6mo = (r1/r2)?. The gravitational
forces are proportional to 5m1/r% and
6m2/r§, and therefore equal, but of opposite
sign. Hence the matter in the cone does not
contribute any net force at the location r. If
we sum over all cones, we find no net force !
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Potential within a shell of mass M

—

Since there is no net force g = —Vd = 0,
the potential is a constant.

Using the gravitational potential as already
defined:

p(Z)d37

=/

|2

d(%) = -G (5)

—f|

and evaluating the potential at the center
of the shell, where all points on the shell are
at the same distance R, one finds:

14



Second Theorem The gravitational force on
a body outside a closed spherical shell of
matter is the same as it would be if all the
shell’s matter were concentrated into a
point at its center.

“Proof” Calculate the potential at point p
at radius r from the center of an
infinitesimally thin shell with mass M and
radius a. Consider the contribution from
the portion of the sphere with solid angle
0 at ¢’

GM S
P — G| 4w
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Now take an infinitesimally thin shell with
the same mass M, but radius r.

Calculate the potential at ¢’. The
contribution of the matter near ¢ with the
same solid angle 62 is:

GM 6%2
P’ — ql4m

Since |p—J'| = |p' — 4], 0Pp = 6P,. Sum
over all solid angles to obtain

0P,y = —

Py = P,y
Since dbp, IS the potential inside a sphere
with mass M and radius r, it is equal to
®,, = —GM/r, and this is equal to ®,. This
IS the same as the potential at r if all the
mass is concentrated at the center.
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Forces in a spherical system

We can now calculate forces exerted by a
spherical system with density p(r). From
Newton’s first and second theorem, it
follows that the force on the unit mass at
radius r is determined by mass interior to r:

- . GM(r)
Py = =—""5"

where

.
M(r) = 47‘(‘/0 o(rr'2dr’.
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Potential of a spherical system

To calculate the potential, divide system up
into shells, and add contribution from each
shell. Distinguish between shells with radius
r’ < r and shells with r/ > r:

r'<r: 6d(r) = —-GéM/r
r'>r . 5®(r) = —-GéM /v’

Hence total potential:
G o(r oo dM (v’
c|>=——/ dM(r’)—G/ #
r JO r r

1

= 471G [; /OT p(r’)r’zdr/ + /TOO p(r’)r’dr’] .

(6)
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Circular velocity and escape speed

The circular speed v.(r) is defined as the
speed of a test particle with unit mass in a
circular orbit around the center, with radius
r. Equate gravitational force to centripetal
acceleration v2/r. We derive

The circular speed measures the mass inside
r. It is independent of the mass outside r.

The escape speed ve IS the speed needed to
escape from the system, for a star at radius
r. It is given by

ve(r) = /2|P(r)|

Only if a star has a speed greater than that,
it can escape. It is dependent on the full
mass distribution.
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3. Simple potentials (BT 2.2.2)

Pointmass

o) = -1 w) =T, wl) =2

If the circular speed declines like \/%F we call
it “Keplerian” . The first application was
the solar system.

Homogeneous Sphere

Density p is constant within radius a,
outside p = 0. For r < a:

M(r) = %m“?’p, Ve = T\/%ﬂ'Gp

T he circular velocity is proportional to the
radius of the orbit. Hence the orbital period
IS:

27r 3

T = p—
Ve Gp

independent of radius !
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Dynamical time

Equation of motion for a test mass released
from rest at position r:

d2r GM(r) 4
il R

This is equation of motion of harmonic
oscillator of angular frequency 2#/T. The
test mass will reach the center in a fixed
time, independent of r». This time is given

by

, T 37
dyn = 2~ \16Gp

which we call the dynamical time. Even for
systems with variable density we apply this
formula (but then take the mean density).
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Using eq. (6) we find for the Potential:
d(r) =
r<a: —2nGp(a®—1/3r%)

47 Gpa3
3r

T>a.

Logarithmic Potential
(for Singular Isothermal Sphere)

assume p = p,/r2. This density distribution
is called the “Singular Isothermal Sphere”.
(We will see later that this is because the
structure of the resulting equations are
similar to an isothermal self-gravitating
sphere).

It is often used to approximate galaxies.
Calculate the mass inside r:

W, " /
M(r)=47T/O pr' <dr =47T/O podr’ =
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= [4mpor]y = 4T por

Hence the total mass is infinite. Now
calculate the potential by comparing to
potential at r =1

T —GM(T/)

d(r) = d(1)— /Fdr — &(1)— /

T 1 p T
‘D(l)-l-/l GAmpo—dr = d(1)+47Gpo [Inr]l —
T

This model is therefore called the
“logarithmic potential™.
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We have a special relation for the circular
velocity:

vcz =rF =r4nGpo/r = 4G po

Ve = /4G po

The circular velocity is constant as a
function of radius ! We can also express the
potential and density in terms of v., instead
of po:

d(r) = vg Inr

’UCQ].

A7G r2

p(r) =

24



With the circular velocity constant as a
function of radius, the logarithmic potential
gives a description of the circular velocities
in the outer regions of spiral galaxies: In the
first lecture we discussed the rotation curve

of the Milky way:
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AXisymmetric models

Generally much more complex, but always
easy to get p from &:

Miyamoto & Nagai model

GM

VB2 (at /22 462)2

P(R,z) = —

Special cases:

a = 0 Plummer sphere: density constant at
center, goes to zero at infinity

b= 0 :Kuzmin disk: p(R,z) = >X(R)(z)
1

: Ma
with Z(R) = o (R 02)3/2
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Figure 2.7 Contours of equal density in the (R, z) plane for the Miyamoto-Nagai density
distribution (2.69b) when: b/a = 0.2 (top); b/a = 1 (middle); b/a = 5 (bottom). There
are two contours per decade, and the highest contour levels are 0.3M/a® (top), 0.03M /a3
(middle), and 0.001M/a® (bottom).

When b/a ~ 0.2, light distribution similar to
disk galaxies.
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AXxisymmetric logarithmic potential

Extension from spherical symmetric
logarithmic potential that gives a flat
rotation curve at large radius.

Potential:

2
(R, z) = 303 In<R3+RQ+2—2> (7)

Circular velocity: ve =

Density distribution:

o(R,z) = vd (142¢%)R2+R?>+(2—-1/¢%)2?

ArGg? (R2+R2+22/¢2)2
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Figure 2.9 Contours of equal density in the (R, z) plane for py, (eq. 2.71c) when g4 = 0.95
(top), g4 = 0.7 [bottom). There are two contours per decade and the highest contour
level is 0.1@3/(01%?_]. When gs = 0.7 the models are unphysical because the density is
hegative near the z axis for |z| 2 7R,.
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/7. Homework assignments

1. Proof the equality in eq. (3)

2. Derive Poisson’s equation starting from
eq. (1). (hint: follow instructions in
BT, page 30-31)

3. Derive the potential from the density for
the point mass, homogeneous sphere,
and logarithmic potential, using
equation (6).

4. The model given by p=1/(1 4+ r2)25 is
a Plummer model. Derive the potential
of this model. What is the total mass ?

5. Give the derivation of the density
related to the axisymmetric logarithmic
potential given in equation 7.
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