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ABSTRACT

The direct detection and spectral characterization of exoplanets requires a coronagraph to suppress the diffracted
star light. Amplitude and phase aberrations in the optical train fill the dark zone of the coronagraph with quasi-
static speckles that limit the achievable contrast. Focal-plane electric field sensing, such as phase diversity
introduced by a deformable mirror (DM), is a powerful tool to minimize this residual star light. The residual
electric field can be estimated by sequentially applying phase probes on the DM to inject star light with a well-
known amplitude and phase into the dark zone and anazlying the resulting intensity images. The DM can then
be used to add light with the same amplitude but opposite phase to destructively interfere with this residual
star light.

Using a static phase-only pupil-plane element we create holographic copies of the point spread function
(PSF), each superimposed with a certain pupil-plane phase probe. We therefore obtain all intensity images
simultaneously while still retaining a central, unaltered science PSF. The electric field sensing method only
makes use of the holographic copies, allowing for correction of the residual electric field while retaining the
central PSF for uninterrupted science data collection. In this paper we demonstrate the feasibility of this
method with numerical simulations.

Keywords: exoplanets, electric field sensing, phase diversity, electric field conjugation, computer-generated
holograms, focal-plane wavefront sensing, adaptive optics

1. INTRODUCTION

Since an Earth-like planet is about 10−10 fainter than its host star, there are many technical challenges that
need to be overcome to achieve the required, high contrast. Coronagraphs are used to suppress the star light in
a part of the focal plane, commonly called the dark zone. Many coronagraph types have been designed,1 but
they all suffer, to a varying extent, from aberrations in the optical path; in practice, their performance is limited
by these aberrations and not by the coronagraph design. Among these aberrations, telescope vibrations are a
major concern. Therefore, coronagraph designs that operate mainly in a pupil plane, such as shaped pupils,2

phase-induced amplitude apodization3 and apodizing phase plate coronagraphs,4 have been predicted to achieve
the highest contrast, as pupil plane coronagraphs are largely insensitive to tip-tilt aberrations.

The residual light in the dark zone of the coronagraph can be attributed to different types of speckles.
Atmospheric speckles are generated by turbulence in the atmosphere and typically have a relatively short lifetime
(∼ 20 ms). They are minimized by an adaptive optics (AO) system, which measures the wavefront and corrects
aberrations at > 500 Hz. This correction leaves residual atmospheric speckles inside of the control radius of
the AO system. These speckles have a lower amplitude, but even shorter lifetimes (< 2 ms), as they are the
high-frequency leftovers of the AO system and the atmosphere. These short lifetimes mean that they average
out fairly quickly, leaving an incoherent speckle cloud in the science images.

The other types of speckles are caused by the telescope and instruments themselves. Misalignment and
imperfect optics lead to static speckles. As they are static, they can be calibrated and removed by post-processing
techniques. Quasi-static speckles are generated by slight changes in the optical train, such as bending due to
a changing gravity vector and temperature variations. They change on relatively long timescales (∼ 10 min)
and therefore do not average out during observations. We therefore have to measure them and correct them in
post-processing or correct them during the observations.
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In both cases, we need to estimate these residual speckles, both in amplitude and phase. This estimate
cannot be made in the pupil-plane due to frequency folding:5 high spatial frequency phase aberrations can induce
close-in speckles, without any low spatial frequency phase aberrations in the pupil-plane. This means that we
have to sample higher spatial frequencies than naively predicted, therefore increasing the noise in the recovered
phases. On top of this, only a limited number of combinations of high-frequency phase aberrations actually
induce speckles in the dark zone. A pupil-plane wavefront sensor cannot distinguish between them and has to
measure them all, while estimation in the focal-plane can directly measure the speckles, and therefore is more
photon-efficient. Furthermore, measuring speckles in the focal-plane avoids any non-common-path aberrations
that might bias our sensing results.

The most common, and most successful way of focal-plane electric field sensing is DM diversity.6 This method
puts an accurately known phase probe on a deformable mirror in the pupil plane. This phase probe adds light
with a well-known amplitude and phase to the dark zone of the coronagraph. This light interferes with the
residual light, and the resulting interference pattern is measured. This process is repeated with several different
phase probes to provide the phase diversity needed to estimate the residual electric field.

Instead of sequentially acquiring these probe images, we follow the ideas of Keller7 and obtain them using
holographic spots in the focal plane, generated by a phase plate in the pupil plane. Each of the holographic spots
contains a different phase probe in the pupil plane and can therefore be used to estimate the electric field. The
central spot contains the original point spread function (PSF) and can therefore be used for science, for example
for a fiber pickoff in the dark zone. As the estimation algorithm only uses the holographic spots, we can measure
and minimize the residual electric field without directly imaging the science PSF.

In this paper, we discuss a focal-plane electric field sensing method that works in parallel with the actual
observations. We begin with an overview of the conventional estimation and correction algorithms in Section 2. In
Section 3 we explain the design of the holographic phase plate. We discuss the open and closed-loop performance
and calibration procedures in Section 4. The influence of noise sources and their impact on the sensitivity is
presented in Section 5. Our conclusions are presented in Section 6.

2. ELECTRIC FIELD ESTIMATION AND CORRECTION

In this section, we briefly explain DM diversity in its conventional form and extend the method to large probe
amplitudes where non-linear effects of the probes become important. We also discuss our implementation of
electric field conjugation.

2.1 Pairwise electric field estimation

The propagation of the electric field at the DM surface to the focal plane is described with a transformation C.
As light propagation and apodization is linear in the electric field, C is a linear transformation. The nominal
electric field, without any aberrations at the DM surface, is A = A(x). For simplicity, we assume that all
aberrations in the optical train can be represented as aberrations in the DM plane, and denote the aberrated
electric field there as Eaber(x) = A(x)[1+g(x)]. Note that this is not a linear expansion; it includes all non-linear
terms as well. Additionally, using both the real and imaginary components of g, this can model both phase and
amplitude aberrations.

Including a phase probe φk on the deformable mirror, we can write the electric field in the focal-plane as

Ek = C{Eaber exp[iφk]} (1)

= C{A(1 + g) exp[iφk]} (2)

= C{A(1 + g)}+ C{A(1 + g)(exp[iφk]− 1)} (3)

= C{A(1 + g)}+ C{A(exp[iφk]− 1)}+ C{Ag(exp[iφk]− 1)}, (4)

where φk = φk(x) is the k-th phase probe on the DM surface. If the aberrations are relatively small, the last
term can be neglected, leading to

Ek = C{A(1 + g)}+ C{A(exp[iφk]− 1)}. (5)



Taking the absolute value squared yields the focal-plane intensity

Ik = |Ek|2 (6)

= |C{A(1 + g)}|2 + |C{A(exp[iφk]− 1)}|2 + 2R[C{A(1 + g)}C∗{A(exp[iφk]− 1)}], (7)

where (·)∗ denotes the complex conjugate. Taking the intensity difference between two different phase probes
φk and φ`, we obtain

Ik − I` = |C{A(exp[iφk]− 1)}|2 − |C{A(exp[iφ`]− 1)}|2 + 2R[C{A(1 + g)}C∗{A(exp[iφk]− exp[iφ`])}]. (8)

The first two terms are the incoherent intensity difference between the two probe electric fields. These do not
depend on the aberrations present in the system, and therefore can be calculated analytically. The third term
modulates the aberrated electric field with the difference of the two probe fields. As we observe only the real
part of this interference term, we need at least two image differences for a well-defined inverse.

For small and opposite probes, φ` = −φk and |φk| � 1, this expression becomes significantly simpler. The
first two terms cancel each other and the third term reduces to the conventional expression

Ik − I−k = 4R[C{A(1 + g)}C∗{iAφk}], (9)

where negative indices indicate the use of the opposite probe phase. While having small and opposite probes
leads to symmetric probe electric fields and therefore cancellation of the additive components of the phase probes,
there is nothing preventing us from using large probes or intensity differences between different probes. If we
have N probes, we should gather 2N probe images, and therefore have 2N − 1 independent image differences
instead of just N image differences for using only opposite probes.

Note that for large probes there still is a bias present due to non-linear terms. The second-order terms in the
squared phase exponential will cancel each other as they have the same sign. The third-order terms, however, will
have the opposite sign, thereby creating a bias in the intensity difference. When left uncorrected, this intensity
bias will be visible as an electric field bias in the converged image. This electric field will be stable except for
the photon noise.

Writing Equation 8 as an inner product of two vectors, and stacking these for N probes, we obtain I1 − I2
...

IN−1 − IN

 = M

(
R[C{A(1 + g)}]
I[C{A(1 + g)}]

)
+ Ibias, (10)

where

M = 2

 R[C{iA(exp[iφ1]− exp[iφ2])}] I[C{iA(exp[iφ1]− exp[iφ2])}]
...

R[C{iA(exp[iφN−1]− exp[iφN ])}] I[C{iA(exp[iφN−1]− exp[iφN ])}]

 ; (11)

Ibias =

 |C{A(exp[iφ1]− 1}|2 − |C{A(exp[iφ2]− 1)}|2
...

|C{A(exp[iφN−1]− 1)}|2 − |C{A(exp[iφN ]− 1)}|2

 . (12)

With two or more well-chosen probes, this matrix is invertible using the Moore-Penrose pseudo-inverse, allowing
us to estimate the electric field using the measured intensity differences. The transformation for all pixels in the
dark zone can then be described as a large, blockwise matrix with the matrices M for each pixel on its diagonal.

The probe shapes must be chosen such as to put most light into the dark zone while minimizing non-linear
effects. To first order, the probe electric field is given by the Fourier transform of the phase pattern. For
rectangular dark zones, we therefore use

φp(x) = sinc(wxxx)sinc(wyxx) cos(cxxx + θx) cos(cyxy + θy), (13)
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Figure 1. The phase probes (left column) and their corresponding electric fields in intensity (middle column) and phase
(right column) for a rectangular (top row) and circular (bottom row) dark-zone. The non-linear effects manifest themselves
as broadening of the probe electric fields by frequency folding.

where w is the size of the dark zone, c is its center, and θ is an angle that defines the phase of the probe electric
field. The probe is oversized to provide sufficient probe strength at the edges of the dark zone.

For dark zones that go all the way around the star the situation becomes more difficult. Because the probe
electric field is Hermitian point-symmetric with respect to the star, we cannot choose a single phase for the probe
electric field. We instead vary this phase with position angle and restrict the probe electric field to an annulus
around the star. The phase probe is then generated by taking the inverse Fourier transform of this field. The
other phase probes can be produced by rotating the first probe. This Hermitian symmetry also means that we
need at least three probes instead of only two to create the electric field diversity: while using just two probes,
there are always certain position angles where the phase of the probe electric field is identical for both probes.
The third probe is then used to avoid this degeneracy.

Examples for both types of phase probes can be found in Figure 1, including their corresponding probe
electric field in intensity and phase. At the used probe amplitudes, we can clearly see the non-linear effects of
the phase probes as frequency folding: the autocorrelation of the dark zone can be seen superimposed in the
intensity images.

2.2 Electric field conjugation

Given an estimate for the electric field in the dark zone, we can change the deformable mirror to cancel out this
unwanted light. The most straightforward method is electric field conjugation,8 which finds a phase deformation
that diffracts light with the opposite sign from the central Airy core towards the dark zone. It linearizes the phase
around the nominal deformable mirror setting, therefore making inversion of the otherwise non-linear problem
possible.

The focal-plane electric field after adding a bias phase δφDM to the deformable mirror is given by

Efp = C{A(1 + g) exp[iδφDM ]} (14)

≈ C{A(1 + g + iδφDM}, (15)

= Eaber + C{iAδφDM}. (16)

where we have linearized the deformable mirror bias around the nominal value, and again assumed small aber-
rations and neglected the crossterm of aberrations and DM bias. Combining the real and imaginary parts of the



aberrated electric field into a purely real vector to guarantee real actuator values, we can define

G =

(
R[iCdiag{A}]
I[iCdiag{A}]

)
, (17)

where diag(·) is the matrix with the vector (·) on the diagonal. Setting Efp = 0 we obtain(
R[Eaber]
I[Eaber]

)
= −GδφDM. (18)

As the transformation G is linear, it can be inverted, given enough degrees of freedom (i.e. DM actuators) on
the deformable mirror. This leads to

δφDM = −G+

(
R[Eaber]
I[Eaber]

)
, (19)

where G+ is the Moore-Penrose pseudo-inverse of the matrix G. Note that A = A0 exp[iφDM] includes the
current position of the deformable mirror φDM. As each iteration φDM is different, the linear transformation G
needs to be recalculated. In our simulations, we calculate G once, and use it for each iteration, meaning that
the total DM stroke after convergence has to fall within the linear range (±1 rad). Outside of this range, the
algorithm will diverge. Recalculating G for each iteration lifts this assumption, but still requires the DM stroke
per iteration to be within the linear range, which can be achieved by reducing the gain of the closed-loop system.

3. PUPIL-PLANE PHASE-ONLY HOLOGRAMS

3.1 Modulated cosine phase gratings

The holographic copies are generated by a single, phase-only optical element located in the pupil plane. Each
focal-plane spot is generated with a modulated cosine ripple.9 All these individual holograms are coherently
added, yielding the complex transmittance

t(x) = exp

[
i
∑
k

mk cos(akφk(x) + 2πipk · x)

]
, (20)

where mk, ak and pk are the the modulation depth, the probe strength and the focal-plane position of the k-th
probe image, respectively. Using the well-known Jacobi-Anger expansion

exp[iz cos θ] = J0(z) + 2

∞∑
n=1

inJn(z) cos(nθ), (21)

we end up, neglecting higher-order terms, with the more useful expression

t(x) =
∏
k

{
J0(mk) +

∞∑
n=1

[inJn(mk) (exp[inakφk(x) + 2πix · pk] + exp[−inakφk(x)− 2πix · pk])] + · · ·

}
.

(22)
This allows us to more easily write the focal-plane electric field Ufp(k) = F {Upp(x)t(x)} for some pupil-plane
electric field Upp(x) transmitted through the optical element as

Ufp(k) = Uzero(k) + Ulinear(k) + Ucross(k) + · · · , (23)

where F {·} denotes the Fourier transform, and

Uzero(k) = F {Upp(x)} ∗ δ(k)
∏
k

J0(mk); (24a)



Ulinear(k) = i
∑
k

bk

{
F {Upp exp[iakφk]} ∗ δ(k− 2πpk) (24b)

+F {Upp exp[−iakφk]} ∗ δ(k + 2πpk)
}

;

Ucross(k) = −1

2

∑
k,`
k 6=`

ck`

{
F {Upp exp[i(akφk + a`φ`)]} ∗ δ(k− 2πpk − 2πp`) (24c)

+F {Upp exp[i(akφk − a`φ`)]} ∗ δ(k− 2πpk + 2πp`)

+F {Upp exp[i(−akφk + a`φ`)]} ∗ δ(k + 2πpk − 2πp`)

+F {Upp exp[i(−akφk − a`φ`)]} ∗ δ(k + 2πpk + 2πp`)
}
,

where ∗ is the convolution operation, bk and ck` are the strengths of the first order and cross terms, respectively,
given by

bk = J1(mk)
∏
` 6=k

J0(m`); (25a)

ck` = J1(mk)J1(m`)
∏

n 6=k,`

J0(mn). (25b)

We can clearly see that Uzero(k) is the normal, zero order and is completely unaltered, except for a lower intensity.
The linear Ulinear(k) terms create symmetrical pairs of spots at different positions in the focal-plane for each
phase probe. The two spots are copies of the central spot, but are biased with the positive and negative phase
probe φk(x) respectively. Therefore, they are perfectly suited for pairwise electric field sensing.

The cross terms Ucross(k) also produce symmetric spots in the focal plane, now with the sum and difference
of each pair of probes. They generally have much smaller amplitudes (quadratic instead of linear in modulation
amplitude), meaning increased photon noise compared to the first-order images, and we therefore exclude them
from the pairwise electric field estimation, even though their phase probes are well defined.

3.2 Crosstalk and geometry

As the PSF copies are not spatially confined, some light from every copy will end up in the dark zone of the
zero-order term, therefore degrading the contrast of the science image. As this extra light is not contained in the
linear terms, they will not be measured by the copies themselves. We can correct for this diffracted light using
a small-phase aberration containing only low spatial frequencies. This aberration makes the dark zone dark and
the low spatial frequencies ensure that the copies are still perfect and not perturbed by the zero-order term.

High spatial frequency speckles that lie on top of the dark zones of the copies, are not as easily corrected:
their phase and amplitude are not known beforehand. All speckles from copies will still degrade the contrast.
As the power spectrum of speckles decreases for higher spatial frequencies, placing all copies far away from the
zero-order term may be sufficient for reducing this effect.

Even more troublesome are the speckles from the zero order term that end up in the dark zones of the PSF
copies corresponding to the linear terms. As these linear copies are much dimmer than the zero-order PSF,
even a 10−7 speckle from the central PSF will be seen as a 10−5 speckle in a first-order PSF copy. The naive
solution would be to increase the distances between all spots. However when we observe with a finite spectral
bandwidth, the spots will smear radially. The radial smearing increases linearly with distance from the center,
thereby requiring a smaller bandwidth as we place the copies further out.

A field stop allows us to separate the light for all copies. This ensures that the light from each copy is confined
to a certain area. The placement of all copies, that is the geometry of the hologram, can then be chosen such
that all terms are separated on the detector. There is one important exception to this rule: if cross terms and
higher-order terms perfectly coincide with a linear term, then we can still use the resulting image. In this case



Geometry 1 Geometry 2 Geometry 3

Zero order First orders Cross terms

Figure 2. A few example geometries along with cross term and second-order spot positions. For two probes the square
geometry 1 is the simplest and provides clean first orders. A detector image for this geometry is shown in Figure 3. For
three probes, the compact hexagonal geometry 2 has the disadvantage that cross terms are imaged on top of first-order
terms. The more extended geometry 3 avoids this problem.
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Figure 3. A detector image for the square geometry as indicated in Figure 2. The zero-order and linear terms, cross terms
and second-order spots are indicated. Crosstalk between copies is minimized by using a focal-plane mask between the
coronagraph and holographic phase plates.

the probe electric fields add up to an effective probe field, and the residual speckles are imaged at the same
position so that there is no confusion about speckle location.

In the case of only two probes, we can use a simple square geometry. This ensures that cross terms and
higher-order terms end up farther away from the center and will never overlap. For more than two probes,
multiple geometries are possible. For three probes, two main classes of geometry can be found. In Figure 2 these
three configurations are shown, along with the positions of cross terms and second-order terms. The detector
image for the square geometry is shown in Figure 3 where all terms are indicated. For more than three probes,
even more geometries are possible.
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Figure 4. A schematic view of the simulated optical setup. We could avoid the use of two phase plates by multiplexing an
apodizing phase plate coronagraph and the holographic phase plate. The coronagraph then depends on the focal-plane
mask, although for large masks and shallow coronagraph designs, this dependency is small. In these cases, the aberrated
electric field is often smaller than the static speckles and can be reduced in the same way.

3.3 Comparison with other holographic phase gratings

The coronagraphic modal wavefront sensor10 uses a binary phase grating, which results from two phase gratings
that are blazed in opposite direction and creates copies with opposite phase modulations. This increases the
diffraction efficiency of the linear terms and simultaneously decreases those of the zeroth order and cross-terms.
The zeroth-order term can then be recovered by decreasing the modulation amplitude.

The binary phase grating also introduces a scattered background throughout the focal-plane and therefore
reduces the normalized intensity of our coronagraph. This can be corrected using a small phase aberration in the
pupil plane, given by Electric Field Conjugation or a Gerchberg-Saxton-like algorithm. This phase aberration
must only consist of low spatial frequencies so that it has no influence on the quality of the copies. As the
scattered background floods the whole focal plane, it is also visible in the dark zones of the linear copies. This
can be corrected by changing the electric field in the copies, as calculated analytically from the holographic phase
plate, for the pairwise estimation, instead of the specified phase probes.

In addition, the binary nature means that implementations with pixelated phase-plate holograms cannot
represent grating modulations of less than 1 pixel. This means that the phase probe that is actually in the
copies might be slightly different from the intended value, especially for small probe amplitudes, as are often
used. Again, this can be corrected by using the analytically calculated electric field in the copies for the pairwise
estimation.

Although these deficiencies can be corrected, they increase the complexity in generating the holographic phase
gratings. For simplicity, we restrict ourselves to using cosine phase gratings.

4. RESULTS

4.1 Open-loop performance

We simulate the optical setup shown in Figure 4. To avoid contamination of the copies by the central spot and
each other, we use a focal-plane mask between the coronagraph phase plate and the holographic phase plate.
The two phase plates can be combined by simply adding the two phase patterns. However, this means that some
light will leak from low to high spatial frequencies due to high spatial frequencies and frequency folding in the
APP coronagraph pattern. This can be avoided by designing the APP with the field of view mask in mind, but
this adds an additional dependency to the design.

Our APP coronagraph is designed to have a rectangular dark zone from 3.5 to 8.5 λ/D in the horizontal
direction and -1 to 1 λ/D in the vertical direction. In this dark zone the contrast is 10−10 in the absence of
aberrations. We use an unobstructed aperture to simplify the coronagraph design. Even though we can design
APPs with a dark zone closer to the star and for apertures with central obscuration, spiders and/or segmentation,
this configuration was deemed sufficient for initial testing. The focal-plane mask cuts of any light farther than
16 λ/D away from the star and was smoothed with a two-dimensional Kaiser windowing function with a width
of 6 λ/D to avoid ringing effects caused by a hard cutoff in this mask. We oversized the pupil to accommodate
any residual ringing of this mask.



In the following we only consider phase and amplitude aberrations in the pupil plane. Although this assump-
tion might not be representative of all aberrations in actual optical systems,11 it is often used to simulate the
effectiveness of speckle reduction techniques. We assume a power-law index of np = na = −2 for phase and
amplitude power spectral densities and scale to the required phase or amplitude variances.

We simulate photon noise and detector noise sources including read noise, flat-field noise and dark-current
noise. For each copy that we want to use for estimation, we calculate the centroid of its Airy core to correct for
tip-tilt errors. Then the dark zone and its surrounding pixels are interpolated using Fourier interpolation to the
correct sub-pixel sampling of the dark zone. This step is used to unify the sampling for the dark zone for each
of the spots. These interpolated intensities are then used for estimation of the central electric field.

To show the open-loop performance, we show the response to right-singular vectors of the linearized propaga-
tion transformation. In Figure 5 we show the modes in the pupil and focal planes for our dark zone. As expected
the singular values drop to zero very quickly, indicating that only a limited number of modes is necessary to
correct aberrations.

In Figure 6 we show the response of all modes to a single input mode. We can see that most modes have
small or no non-linear behaviour. Crosstalk is also minimal, except for a few mid-order modes. These modes
still put enough light into the dark zone to trigger frequency folding inside it, leading to non-linear crosstalk.
Generally this doesn’t matter that much as the power in these modes is substantially lower compared to the
lower-order modes.

Figure 7 shows the Pearson product-moment correlation coefficients between measured and actual electric
field, both decomposed into the electric field basis obtained from the SVD of the linear propagation transfor-
mation. Performing a Monte-Carlo simulation for N = 2000 random realizations of the pupil-plane aberrations
shows that higher-order modes don’t correlate well in the σ = 0.5rad case, which means that reconstruction of
these modes is not possible. Reducing the static aberrations in the system leads to an increase in the number of
reconstructible modes. Numerical noise can still be seen in off-diagonal entries.

These plots show that open-loop reconstruction, even for relatively high aberration amplitudes, is possible.
If the photon-noise on the static aberrations is limiting our images, then we could do better in closed-loop
operation. However, in the case that photon-noise from residual atmospheric speckles is the main noise source,
open-loop, post-facto correction should in principle have identical performance to closed-loop operation.

4.2 Closed-loop performance

For closed-loop operation we minimize the light induced by aberrations with a suitable change of the deformable
mirror using electric field conjugation. Here we describe our calibration and simulation procedures for the
closed-loop simulations. These are an extension of the description of the open-loop configuration.

4.2.1 Calibration

As both the electric field sensing transformation and the electric field conjugation transformation are linear, their
combination is also linear. This means that we can use the linear control framework. An interaction matrix can
be constructed from theory, by simply multiplying the full phase diversity matrix with the linearized propagation
matrix from the electric field conjugation.

Alternatively, the interaction matrix can be found empirically. One image taken without any changes to the
deformable mirror serves as our reference image, followed by a sequence of images with modes from a complete
mode basis applied to the deformable mirror. The intensities in the dark zones of the copies are extracted from
each image, and the reference intensities are subtracted from the sequence. The intensity differences between
the copies are then calculated, and the resulting vectors serve as the columns of the interaction matrix, barring a
projection matrix onto the used mode basis. If we want to keep the electric field static, we can use the reference
intensity differences as a bias correction for the electric field sensing.

The choice of mode basis for this calibration is crucial. A simple actuator poke will not change the intensities
much, requiring long exposure times. A better mode basis can be found by taking the right-singular vectors of
the theoretical interaction matrix. Their singular values tell us how effective this mode is at putting light into



1 2 3 4 5

20 25 30 35

40

45

50 55 60

11 12 13 14 15

65

6 7 8 9 10

2 4 6 8 10
3

2

1

0

1

2

3

2 4 6 8 10
3

2

1

0

1

2

3

2 4 6 8 10
3

2

1

0

1

2

3

2 4 6 8 10
3

2

1

0

1

2

3

2 4 6 8 10
3

2

1

0

1

2

3

2 4 6 8 10
3

2

1

0

1

2

3

2 4 6 8 10
3

2

1

0

1

2

3

2 4 6 8 10
3

2

1

0

1

2

3

2 4 6 8 10
3

2

1

0

1

2

3

2 4 6 8 10
3

2

1

0

1

2

3

2 4 6 8 10
3

2

1

0

1

2

3

2 4 6 8 10
3

2

1

0

1

2

3

2 4 6 8 10
3

2

1

0

1

2

3

2 4 6 8 10
3

2

1

0

1

2

3

2 4 6 8 10
3

2

1

0

1

2

3

2 4 6 8 10
3

2

1

0

1

2

3

2 4 6 8 10
3

2

1

0

1

2

3

2 4 6 8 10
3

2

1

0

1

2

3

2 4 6 8 10
3

2

1

0

1

2

3

2 4 6 8 10
3

2

1

0

1

2

3

2 4 6 8 10
3

2

1

0

1

2

3

2 4 6 8 10
3

2

1

0

1

2

3

2 4 6 8 10
3

2

1

0

1

2

3

2 4 6 8 10
3

2

1

0

1

2

3

100

10-1

10-2

10-3
0 20 40 60 80 100

Mode number

R
e
la

ti
v
e
 s

in
g
u
la

r 
v
a
lu

e

2 4 6 8 10
3

2

1

0

1

2

3

Figure 5. The principal pupil-plane modes and their corresponding focal-plane responses and singular values for an
unobstructed aperture and a rectangular dark-zone from 3.5 to 8.5λ/D in x, and −1 to 1λ/D in y.
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Figure 6. The response of the electric field measured by the holograms while varying the indicated mode in the input.
Most modes are reasonably well behaved. Cross talk increases towards higher actuations as expected.
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the dark zone. We can therefore increase the stroke of that mode on the deformable mirror during calibration
to decrease the required exposure time, while still making sure that we are still within the linear regime.

The interaction matrix can then be inverted to obtain the control or reconstructor matrix. The exact method
used for inversion influences the closed-loop performance of the speckle suppression method. A full Moore-
Penrose pseudo-inverse will degrade performance by also correcting badly-sensed modes. A modal cutoff, which
sets the gain of badly-sensed modes (modes with a low singular value) to zero, can be performed to reduce this
effect. Any aberrations in those modes will not be corrected. Alternatively we can use Tikhonov regularization,
which simply reduces the gain on badly-sensed modes, instead of totally eliminating them from the correction. In
both cases, we have to tune one parameter (number of corrected modes or regularization parameter) to achieve
optimal performance. Although better control algorithms can be used, we restrict ourselves to these two for
simplicity.

4.2.2 Simulation

The atmosphere is simulated by a phase screen with a Kolmogorov power spectrum. The adaptive optics system
is simulated as a transfer function on this power spectrum. The resulting power spectrum is

F (u) ∝ H(u− uo)u−11/3, (26)

where H(u) is the Heaviside function and uo is the outer spatial frequency of the adaptive optics control area.
Correction was done on a 20 × 20 deformable mirror. Influence functions were assumed to be Gaussian with a
standard deviation of half the interactuator spacing.

For long integration times we need to average our intensity images over many random phase screens. In the
limit of infinite integration times we can ignore the speckle pinning term, yielding

Ilong = S|E|2 + Iatmos max[|E|2], (27)

where E is the electric field without atmospheric effects, S is the Strehl ratio of a PSF after the adaptive optics
system, and Iatmos is the incoherent atmospheric halo after the adaptive optics system. This incoherent halo is
given by simulation of many phase screens for an unaberrated PSF and only needs to be calculated once. This
approach allows us to perform many simulations averaged over atmospheric speckles without needing an order
of magnitude more computing time.

Performing closed-loop simulations, we observe convergence to photon-limited measured electric fields, as can
be seen in Figure 8. The choice of control algorithm changes the attainable contrast, as is shown in Figure 9. In
the rest of this paper we will use the modal cutoff inversion to set a baseline. Other, more complicated control
algorithms, for example Kalman filtering based controllers12 or predictive control, will improve performance
beyond this baseline.
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5. ERROR ANALYSIS

By adding noise sources to the closed-loop simulations, we can analyze the noise sensitivity of the speckle
suppression algorithm. In this section we describe the most dominant noise components: photon shot noise,
residual atmospheric speckle noise, flat-field noise, changing speckle field with time and broadband light effects,
from both a theoretical and numerical perspective. Noise sources in phase diversity have been covered before.13

Instead we will focus on the noise sources where they are relevant or differ in our method.

5.1 Photon shot noise

As photon shot noise is the fundamental limit, we should always strive for photon-noise-limited performance. In
that case the variance of the intensity differences is

σ2
Ik−I` = Ik + I`, (28)

where Ik and I` are the number of photons in each pixel for the respective probe images. For Ik, I` � 1, we
can assume a normal distribution, and these variances can be transformed into covariances of the electric field
components as

CE = M+diag[σ2
Idiff

](M+)T , (29)

where M is the DM diversity matrix defined in Equation 10, and Idiff is the vector on the left-hand side of the
same equation. A ten-fold increase in the number of incoming photons therefore leads to

√
10-fold decrease in

the standard deviation of the electric field components, which is a ten-fold decrease in the standard deviation of
the speckle intensities in closed-loop operation.

This is exactly what we see in the simulations in Figure 9, at least for the measured electric fields. The actual
electric fields still have a bias compared to the measured electric fields and therefore their absolute intensity is
higher, although this intensity is more stable compared to lower photon fluxes.

5.2 Fast changing atmospheric speckles

Good performance on ground-based telescopes requires resilience against the fast residual atmospheric speckles
remaining after the AO correction. We can describe the interaction of the residual atmospheric speckles with
the residual electric field as a speckle-pinning effect.14 The electric field of the probe images in the focal-plane
can be decomposed into three components as

Efp = Eatmos + Eprobe + Eresid, (30)

of which we measure the intensity

I = |Efp|2 (31)

= |Eatmos|2 + |Eprobe|2 + |Eaber|2 (32)

+ 2R[Eatmos]R[Eprobe] + 2I[Eatmos]I[Eprobe]

+ 2R[Eatmos]R[Eaber] + 2I[Eatmos]I[Eaber]

+ 2R[Eprobe]R[Eaber] + 2I[Eprobe]I[Eaber].

Every pair of electric fields generates a speckle-pinning term. When integrating on the detector, we measure the
time-averaged intensity 〈I〉t during that time. For long integration times we assume 〈R[Eatmos]〉t = 〈I[Eatmos]〉t =
0, and we obtain

〈I〉t = 〈|Eatmos|2〉t + |Eprobe|2 + 〈|Eaber|2〉t (33)

+ 2R[Eprobe]〈R[Eaber]〉t + 2I[Eprobe]〈I[Eaber]〉t.

We therefore obtain the same result as before when we neglected atmospheric aberrations, except for an incoherent
atmospheric background that does not depend on the probe electric field. It is therefore subtracted out in the



intensity difference. However, for finite integration times, 〈R[Eatmos]〉t, 〈I[Eatmos]〉 6= 0, and we make an error in
the estimated aberrated electric field of

σ|Eaber| = 〈|Eatmos|〉t
√

t0
tint

, (34)

where tint is the integration time, and t0 the speckle coherence time of the atmospheric speckles. Within the
control area of the AO system, t0 is given by the speed and gain of the AO system; outside the control area, it
is given by the atmospheric coherence time.

This residual atmospheric electric field gives a lower limit on the performance of any electric field sensing
method on ground-based telescopes. Without any other noise sources in the simulations, we are indeed limited
by these residuals. When introducing photon noise, the incoherent contribution of the residual atmospheric
speckles increases the photon shot noise, effectively reducing the number of photons available for estimation.

We can therefore increase the probe amplitudes to increase the response of the electric field estimator until
the probes have intensities similar to the residual atmospheric speckles. This, however, increases the non-linear
effects of the probes and therefore necessitates the use of the intensity biases explained in Section 2.

5.3 Flat field

Flat-fielding errors lead to an additional bias in the intensities. A zero electric field will be measured as

Idiff,meas = fkIk − f`I` 6= Ik − I`, (35)

where fk is the flat-field of probe image k. Therefore, the variance of the measured intensity difference is

Var[Idiff,meas] = 2Var[fk]I2
k , (36)

where we assumed that the flat-fielding error and the intrinsic intensities were the same. This intensity difference
bias results in an electric field bias via the M+ matrix defined in Equation 10. This means that the electric field
bias scales linearly with the intensity in the dark-zone and the flat-fielding error.

This can also be seen in our simulations. In Figure 10 the achieved contrast as a function of flat-fielding
error is shown for several photon fluxes. Worse AO performance leads to a larger influence of flat-field errors. If
the tip-tilt variance is kept stable, then the flat-fielding error creates a bias in the electric field, which is stable
up to photon-noise-limited performance. When the PSF starts to drift however, this bias changes per iteration,
resulting in large variances in the closed-loop contrast. The latter effect can also be seen as a solution to the
problem. Drift scanning modulates tip-tilt and takes many images during one iteration. These images are then
shifted and added to form the image used for correction. This effectively averages the flat field over many pixels,
decreasing its standard deviation by a factor

√
Npix.

5.4 Changing speckles

Under realistic circumstances, the beam may reflect off rotating surfaces, leading to rotating speckle fields.
Figure 11 shows the result of a simulation of this scenario. We can clearly see that the closed-loop performance
correlates with the rotation angle since the last iteration, indicating that the majority of the residual speckles in
closed-loop operation were differential speckles compared to the previous iteration. Performing simulations with
changing quasi-static speckles showed similar effects.

A predictive algorithm can significantly improve this performance by predicting the movement or drift of the
changing speckle background and correcting for the time lag in our correction algorithm. However, even this
simple algorithm improves on the open-loop contrast except at the points of highest rotation speed. Note that
these simulations heavily depend on the speed of convergence of the algorithm. In reality, model errors in the
correction algorithm limit convergence speed to > 20 iterations instead of ∼ 3 iterations in these simulations.
This makes predictive algorithms even more important in realistic circumstances.
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Figure 12. Increasing the spectral bandwidth decreases the achieved contrast. Applying a correction in the bias intensities
improves the contrast, indicating that a significant part of the uncorrected contrast was due to an offset in the electric
field. Both uncorrected and corrected simulations diverge when the spectral bandwidth reaches ∼ 4%, which corresponds
to a ∼ 1.2λ/D shift of the speckles at the positions of the linear terms.

5.5 Spectral bandwidth

When using light with a non-zero spectral bandwidth, the PSF starts to smear in the radial direction; each of
the PSF copies will smear in a different direction and with a different strength. If a speckle is smeared by more
than 1λ/D, then it starts to overlap with other speckles and the measurements will be incorrect. As our copies
are much farther away from the star than the dark zone, we expect to be limited by a much smaller bandwidth
than conventional DM-diversity based algorithms.

Our simulations only contain the wavelength scaling of the PSF. The origin of other chromatic aberrations
are not well known,15 and therefore hard to simulate. Broadband wavefront control tries to correct for these
aberrations16 and may indeed be complicated by chromatic electric field measurements.

In Figure 12 the achieved contrast is shown as a function of spectral bandwidth. The contrast steadily
increases until divergence at ∼ 4%, which corresponds to ∼ 1.2λ/D at the copy positions. Part of this increase is
a change in the bias electric field, which we can correct for by subtracting an intensity bias obtained by simulating
the unaberrated system. This decreases the achieved contrast by a factor of ∼ 10 at most, but still diverges at
the same spectral bandwidth as before.

We can increase the spectral bandwidth by using a chromatic magnification that counteracts the wavelength
scaling of the PSF. This puts every spot at the same position in the focal-plane, regardless of wavelength. These
kind of optical systems were originally proposed for speckle interferometry,17 but are suitable for our purpose.

6. CONCLUSIONS

In this paper we studied a new method for focal-plane electric field sensing. It is based on phase diversity, but
instead of acquiring the probe images sequentially by changing the DM, a static holographic phase plate in the
pupil-plane is used to divert some light from the science beam and use it for phase diversity. The deformable
mirror is not used during the electric field estimation, and an unaltered science PSF is still available. This allows
for estimation of the residual electric field during the actual observations and for closed-loop correction using
electric field conjugation.

We generalized the phase diversity method to large probe amplitudes and explained the design of the holo-
graphic phase plate. We used numerical simulations to show open-loop and closed-loop performance with realistic
aberrations. These simulations show that this method behaves as expected under photon noise, is resilient to
fast atmospheric speckles up to the fundamental limit, and can perform under realistic flat-fielding errors. We
have shown that we are able to correct slowly changing speckle backgrounds in closed loop and that the spectral



bandwidth is limited to ∼ 2%, due to the wavelength scaling of the PSF. The latter can be extended by using a
chromatic magnification that counteracts this scaling.

Future work will include implementing this method in the laboratory operating in open-loop and closed-
loop. Afterwards, open-loop operation will be attempted on-sky to show resilience against a real fast speckle
background.
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