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Abstract

Large galaxy surveys bring in enormous amounts of photometric data of which spectroscopic follow-up
would be desirable, but is practically infeasible. Still we would want to know the redshift of these
sources to infer information on the evolution of our universe. Many methods to assign redshifts to
photometric data are, however, biased, but [van Daalen and White, 2018] conceptually proved the
effectiveness of their extension of existing methods for using cross-correlations to derive redshift
distributions for photometric galaxies. Their method simultaneously yields a redshift-dependent galaxy
luminosity function, based on a parametric model using a Schechter function to fit to data. Still,
higher order effects like K-corrections and other theoretical defects play a role. Results of additions to
the model to counteract these defects are presented and explained. These include the addition of a
second Schechter function, the addition of a new parameter to fit the luminosity dependent galaxy bias
factor and the incorporation of the K-corrections. The extended model with the second Schechter is
shown to work sufficiently on a simulated mock galaxy catalogue. The addition of the luminosity bias
parameter seems to have a negative effect on results, but can be helpful when applying the method to
actual data. Methodology for incorporating K-corrections is presented and preliminary results are
shown, but these show that the model is not flexible enough yet. We present possible causes hereof
and discuss future paths research should thus take.
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Introduction

Over the last few decades, cosmological studies have made significant progress due to technological
advancement enabling researchers to perform larger and more detailed cosmological simulations to
predict observations progressively more precise using constraints from others, and to constrain the
importance of physical processes in the history of our universe. Current state-of-the-art cosmological
simulations are quite able to recover observational constraints from large imaging surveys, which is
advantageous for furthering our knowledge of the evolution of the Universe. Simulating the universe
enables us to take a snapshot at any given cosmological timestamp, or redshift, and compare it with
current observations from more distant regions of the observable universe. Still the underlying physics
could be simulated and constrained to greater detail, to further our understanding of the origin and
evolution of our universe.

One of the key constraints in this process is recovering the galaxy luminosity function (GLF),
φ(L)dL, of the galaxy population, offering powerful constraints on models of galaxy evolution since all
galaxy formation theories and simulations should return a GLF equal to the observed one. Additionally,
the GLF is linked to a selection function on how many galaxies are visible to us given their redshift
and luminosity, and thus linked to the redshift distribution of galaxies. Observing and constraining
this redshift distribution helps with studying cosmological parameters, galaxy scaling relations and
gravitational lensing effects.
The GLF describes the number density of galaxies with luminosities in the range L ± dL/2. An
example is seen in Figure 1.

The GLF commonly seems to follow a power law that is truncated by an exponential cutoff at
the bright end (lower absolute magnitudes). This behaviour is observed in all wavebands, so that the
universal GLF is commonly fitted by a Schechter function of the form:

φ(L)dL = φ∗
(
L

L∗

)α
exp

(
− L

L∗

)
dL

L∗
, (1)

or, transformed to absolute magnitudes by M −M∗ = −2.5 log(L/L∗):

φ(M)dM = 0.4 ln(10)φ∗100.4(α+1)(M∗−M) exp
[
−100.4(M∗−M)

]
. (2)

Here M∗ (L∗) is a characteristic magnitude (luminosity), α is the faint-end slope, and φ∗ is an overall
normalization. An example is seen in Figure 2
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Figure 1: (From [Blanton et al., 2005]) Example GLF for r-band magnitudes taken from the SDSS
galaxy survey. µ50,r here signifies the half-light brightness and α2 is the low-luminosity slope.
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Figure 2: Schechter functions for various values of the low luminosity slope parameter α.

Technically, the parameters of a GLF depend not only on the waveband, but also on the mor-
phological type, color, redshift and environment of a galaxy. Therefore, one of the most challenging
problems in galaxy formation and cosmology is to explain the dependence of these parameters on
galaxy properties. It should be noted that the universal shape, which we will study here, can be
explained by feedback processes on top of a halo mass function with the same shape (power law and
exponential cutoff) due to the effect of galaxy evolution through cosmic time. This we can simulate
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given certain physical models and compare to observations. Therefore, to further our understanding
of this evolution, a well-observed universal GLF through cosmic time is very valuable. Of course, if
techniques for constraining this universal GLF work, they can also be applied to datasets selected on
galaxy type, stellar mass, star formation rate etc.

To measure this universal GLF accurately, we need cosmological volumes that are as extensive as
possible (choosing observed scales to allow the GLF to be as universal as possible), especially at the
brighter ends of the luminosity function, where galaxies are rare. These large datasets are offered by
general large imaging surveys, but the photometric redshifts derived from these lead to non-negligible
uncertainties in the absolute magnitude of the galaxies, see e.g. [Bolzonella et al., 2000]. Therefore
the aforementioned advantage offered by simulations cannot be exploited as well as we would like.
Spectroscopic surveys, on the other hand, provide accurate redshift measurements, but can only do
this for far fewer galaxies, because spectroscopy can only be performed on bright enough targets.
Additionally, targets need to be far enough apart on the sky to avoid fiber collision on spectroscopes,
and taking spectra is expensive, meaning that even if we have an ideal sample of bright, far apart
galaxies, we can only take spectra for a fraction of them.

Many methods for deriving this redshift information indirectly from the vast photometric surveys
already available have been developed, usually using a library of Spectral Energy Distributions (SEDs)
and/or spectroscopic sources to train algorithms assigning a redshift to each galaxy. In general,
however, these methods do not yield unbiased redshift distributions, because the data used to train
algorithms consists of a biased population, namely those galaxies of specific (spectral) types, or those
bright and/or close enough, see e.g. [Cunha et al., 2009, Bezanson et al., 2016].

Naturally, methods countering these problems in application have been researched by e.g.
[Lima et al., 2008], but avoiding photometric redshifts is the preferable option. One way to do this
is by using information about how strongly photometric galaxies cluster with sources with a known
redshift. Even if there is a difference in galaxy bias (with respect to the underlying matter density
field) between the two samples, both should still trace the same underlying large-scale structure as
the overall galaxy population, making it statistically likely that two galaxies being close on the sky
means that they are close along the line of sight as well. In figure 3 an example of this can be seen.
Therefore, we could infer a statistical redshift distribution for photometric galaxies from clustering
measurements.

Techniques exploiting clustering information to obtain redshift information have been used
to characterize the errors of photometric redshift catalogues, reconstruct the density field or de-
rive redshift distributions from clustering directly, e.g. [Padmanabhan et al., 2007, Choi et al., 2016,
Cucciati et al., 2016] and [Matthews and Newman, 2010, Schulz, 2010, McQuinn and White, 2013],
and [Ménard et al., 2013, Morrison et al., 2017]. Using clustering information one could again com-
pare the observationally derived redshift-distribution with data from simulations (like Semi-Analytic
Methods as in [Bates et al., 2019]), again prone to selection bias as before. Furthermore, galaxy bias
factors with respect to the matter density field are impactful in this context, since there is no natural
way of correcting for them. Therefore, in this thesis we fit the observations to data derived from
modelling the GLF by the aforementioned Schechter function, therefore enabling us to model the bias
evolution with redshift as well.
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Figure 3: Positions of objects around a redshift of z = 0.155 from a Mock Galaxy survey extracted
from the Planck Millennium all-sky lightcones from [Henriques et al., 2015]. Blue points are randomly
selected objects satisfying conditions for observation of apparent magnitude, and Orange points are
randomly selected viable candidates for spectroscopic measurements. For details on selection, see
Section 2.3. Notice the higher (lower) density of orange dots where blue dots are more (less) dense,
signifying both samples tracing a similar underlying density field.

We will improve the method introduced in [van Daalen and White, 2018] (which we will abbreviate
to vDW) by implementing further flexibility in their model (which we refer to as the ‘vDW (fiducial)
model), beginning with the addition of a second Schechter function to be fitted. Furthermore, we
implement K-corrections 1 to the derived absolute magnitudes by binning our data over colour
and discuss how independent the bias evolution can be from the model, or if it should be given a
free parameter as well. These higher order effects are of importance when applying the model to
observational data, while it has been proven conceptually to work on simulated data altered to fit
a single Schechter Function in vDW. Since losing information on properties of galaxies in each bin
seemed to not be a problem, efforts have already been made to include colour binning in the analysis
by [Rahman et al., 2016, Bates et al., 2019].

To this end, in the first chapter we present the underlying theory exploited by this model. This
involves the theories surrounding the formation of the Large Scale Structure (LSS), the methodology
behind clustering and the definition and details about the GLF.
In the second chapter we will explain the inner workings of the fiducial method introduced by vDW.
We will give an overview of the theoretical background, process and the ways in which this model
was tested. Hereby we thus proved that by cross-correlating two types of surveys, photometric and
spectroscopic, luminosity functions for large volumes can be derived with smaller redshift uncertainties
than otherwise possible.
Then, having explained the fiducial model, in the third chapter we explain the alterations that we
make to the fiducial model, and show how these affect the outcome, discussing outcomes and future

1Corrections (due to the galaxy spectrum not being flat) to the distance modulus depending on the redshift of the
spectrum of the galaxy between wavebands. For a general overview, see [Hogg et al., 2002].
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prospects.
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Chapter 1

Galaxy Clustering and the Luminosity
Function

As explained in the introduction, to discuss our fiducial model we first need to explain the main
theoretical context we derive this model in. This includes a longer introduction about the luminosity
function, the formation of LSS and the phenomenology behind clustering. We will do this in the
context of our assumed cosmology, the ΛCDM model from [Planck Collaboration, 2016].

1.1 The Galaxy Luminosity Function

We have already introduced the GLF φ(M)dM in the introduction (equation (2)), but have spared
further details and remarks for this section. A general overview of previous research concerning the
GLF is found in [Johnston, 2011].
Suppose we have a magnitude limited sample including all galaxies in a patch of sky with m <
mlim, where mlim denotes the limiting apparent magnitude of our sample. The absolute magnitude
corresponding to a given m is then given by:

M = m− 5 log(dL(z)/Mpc)− 5−K(z)− E(z) + L, (1.1)

where E(z) is a correction factor for dust extinction, L is a term for lensing magnification due to
gravitational lensing and K(z) is the K-correction, correcting the observed flux into a fixed rest-frame
band, so that absolute magnitudes are the same for identical galaxies at different redshifts. Note that
K(z) = 0 if galaxy spectra are flat. K-corrections depend on the type of galaxy and its spectra to
correct for the magnitude difference due to redshifting of this spectrum. Dust extinction and lensing
magnification effects are outside the scope of this thesis and will be ignored from now on.

Because the survey is magnitude limited, a galaxy with a luminosity L will only be part of the
survey if it is located within a maximum luminosity distance dmax, or zmax, such that:

5 log(dmax(L)/Mpc) = mlim −M∗ − 5 + 2.5 log(L/L∗)−K(zmax), (1.2)

where 2.5 log(L/L∗) = M∗ −M for a reference object with absolute magnitude (luminosity) M∗ (L∗).
Thus we can introduce a maximal volume Vmax out to zmax in which an object with certain luminosity
L can be detected:

Vmax(L) =
Ω

3

[
dmax(L)

1 + z

]3

, (1.3)
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where Ω is the area of the sky covered by the survey. Then φ(L)dL =
∑

i

1

Vmax(Li)
, where i ranges

over all galaxies in L± dL/2. To understand this, recall the short introduction and definition of the
GLF as the number density of galaxies per unit luminosity (or magnitude) in equation (2). A natural
question to ask now is what the dependencies of the GLF are, and what it generally looks like, which
we discuss below. The discussion is based on [Mo et al., 2010, pp. 654-658].

Firstly, the observed GLF is generally bimodal ([Binney and Tremaine, 2008, pp. 757 & 777]),
which is explained due to its dependence on galaxy color and thus observed waveband. Redder galaxies
are better fitted with a Schechter function with brighter characteristic magnitude M∗, and a shallower
faint-end slope than the bluer galaxies. In [Blanton et al., 2005] it is shown that the red population
does seem to show an upturn at the faint end, but these galaxies usually have low surface brightness,
and the significance of this is difficult to quantify due to cosmic variance effects due to the small
cosmic volume in which these galaxies can actually be detected. Still, both populations seem to be
fitted well by a Schechter function separately (possibly ignoring the upturn).

Additionally, morphology of galaxies is strongly correlated with their color, and the bright end
of the GLF is dominated by ellipticals, while the intermediate range is by spirals, and the faint by
irregulars and dwarf ellipticals.

Secondly, galaxy environment could be of impact on the shape of the GLF. The GLF has been
estimated for a number of nearby galaxy clusters, and compared to those in the general field. The
observational results show the GLF of cluster galaxies has a steeper slope, with a marked faint-end
upturn, as well as a more extended tail at the bright end. Within the same morphology class, however,
the GLFs do agree between cluster and field galaxies. This means the relative amplitudes of the GLFs
of different morphological subclasses change with environment.

Lastly, the dependence of the GLF on redshift has been studied, and current telescopes are able to
give complete samples of galaxies out to very faint magnitude limits, in various bands, up to higher
redshifts. The red and blue populations show different evolution through time, and as a consequence
the GLF has indeed changed significantly. For instance, the total stellar mass density in the red
population has doubled since z ∼ 1 while that in the blue stays roughly constant, so galaxies form in
the blue regime, but when star formation is quenched they join the red population.

There is quite a noticeable difference between observed galaxy counts and the predicted galaxy
counts in a non-evolving GLF model in non-expanding space. Two different kinds of evolution can
explain this. The first of these is luminosity evolution of galaxies, where the comoving number of
galaxies does not change, but at higher redshift the intrinsic brightness of the galaxies increases,
meaning at higher redshifts galaxies are brighter. The second explanation would be number evolution,
due to mergers and creation of galaxies. In the case of only luminosity evolution, galaxy counts can be
obtained from the local GLF together with an assumption about how luminosities of galaxies evolve
with redshift. To include this effect, one often adds an E-correction, E(z), in the distance modulus,
signifying the change in magnitude in the observational pass-band for a galaxy at redshift z when it is
evolved to present time.

As can be seen, there are many effects to take into account when trying to determine the
observational GLF, and the question is which of these is most important in the context of the fiducial
model as mentioned in the Introduction.
Since we are searching for a universal GLF, only limited by magnitude and spatial scales chosen (as
will be discussed later on), the effects due to color, morphology or environment should not impact
our results too much, although it is good to keep them in mind and know where they come from.
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Furthermore, due to random selection of targets, which are sampled in the same manner, only differing
in conditions for objects we have photometric and/or spectroscopic information on, our model will be
independent of bias that could enter through selection effects. This we will explore in more detail in
chapter 2 and 3.

1.2 Formation of Large Scale Structure

The discussion in this section is based on [Mo et al., 2010, pp. 202-204,206,263,283-285,679-681] and
[Coles and Lucchin, 2002, pp. 339-342].

Since we will be discussing the distribution of galaxies in our Universe, we need to understand up
to some level how they even formed and what processes lie behind the current observable state of this
Universe. Therefore we will shortly discuss the current theory behind galaxy formation. In the ΛCDM
model, we assume the existence of a Big Bang, and quickly afterwards a period of rapid expansion
termed inflation. From observations of the cosmic microwave background (CMB), electromagnetic
radiation dating from the epoch of recombination, we know the universe began in a hot, dense and
nearly uniform state, but this has not persisted, since we observe all kind of non-uniform structures
on all scales, from stars and planets up to galaxy clusters and voids, walls and filaments. This
structure forms from gravitational instabilities of small, early density fluctuations that slightly altered
the isotropy of the universe at that time. These are, in the context of cosmic inflation, formed as
amplifications of minute, random quantum fluctuations in the pre-inflation plasma.

The next step should be to understand the time evolution of these perturbations in the expanding
universe. For structures with sizes much smaller than the horizon scale (measuring the distance from
which one could retrieve information, i.e., the scale at which structures are causally connected), so
that causality is instantaneous, having density contrasts relative to the background much smaller
than unity, we can use Newtonian perturbation theory. The relativistic extension of this should be
used for superhorizon fluctuations or when the matter in the perturbation is not a non-relativistic
fluid. Decomposing the perturbations in Fourier modes shows that some are amplified while others are
damped, so the evolution acts as a filter on the primordial perturbations and can be described by a
transfer function. Once the overdensity has grown to a certain scale, evolution becomes non-linear due
to gravitational instability.

Usually, we describe the density perturbation field as:

δ(x, t) =
ρ(x, t)

ρ(t)
− 1, (1.4)

where ρ(x, t) is the density at position x and time t, and ρ(t) is the density averaged over space.
In the linear regime, density perturbations evolve independently of each other, and the amplitudes
depend on the aforementioned transfer function. When we want to observe the current structure,
we need to find the statistical properties of this cosmic density field. Specifying δ(x) (or δk for all
k, where k is a wave-vector when having transformed into the Fourier domain) is impractical and
unnecessary, for we consider the mass density field in the universe as one realization of a random
process (the aforementioned quantum fluctuations produce a random field well approximated by a
homogeneous and isotropic Gaussian random field). In similarity with statistical physics, we thus seek
to describe properties of a ’gas’ for which we do not need to know all positions and velocities, but
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only their distribution functions and statistical properties. In other words, the statistical properties of
the random perturbation field δ(x) are specified if the probability for any realization δ(x) is known.
When the universe is divided into n infinitesimal cells centered at x1, x2, ..., xn, we can characterize
δ(x) by the probability distribution:

Px(δ1, δ2, ..., δn)dδ1dδ2...dδn, (1.5)

giving the probability that δ has values in [δi, δi + dδi] at positions xi. If we know all the moments
〈δl11 δ

l2
2 ...δ

ln
n 〉, where li are non-negative integers, we completely determine this distribution function.

Since the cosmological principle requires equivalence of all positions and directions, the cosmological
density field has to be statistically homogeneous and isotropic as well, which we also observe to a
high degree in the CMB. In other words, the moments need to be invariant under spatial translation
and rotation. The most straightforward moments are of course 〈δ(x)〉 = 0 (which follows from the
definition of δ(x) and σ2 = 〈δ2(x)〉, which should be independent of x due to assumed ergodicity1).
For the discussion in this thesis, the most important moment is the two-point correlation function:

ξ(x) = 〈δ1δ2〉; x ≡ |x1 − x2|, (1.6)

of which we see that ξ(0) = σ2. When finding the second moment of the Fourier transform of the
density perturbation field, also known as the power spectrum, we can see that it is the Fourier transform
of the two-point correlation function. It can be shown that a homogeneous and isotropic Gaussian
random field is completely determined in a statistical sense by its power spectrum. We dive a little bit
deeper into this power spectrum when introducing the galaxy bias factors below.

1.2.1 Clustering

Usually when wanting to ’measure’ clustering, one starts with a sample for which sky positions and
redshifts are listed for all members, providing a non-uniform sampling of the true galaxy distribution
throughout a finite volume. It should be noted here already that, for naive sample selection, only
intrinsically bright galaxies are included at high redshift, while more different types of galaxies are
included at lower redshift, so observational criteria induce strong selection effects, which could lead
to a bias. We, however, will be exploiting the clustering between samples with accurate redshift
measurements and samples without redshift measurements. A selection function S(x) could be defined,
describing which galaxies are or are not included in the sample. It is the probability that a ’random’
galaxy located near x is included in the sample. It could, for example, vary strongly in |x| or z because
of apparent magnitude limits. Once we characterize this selection function, it can be used to correct
for the missed galaxies due to selection effects.

Example 1.2.1. (From [Mo et al., 2010]) Consider a survey which is magnitude limited in the sense
that it only selects all galaxies with m < mlim, so brighter than mlim. Galaxies with apparent
magnitude m at redshift z have absolute magnitude M = m− 5 log(dL(z)/Mpc)− 5, where dL(z) is
the luminosity distance corresponding to the measured redshift, and we ignore dust extinction and
K-correction effects. Therefore, mlim corresponds to a luminosity limit Llim, and the selection function
can be written as:

S(z) =
n(z)

n0
=

∞∫
Llim

φ(L)dL

∞∫
0

φ(L)dL

,

1Ergodicity means that the dynamical system has the same behaviour averaged over time as averaged over probability
space, meaning the state after a long time is independent of its initial state
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where φ(L) is the galaxy luminosity function. J

We have briefly seen the two-point correlation function ξ(x) above, but that is derived from theory.
Now we will consider how to recover the two-point correlation function from observations. One can
write the joint probability dP12 of finding one galaxy in a small volume dV1 and another in dV2,
separated by r12 as:

dP12 = n2
g[1 + ξgg(r12)]dV1dV2, (1.7)

where ng is the mean number density of galaxies, and ξgg(r) is the two-point galaxy-galaxy spatial
correlation function. Note that, because of assumed statistical homogeneity and isotropy, it should
only depend on the modulus of r12.

Example 1.2.2. Equation (1.7) implies that the mean number of galaxies 〈N〉r within a distance r
of a given galaxy is equal to:

〈N〉r =
4

3
πngr

3 + 4πng

∞∫
0

ξ(r′12)r′12dr
′
12, (1.8)

where the second term represents the excess number compared to a uniform random distribution. J

If one only has a projected, two dimensional catalogue, as we will have in later chapters, one can
define the two-point galaxy-galaxy angular correlation function w(θ):

d2P2 = n2
Ω[1 + w(θ12)]dΩ1dΩ2, (1.9)

where nΩ is the mean number of galaxies per unit solid angle and d2P2 is now the joint probability
of finding two galaxies in small elements of solid angle dΩ1 and dΩ2 separated by an angle θ12 on
the celestial sphere. These two correlation functions can be related through the Limber equation,
providing an integral relation between the two for small angles.

Estimators

There are several ways to estimate the two-point correlation function, and at small distances these
provide similar performance. However, at larger distances, some of them could be biased, mostly due
to magnitude and survey volume limitation in the galaxy sample. Therefore, a good estimator needs
an edge-correction, mostly for the larger scales, at which only a small fraction of galaxies enters the
estimation ([Kerscher et al., 2000, Landy and Szalay, 1993]). Given a complete galaxy sample in a
given volume with N objects and a Poisson catalog (a binomial process with Nrd points, generated
within the same boundaries), possible estimators are:

ξ̂DP(r) =
Nrd

N

DD(r)

DR(r)
− 1; ξ̂HAM(r) =

DD(r)RR(r)

|DR(r)|2
− 1;

ξ̂LS(r) = 1 +
Nrd(Nrd − 1)

N(N − 1)

DD(r)

RR(r)
− 2

Nrd − 1

N

DR(r)

RR(r)
,

(1.10)

known as the Davis and Peebles, Hamilton and Landy-Szalay estimators. Here, DD(r) is the number
of pairs of galaxies with separation within r ± dr/2, DR(r) is the number of pairs between a galaxy
and a point of the Poisson catalog and RR(r) is the number of pairs in the Poisson catalog with the
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same distance interval. Often, the N are absorbed into the definition of DD,DR and RR, so then the
Landy-Szalay estimator becomes:

ξ̂LS(r) =
DD(r)− 2DR(r) + RR(r)

RR(r)
. (1.11)

In the case of the angular correlation function the same estimators can be used, but with pairs
separated by an angle θ. This sets up some of the terminology and ideas used in the discussion of the
galaxy bias in the next subsection, where we will show that the galaxy bias consist of two main parts,
a halo bias and a luminosity bias.

1.2.2 Galaxy bias

The origin of cosmological perturbations has not been unraveled enough to have a refined theory
of it, so we cannot constrain the overall amplitude of the linear power spectrum from theory, and
thus need observations, for instance from the CMB, which is still linear. We know how to evolve the
power spectrum from the CMB using the theoretical growth factor. One could compare with N -body
simulations or linear theory on sufficiently large scales, but one cannot be sure about the accuracy of
this methodology for finite amplitude fluctuations, especially because linear theory only holds on large
scales, where sampling noise will make measuring the small fluctuation difficult. Non-linear evolution
of dark matter fluctuations is very precise nowadays, so the only real remaining problems pertain
baryonic matter, and thus include galaxies and feedback processes.

One needs to make sure the sample one uses to measure clustering is large enough to be repre-
sentative of the universe as a whole. If a finite sample is used, the value of the statistic could differ
when one would take a sample of the same size at a different position. This effect is known as cosmic
variance.

These problems are, however, overshadowed by the bias that could exist between galaxy fluctuations
and mass fluctuations. It is not far-fetched to assume galaxies should not form randomly purely
according to the local matter density, but at specific locations where collapse, cooling and star
formation can occur, for instance in peaks of the density field. Suppose the matter density field δM ,
smoothed on some scale M to define a mass scale of a galaxy, is Gaussian with variance equal to σ2

M ,
then ξmm,M (r), the two-point cross-correlation function of the matter at these mass scales, is equal
to 〈δM (x)δM (x′)〉, where r = |x − x′|. If galaxies trace the mass, ξgg(r) = ξmm,M (r). Now imagine
galaxies only form in high-density regions above some threshold δc = νσM , where we take the result
from linear theory that δc = 1.68 is the threshold for non-linear collapse, and would thus be needed
for structure formation. The correlation function for points exceeding νc = δc/σ is then, for large νc,
equal to ξνc ' exp[ν2

cw(r)]− 1, where w(r) = ξ(r)/σ2.
Using this as a qualitative model, one could define ξ(r)gg = b2ξ(r)mm, where b is known as the

bias factor. One could also define δg = bδm, the linear bias model, which does not follow from the first
definition, but does imply it.

Linear Bias and the Power Spectrum

In this linear bias model it makes sense to look back at the power spectrum and see how bias enters
in the spatial correlation function through there. Remember that the power spectrum is the second
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moment of the Fourier transform of the density perturbation field, thus (in the Fourier domain):

ξmm(x) =
1

V

∑
k

P (k)eik·x =
1

(2π)3

∫
P (k)eik·xd3k. (1.12)

Where then P (k) = V 〈|δk|2〉 is the power spectrum, and the second expression above follows from
taking V to infinity in the usual Fourier transform conventions. Integrating out the angle between k
and x we find:

ξmm(x) =
1

2π2

∞∫
0

k3P (k)
sin(kx)

kx

dk

k
=

∞∫
0

∆2j0(kx)
dk

k
, (1.13)

where we redefine a dimensionless power spectrum ∆2(k) = k3P (k)/2π2 and j0(kx) = sin(kx)/kx is
the spherical Bessel function.
In the linear bias model, we can now easily implement the bias factor into this expression to relate the
linear power spectrum ∆ with the two-point (auto)correlation function of the spectroscopic sample
(having bias factor bs) and the photometric sample (having bias factor bp) as follows:

ξss(r) ≈
∞∫

0

dk

k
b2s ∆2(k)j0(kr) (1.14)

ξps(r) ≈
∞∫

0

dk

k
bpbs∆

2(k)j0(kr) (1.15)

For linear scales, we can thus give the relationship between the two correlation functions as ξps(r) =
bpξss(r)/bs. This will be used and explored in further detail in the next Chapter. A different, somewhat
more natural way to see this linear bias model is viable can be found in the Appendix.

All in all, however accurately one could predict mass fluctuations analytically and however robustly
one can measure galaxy fluctuations, one cannot compare the two without assuming a relationship
between them in the form of some bias model. The linear bias model is the simplest one, and not
entirely correct. Instead, one could do a second-order bias correction, or make the bias scale-dependent.
Knowing b would then eliminate the problem, but the linear bias model only holds on large scales
(and perhaps not even then), and there could be regions where a model like this fails completely, for
instance where the bulk of the matter is non-baryonic, non-luminous material, thus resulting in very
little correlation between galaxies and concentrations of mass. There are ways to circumvent this.
For instance, looking at peculiar velocities of galaxies (due to not only the luminous material) or by
analyzing the amplitude of CMB fluctuations.

1.2.3 Luminosity Bias

Aside from the galaxy bias discussed in the previous section, there can also be a bias due to which
types of galaxies form in a given overdensity (or halo) given that this overdensity is high enough that
galaxies can form. This bias is named the luminosity bias, and we will introduce it here, to explain in
the next chapter how we are going to use this.
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One could write the GLF at a redshift z as:

φ(L, z)dL = dL

∫
Φ(L|M, z)n(M, z)dM, (1.16)

where n(M, z) is the mass function of dark matter halos at redshift z, and Φ(L|M, z) is the conditional
luminosity function at z, specifying the average number of galaxies with luminosity in the range
L±dL/2 residing in a halo of mass M at redshift z. n(M, z) can be obtained from from i.e. simulations
or accurate non-spherical collapse models.

Since the large-scale clustering amplitude of a galaxy population is determined by the mass
distribution of their host halos, the observed galaxy correlation amplitude can be used to constrain
the mass distribution of halos. Given a population around redshift z with luminosity function φ(L, z),
combined with equation (1.16), we find:

bg(L, z) =
1

φ(L, z)

∫
Φ(L|M, z)bh(M, z)n(M, z)dM, (1.17)

for

bg(z) =
1

ng(z)

∫
bg(L, z)φ(L, z)dL; ng(z) =

∫
φ(L, z)dL. (1.18)

When we can determine L completely and deterministically by M (and possibly z), Φ(L|M, z)
becomes a Dirac delta function and bg(L, z) = bh(M, z), and L = L(M). Then, in the limit of large r,
we can determine bg(L, z) from:

bg(L, z) =

√
ξgg(r|L, z)
ξmm(r|z)

, (1.19)

where ξgg is the two-point correlation function of galaxies of luminosity L at redshift z and ξmm(r|z)
that of matter at redshift z in the assumed model of structure formation.
As can be seen here, it is not unreasonable to assume that the galaxy bias can be split up into two com-
ponents, one depending on the mass of the dark matter halo, which ultimately depends on z, and one
only dependent on the luminosity of the observed object, without further dependence on luminosity or z.

In summary, the current large scale structure and galaxy distribution are determined by several
ingredients interacting in a complicated way. There is a background cosmological model, a breakdown
of matter into baryonic and non-baryonic matter, the latter of which could be hot, cold or a mixture.
These underlying conditions supply a transfer function for the early random field of density fluctuations.
These result in the initial power spectrum, which characterizes the linear regime of the fluctuation
spectrum. The observed galaxy distribution is a biased tracer of the mass distribution caused by the
growth of the fluctuations through cosmic time. This growth of the initial linear fluctuations becomes
non-linear through gravitational collapse, forming structures such as filaments and haloes, which house
the galaxies we observe. We analyzed how then to measure galaxy clustering, and how the galaxy
bias factors into this, and how the bias depends on physical quantities. This is of importance to the
model introduced in chapter 2, which uses cross correlations between galaxy samples to characterize
the cosmic structure, so we will need to correct for the different biases between these galaxy samples.
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Chapter 2

The Fiducial Model and Methodology

In this chapter we explain the basic idea of the model we use to find the universal redshift distribution
and luminosity function of the universe, as mentioned, from clustering data by applying tomography
to the luminosity function. We will start by explaining how we handle the clustering and the cross-
correlation signal, and go on by explaining why we need to specify a model for Np(m, z), the number
of photometric galaxies in a given bin in redshift and apparent magnitude. Furthermore, we will
finally specify this model itself. We explain basic results of the vDW fiducial model and explain
choices made in the model as well as the reasoning behind them before talking about improvements
on the model in chapter 3. We present here a combination of results from vDW, [Schulz, 2010] and
[Ménard et al., 2013].

2.1 Cross-correlations

We will consider the observed number density distribution of a photometric sample of galaxies over
apparent magnitude n(m), as well as the distributions of galaxies over redshift in bins of apparent
magnitude nm(z), as projections of the underlying luminosity function φ(M, z), where M now is
absolute magnitude and not mass, as a function of redshift, and can thus reconstruct this luminosity
function from these projections. An added advantage of fitting a luminosity function this way is that
we do not use the information about magnitude and redshift separately, but simultaneously, meaning
we can account for effects we can only probe by using both sources of information. For instance:
galaxies that appear bright are unlikely to be at high redshift, so we are less likely to overestimate the
exponential cutoff using this methodology.

We denote photometric samples and their corresponding quantities with subscript p, and spectro-
scopic with subscript s. Note that we do not know the distribution in magnitude and redshift for the
photometric sample, but we want to derive it. We do assume that we know the redshift distribution
of the spectroscopic sample, albeit for a limited number of galaxies, significantly smaller than the
number of photometric galaxies.
It is quite straightforward to state that the number of photometric-sample galaxies in apparent
magnitude bin mλ and redshift bin zi is given by:

Np(mλ, zi) =

zi,max∫
zi,min

mλ,max∫
mλ,min

dNp

dmdz
(m, z)dmdz, (2.1)

18



where the ··,min and ··,max denote the edges of a given bin. To be able to derive the luminosity function
we need to find the fraction of galaxies in the photometric sample fN(mλ, zi) in a bin of apparent
magnitude mλ that also reside in a bin of redshift zi. This fraction will serve as a weighting factor for
the model value of the clustering ˜̄wps(mλ, zi), as well specify the fraction of galaxies in our photometric
sample with given absolute magnitude, i.e. the GLF. We can simply write this fraction fN(mλ, zi) as:

fN(mλ, zi) =
Np(mλ, zi)

Np(mλ)
; Np(mλ) =

∑
i

Np(mλ, zi). (2.2)

We already know the number counts Np(mλ) from the observations. In the model, however, the
numbers Np(mλ) are not regarded as constraints that need to be enforced, but as draws from a

Poisson distribution with mean Ñp(mλ), which is the model value for Np(mλ) we will discuss in the
next section. Therefore, when writing fN from now on we mean it is the ratio of the model values for Np.

We will now first limit the discussion to only deriving a redshift distribution of the photometric
sample to explain the technique of using correlations to recover a redshift distribution, ψp(z), and
later again extend to also finding a luminosity function.

Note that we can also write the redshift distribution of the photometric sample as:

ψp(z) =
dNp

dzdΩ

 ∞∫
0

dNp

dzdΩ
dz

−1

, (2.3)

where dNp/dzdΩ is the number of photometric galaxies per unit redshift and steradian, and the term
in brackets is the total number to ensure ψp(z) is normalized. When we divide the survey in redshift
bins, however, we denote the fraction of the total in the ith z-bin as ψp(zi).

The other constraint, or ’signal’, we have from the data is the aforementioned angular cross-
correlation function of all photometric galaxies in apparent magnitude bin mλ with spectroscopic
galaxies in redshift bin zi, wps(mλ, zi, θ), because we can only observe this projected spatial distribution,
not knowing the redshifts of the photometric sample.

Note that we can write:

wps(zi, θ) =

∞∫
0

ξps(r(z, zi, θ))ψp(z)dz (2.4)

This now is where the analysis from the previous chapter becomes important. The ξps(r(z, zi, θ)) is
the 3D cross-correlation function between the entire photometric set, and the spectroscopic galaxies in
redshift bin i. This is not observable, because we do not know the redshifts of the photometric sample
accurately enough. The key assumption now factors into the simple statement that ξps(r) ∝ ξss(r),
where ξss(r) is the 3D autocorrelation of the spectroscopic sample, which is observable. Of course, on
large (linear) scales, we find, using the linear bias model from the previous chapter:

ξps(r) =
bp
bs
ξss(r) ⇒ wps(θ, zi) =

∞∫
0

bp(z)

bs(z)
ξss(r(z, zi, θ))ψp(z)dz. (2.5)

Since bs(z) can be fitted with the spectroscopic data, we can, without further assumptions or
techniques, only invert and solve this relation for the product bp(z)ψp(z) in terms of the observables.
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To thus reliably find the redshift-dependent GLF, we need to know how bp depends on z. Problem
here is that for a magnitude limited sampling of the galaxies in the universe, bp(z) is certainly not
constant. If it was, it would scale out when normalizing ψp(z) to 1. The population of galaxies being
examined at high redshift will certainly consist of the more brighter, rarer and more biased objects
than those at low redshifts. This presents a degeneracy with the recovered redshift distribution. We
will explain (here and in the following subsection) how we try to get rid of this degeneracy.

Even if the photometric survey were also volume limited there would be effects of evolution in
intrinsic luminosities and densities of the tracers leading to the redshift dependent bias factor. One
way to resolve the degeneracy could be by also measuring the angular autocorrelation function of the
photometric sample wpp, which can be written in terms of ξss as:

wpp(θ) =

∫
dz1

∫
dz2ψp(z1)ψp(z2)

(
bp(z1)bp(z2)

bs(z1)bs(z2)

)
ξss(θ, z1, z2) ∝

∫
dzψp(z)2

b2p(z)

b2s (z)
ξss(θ, z), (2.6)

where we change variables into a central redshift and take note that ξss vanishes for too large
∆z = z1 − z2. Thus in this case, the new observable wpp(θ) cannot break the degeneracy. Also, for
wpp, satellites and environment become way more important, since the samples we correlate are less
independent. Therefore, we need to find another observable, or appeal to some model of the redshift
dependence of the bias.

The reason this is significant can be seen by considering estimators of, i.e., the mean redshift of a
sample, which would be affected by assuming the wrong functional form of the bias as function of
redshift. If we know that we recover bp(z)ψp(z), our estimator of the mean redshift would be:

zest =

∞∫
0

z
btrue(z)

best(z)
ψp(z)dz, (2.7)

while the true ztrue does not take into account these bias factors.
As noted by [Schulz, 2010], the bias may not be particularly smooth in its redshift evolution if different
samples are used for different redshifts. We do assume a smooth bias, which does not have to mean the
binned bias varies slowly. The only way a variation between bins could then impact our analysis is if
the effective selection of the spectroscopic sample suddenly changes with redshift, not being captured
in a comparable change in the photometric sample (and thus in the parameter K introduced in section
2.1.2), the general variation f(z) or the luminosity bias (both also introduced in section 2.1.2).

2.1.1 Spatial Scales

Because we consider a spatial correlation function, we need to give constraints to which spatial (or
angular) scales in distance we pay attention in this model. Essentially, too large scales are not sampled
well enough at smaller redshifts, and too small scales are not of interest for a global GLF. To explore
the details of how to best assign a redshift distribution to the photometric sample, let us first assume
an ideal case where all photometric galaxies are at the same redshift z0, so ψp(z) = NpδD(z − z0),
where δD is the Dirac delta function, and Np the amount of photometric galaxies. Later, we will
see how to extend this. If we now split the spectroscopic sample in redshift bins δzi, and for each i
measure wps(θ, zi), which can be given by an estimator like:

wps(θ, zi) =
〈np(θ, zi)〉

np
− 1, (2.8)
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where the 〈np(θ, zi)〉 denotes the mean density estimate of the photometric sample around the spec-
troscopic objects at redshift zi. We thus are searching for some signal within a redshift bin, for all
photometric galaxies are at the same redshift, so ψp(z) ∝ wps(zi), and through the normalization
condition

∫
ψp(z)dz = Np we find the amplitude.

The optimization of the sensitivity of this estimator depends on the spatial scales involved in
the analysis, and is mostly limited by shot noise induced by the finite size of the samples, or cosmic
variance. Therefore, including as many scales available to measurements is advantageous for increasing
the sensitivity. Therefore, we integrate the angular cross-correlation function over multiple angular
scales to recover:

wps(z) =

θmax∫
θmin

wps(θ, z)W (θ)dθ, (2.9)

where W (θ) is a weight function for each scale, whose integral is normalized to unity, and it is aimed
at optimizing the overall S/N . If W (θ) = θ−1, there is equal amount of clustering information per
logarithmic scale.

Now we need to note that we need to set θmin and θmax to match a range of projected radii we want
to consider, rp,min and rp,max, combined with the redshift range of the sample. As this angular scale
becomes comparable to the mean separation of spectroscopic (reference) objects, the amount of useful
clustering information decreases since number counts become correlated. Additionally, information
at these scales is often subject to systematic effects due to dust extinction or fluctuations in the
zero point of the photometry. Therefore, we limit to scales smaller than several Mpc, and to scales
larger than the maximum between the typical size of sources and the point spread function of the survey.

Spread in Redshift

More generally, the photometric sample is of course spread out over a range ∆z, so the spatial
cross-correlations with the spectroscopic objects will depend on more characteristics like the type of
objects in both samples, their relative clustering amplitude with respect to the dark matter field, the
redshift dependence of these quantities and the observed scales of correlation. This was all introduced
in the discussions about bias throughout the previous text. Therefore, we get that:

wps(zi) ∝ ψp(zi)bp(zi)bs(zi)wDM(zi), (2.10)

where all quantities are now integrated over a range of scales. It should be noticed that if the relative
variation of ψp(z) dominates over that of bp(z) in the redshift range, we approach the regime where
ψp(z) ∝ δD(z − z0), but only up to finite accuracy can ψp(z) then be estimated. Also, only knowledge
of the derivative of bp and bs is needed to characterize ψp(z). Constraints on bp(z) can be derived

from its autocorrelation function through wss = b
2
swDM(z) as explained above.

Note that this relation only holds on scales where galaxies are linearly biased w.r.t. the dark
matter field. [Schmidt et al., 2013] prove with numerical simulations that inclusion of smaller scales
only provides a small departure from this fact. Still this would depend on how small you actually go
and which galaxies you include, so we should be careful in selection of the scales. Note that we can
characterize wDM(z) from theory, but not observe it directly.

The main limitation is thus, as already explained before, the lack of knowledge of bp. Proposed
methods of constraining this quantity up until now have been using the autocorrelation of the
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photometric sample (which, as explained above, is not quite effective), using a redshift averaged
value, deproject its redshift dependence through iterative techniques, or minimizing its contribution
altogether while only estimating the error induced by approximating ψpp(z) without it. In the next
subsection, we explain how we, in our extended model, can use another method of constraining this bias.

Going back to the model with bins not only in redshift, but also in apparent magnitude, we can
extend equation(2.9) to:

wps(mλ, zi) =

θmax∫
θmin

wps(mλ, zi, θ)W (θ)dθ, (2.11)

where we will again refer to a model value of w̃ps(mλ, zi) which we find by extending equation (2.10)
(while discretizing it) to:

w̃ps(mλ, zi) =
∑
j

fN(mλ, zj)
bp(mλ, zj)

bs(zj)
wss(zi, zj), (2.12)

where we use that both samples trace the same underlying density field, and fN(mλ, zj) is a weight
factor of the fraction of galaxies in apparent magnitude bin mλ that reside in redshift bin zj . This fN

is what we need to extract to find the redshift- and luminosity distributions. Both wps and wss can be
directly found by using pair counting from the data, using an estimator like in equation (1.10), but
the biases are a priori unknown, for we cannot observe directly wDM and thus cannot derive them.

2.1.2 Biases again

Let us first recap the context of the vDW model. We assume to have observed a set of photometric
galaxies and a set of spectroscopic galaxies. Of both, we know the positions on the sky, and can thus
find angular auto- and cross-correlation functions of the samples. Because we have more accurate
redshift values for the spectroscopic sets, we can use them to constrain a most likely redshift to
galaxies in the photometric set.

Assuming both samples trace the same underlying dark matter field, their clustering strength is
dependent on their biases with respect to this field. Denoting the clustering function of the matter
with itself between two redshift bins as wmm(zi, zj), we can write:

wss(zi, zj) = bs(zi)bs(zj)wmm(zi, zj), (2.13)

and:
wps(mλ, zi) = bp(mλ, z)bs(zi)wmm(zi, z), (2.14)

where writing just z means we take the entire sample into account. This happens since we only take
certain targets into account, which are biased tracers of the underlying field, mostly due to clustering
effects.
We now want to know the clustering wpj ,s, where the subscript pj denotes the set of photometric
galaxies assigned to redshift bin zj , which can be written as:

wpj ,s([mλ, zj ], zi) = fN(mλ, zj)bp(mλ, zj)bs(zi)wmm(zi, zj), (2.15)

where [mλ, zj ] denotes that we consider these galaxies only. Therefore, the underlying dark matter
field cancels when dividing by wss(zi, zj):

wpj ,s([mλ, zj ], zi)

wss(zi, zj)
=
bp(mλ, zj)bs(zi)

bs(zi)bs(zj)
fN(mλ, zj) =

bp(mλ, zj)

bs(zj)
fN(mλ, zj). (2.16)
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This is what lies behind the expression in equation (2.12). To be able to reduce the degeneracy between
the bias ratio and fN we assume now that both bp and bs evolve similarly with respect to redshift at a
fixed luminosity, so we can write bp(m, z) = bp,0bL,p(m, z)f(z) and bs(z) = bs,0bL,sf(z), where bL,p is
some function of luminosity, and thus apparent magnitude and z, assumed to be known independently
or to be fitted from the spectroscopic sample, which is observable.1

Note that bL,s has no dependences except directly on L, which is observable, it is approximately
constant in z and the height of the peak for the galaxies formed at that position. This all is not
unreasonable to assume, for the bias conceptually is a measure of how likely it is to form a galaxy
at a given point in space given the dark matter field. In other words, there is a certain threshold
of density above which galaxies can form, and how probable a peak is with the required density
encountered at a given point in space and time. This threshold evolves with redshift, thus b certainly
depends on the critical density and the virial density at a given redshift. Only considering this factor,
the halo bias (which scales with f(z)), is not enough for us, for we observe two physically distinct
populations, because the spectroscopic population only consists of those galaxies bright enough to be
spectroscopically analyzed. Therefore, we add another factor, a luminosity bias (bL(m, z)), signifying
that not only the initial overdensity, but also the amplitude of the excess and the surroundings of
the peak have influence on the type of galaxy formed. These factors all impact the brightness of the
object.

Now the last assumptions made about the bias factors is that these are the only dependencies of b,
and there is no residual dependency on redshift or apparent magnitude except through the relations
and functions defined above.

This means we find:

wpj ,s([mλ, zj ], zi)

wss(zi, zj)
=
bp,0bL,p(mλ, zj)f(zj)

bs,0bL,sf(zj)
fN(mλ, zj) =

bp,0

bs,0bL,s
bL,p(mλ, zj)fN(mλ, zj)

≡ KbL,p(mλ, zj)fN(mλ, zj) ≡ f ′N(mλ, zj).

(2.17)

Here we have defined a normalization factor K, dependent on i.e. formation criteria of galaxies and
selection of the spectroscopic sample. This allows us to rewrite equation (2.12) as:

w̃ps(mλ, zi) =
∑
j

f ′N(mλ, zj)wss(zi, zj), (2.18)

where K is assumed to be unknown for the model, and thus one of the parameters.

Now due to the approach we take, which is trying to find a method which can fit a GLF to
a given sample of photometric objects given a sample of spectroscopic objects only, we have to
provide some model if we do not want to use (often biased sets of) templates from simulations or
previous observations. This model is twofold, we have to provide a model for the luminosity bias
bL(m, z) ≡ bL,p(m, z) as well as for Np(m, z).

We assume bL(m, z) to be monotonous in L, since we do not expect more extreme objects to
have a lower bias. We use a simple form (motivated by [Benoist et al., 1996, Peacock et al., 2001,
Norberg et al., 2001] to have a simple monotonically increasing shape) of:

bL(m, z) = 1 +
L(m, z)

L′
, (2.19)

1Alternatively, as mentioned previously, bs(z) can be estimated from data, which has the complication of propagating
observational uncertainties. Alongside this, bp(m, z) should then be modelled as e.g. a polynomial in redshift.
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where L′ is a normalization parameter, to be fitted from i.e. the spectroscopic samples or previous
observations. In the vDW model this is set equal to the luminosity of a galaxy with M ′ = −23.3.
Assuming the naive distance modulus we only have to calculate bL once for each bin (mλ, zi) since the
model is agnostic of redshift and therefore luminosity. Indirectly, the normalization of this function is
also controlled by K, which is already a parameter of the model.

Note that we do change from a space where we know clustering in these (m, z)-bins to a space with
M -bins if we translate to a GLF as function of M or L. We thus have to carefully consider whether
f ′N is still well defined after this transformation, i.e. if we can indeed fit bL with one parameter L
independent of the exact set of galaxies, or if we need to perform more dedicated fits. For purposes of
the vDW model one fit from the spectroscopic set is enough. In the next section we will introduce
the model for Np(m, z), which we need to be able to fit to the redshift distribution and luminosity
function simultaneously, which is needed to avoid biased and unphysical results.

2.2 Model for Np

As can be seen, equation (2.18) is just a linear system of equations, which could be solved for
every ml independently, however, this disregards information inherent in these apparent magnitudes.
Due to degenerate solutions most likely existing and clustering measurements having uncertainties,
some galaxies with bright apparent magnitude may be placed at high redshift, corresponding to an
unphysically high luminosity. Therefore, we need a model for Np(m, z) to use to fit both redshift and
luminosity distributions together. In this section, we will denote Np,λi ≡ Np(mλ, zi) for brevity. Greek
subscripts thus refer to apparent magnitude, and Latin to redshift bins.

The quantity Np,λi, the number of survey objects at apparent magnitude mλ and redshift zi, is
constrained by the luminosity function. When we assume a given cosmology (in our case the flat
ΛCDM Universe with parameters from the Planck Millennium survey [Planck Collaboration, 2016]),
this luminosity function then also constrains the redshift distribution. Therefore, knowing both the
cosmology and the redshift distribution we can infer the shape of the luminosity function through
time.

To get to number densities, we need to know the survey volume in a given redshift bin. This is
given by the integral over the observed area and the comoving distance to the binedges of the redshift
bin. In other words:

Vi =

∫
A

di,max∫
di,min

dc(z)
2ddc(z)dA

= 4πf(A)

zi,max∫
zi,min

dc(z)
2c

H0

√
Ωm,0(1 + z)3 + ΩΛ,0

dz,

(2.20)

because:

dc(z) =

z∫
0

c

H0

√
Ωm,0(1 + z′)3 + ΩΛ,0

dz′ (2.21)

is the comoving distance for a flat ΛCDM universe. Here A is the area of the survey on the sky, and
f(A) is the fraction of steradian on the sky covered by the survey. The limits of integration di,min, di,max
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and zi,min, zi,max signify the minimum and maximum distance and redshift values of redshift bin i.

Now the matter is selecting a suitable model for the shape of the luminosity function. In the
vDW model this is a single Schechter function. This choice is further discussed in the next chapter. A
Schechter function is characterized as (as already seen in equation (2) in the Introduction):

φ(M) = 0.4 ln(10)φ∗(z)100.4(α(z)+1)(M∗(z)−M(m,z))e−100.4(M∗(z)−M(m,z))
, (2.22)

where φ(M) is the number of galaxies in the volume V per unit luminosity per unit volume and
M(m, z) is the absolute magnitude corresponding to a galaxy with apparent magnitude m at redshift
z. Note that this conversion is naively calculated with the distance modulus:

M(m, z) = m+ 5[1− log10(dL(z))], (2.23)

where dL(z) is the luminosity distance (in pc) given the cosmology. This means we implicitly assume
flat galaxy spectra, and the effect of this assumption is discussed in Chapter 3.

The free parameters in equation (2.22) are α(z),M∗(z) and φ∗(z). Note that on small scales,
inhomogeneities could impact φ∗ and it will always (but more strongly on smaller scales) depend on
the specific volume selected. Due to the assumption of a homogeneous universe we have a universal
luminosity function independent of volume. In surveys, the sample is limited by apparent magnitude,
and thus the volume V (if considered to be a ball centered at earth) decreases as M increases, and in
comparison, the number density of higher-magnitude (lower luminosity) galaxies at higher redshifts
decreases purely due to survey limitations.

We assume the redshift evolution of the parameters α (low-luminosity power slope) and M∗
(turn-over (or characteristic) magnitude) is linear, so we use four free parameters to describe these:
α(z) = α0 + αez and M∗(z) = M∗0 +M∗ez.
The parameter φ∗(z) is called the normalization of the luminosity function, and will be modelled as
the exponential of a 5th-order polynomial:

φ∗ = exp

j=5∑
j=0

ζj

[
2z

zmax
− 1

]j , (2.24)

where we have six more free parameters ζj , and zmax is the maximal redshift considered.
Here we note that, since we have a GLF evolving with redshift, the integral over the sky and GLF

do not separate. Furthermore, the choice of six parameters for the normalization seems arbitrary, but
has been shown in vDW to allow enough versatility while not adding degeneracies because it is smaller
than the amount of redshift bins considered, ensuring it varies smoothly. By choosing the form of the
exponential of a polynomial the expression is numerically easy to handle.

Additionally, observationally, it seems that galaxies actually follow a GLF that looks more like a
double Schechter function, the sum of two Schechter functions ([Johnston, 2011, Peng et al., 2010]).
The impact of this change is discussed in Chapter 3.

To now find, in this context, the model value Ñp,λi for Np,λi we will calculate the integrals.
Therefore, to avoid divergence of the integrals and because there is a physical lower limit to what
classifies as a galaxy, we define a limiting galaxy absolute magnitude Mlim = −16. Then the integrated
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number density of galaxies in apparent magnitude bin mλ and redshift bin zi is:

Φλi = 0.4 ln(10)

zi,max∫
zi,min

φ∗(z)

M2∫
M1

100.4(M∗(z)−M(m,z))(α(z)+1)e−100.4(M∗(z)−M(m,z))

Γ
(
α(z) + 1, 100.4(M∗(z)−Mlim)

) dMdz, (2.25)

where we define the limits of integration M1 = min{M(mλ,min; z),Mlim} and
M2 = min{M(mλ,max; z),Mlim}. Also, we define the number density such that:

Mlim∫
−∞

dΦλi

dM
dM ≡

Mlim∫
−∞

φi(M)dM =

∫
φ∗(z)dzi, (2.26)

i.e. we define it such that the integral of φi(M), the GLF in number density of galaxies in bins mλ

and zi per unit magnitude, equals the integral over the entire bin of φ∗ for all bins.
Now to derive from this an expected number of galaxies in the given bin, we simultaneously integrate
the volume and the luminosity function, to arrive at:

Ñp,λi =

zi,max∫
zi,min

m2∫
m1

dφi(M)

dzi

dV

dz
dmdz

=
2

5
ln(10)B

zi,max∫
zi,min

dc(z)
2φ∗(z)√

Ωm,0(1 + z)3 + ΩΛ,0

×

m2∫
m1

10( 2
5

)(M∗(z)−M(m,z))(α(z)+1)e−10
2
5 (M∗(z)−M(m,z))

Γ
(
α(z) + 1.10

2
5

(M∗(z)−Mlim)
) dmdz,

(2.27)

where we define B = 4πf(A)c/H0, m1 = min{mλ,min;m(Mlim, z)} and m2 = min{mλ,max;m(Mlim, z)}.
It should be noted here that the modulation of observed galaxy number densities due to lensing
magnification, causing a magnification bias, is ignored, since incorporating this in the current model
is highly non-trivial and outside our scope.

This integral (2.27) over apparent magnitude has an analytical solution, thus we need only integrate
over redshift.2 Afterwards, summing over all redshift bins, we recover the number of galaxies (according
to the model) in apparent magnitude bin mλ at any redshift, Ñp,λ (where zmin and zmax are the
redshift limits of the entire sample):

Ñp,λ =
∑
i

Ñp,λi = B

zmax∫
zmin

dc(z)
2φ∗(z)√

Ωm,0(1 + z)3 + ΩΛ,0

[
Γ
(
α(z) + 1.10

2
5

(M∗(z)−Mlim)
)]−1

×

[
Γ
(
α(z) + 1.10

2
5

(M∗(z)−M(m2,z))
)
− Γ

(
α(z) + 1.10

2
5

(M∗(z)−M(m1,z))
)]
dz.

(2.28)

This quantity can be directly compared to the Np,λ of the data. This, along with the clustering signal,
constrain our model, making it able for us to fit the model to our observations. How this is done
exactly is discussed in the next section.

2This is done numerically, since the expression in equation (2.27) is non-analytic. We subdivide each redshift bin in
smaller redshift bins where we can assume the GLF constant and sum these contributions.
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2.2.1 Fitting

In summary, the vDW model uses 11 free parameters. One of these signifies the bias ratio (K), six
of these (the ζj from equation (2.24)) are for the normalization of the GLF, and 4 (α0, αe,M∗0 and
M∗e) are for the shape parameters of the Schechter function and their redshift-evolution. To find
the optimal parameters, the two observable quantities wps,λi and Np,λ are fitted to the model values
w̃ps,λi (equation (2.18), as derived from the integrated observed autocorrelation of the spectroscopic

sample wss,ij) and Ñp,λ (equation (2.28)). We use an updated likelihood compared to the vDW model
(equation (15) from vDW), namely:

lnL(θ) = −1

2
ln(|C(θ)|)− 1

2
(wps − w̃ps)

TC−1(wps − w̃ps) +

nm−1∑
j=0

[
Np,j ln

(
Ñp,j(θ)

)
− Ñp,j(θ)

]
,

(2.29)
where C is the joint covariance matrix, combining three sources of uncertainty, θ is the vector of
parameters, nm is the number of apparent magnitude bins and w̃ps is the vector that solves equation
(2.18) when we write it as:

w̃ps(mλ) = Xf ′N(mλ), (2.30)

collecting the equations in a vector of length nz (the amount of redshift bins) and a matrix of size
nz × nz, where Xij = wss(zi, zj). A more general likelihood form is found in the Appendix, describing
how we got to equation (2.29).

The uncertainties entering in C are: uncertainties in the integrated cross-correlation function of
the photometric and spectroscopic galaxies wps,λi, in the integrated cross-correlation of spectroscopic
galaxies in different redshift bins wss,ij and the number of galaxies in magnitude and redshift bins

Ñp,λi. These sources enter through the form of the model from equation (2.18).
For the first two sources, bootstrap resamplings are used to calculate full covariance matrices, and the
last source is modelled as a Poisson variable as mentioned before. For a more detailed discussion, see
vDW.
This last source of uncertainty depends on the quantities fitted by the last term only, though these
quantities do have an effect on the first terms.

2.3 Mock Catalogue, Fiducial Model Results and Prospects

In this section we briefly summarize the results for the vDW model as presented in vDW. We start
this discussion with discussing the mock catalogue used in this work and then continue to present
briefly the results of the vDW model, briefly mentioning other tests presented in vDW that we assume
to hold in our analysis as well, to not have to expand on them in the next chapter for brevity. This
thus all sets the context for the next chapter, and gives material to compare further results to, since
those are based on what is presented in this section.

The mock galaxy survey is extracted from the publicly available Planck Millennium all-sky
lightcones simulation released with [Henriques et al., 2015]. We use these mock surveys to test the
model, and make a selection along the same lines as in vDW. It should be noted here that vDW alter the
mock survey such that the data exactly fits a Schechter luminosity function to prove the effectiveness
of the method conceptually, so it is in fact a simulation. We will only consider the unaltered mock
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galaxy catalogue in chapter 3, since our purpose is to extend the model to be applicable to actual
data.

The selection is such that we consider galaxies with m ≤ 21 and z ≤ 0.8, in the sky-area with
right ascension in [100, 200] and declination in [10, 50] (about 8% of the sky). We select on i-band
absolute magnitude MI < −16. Then the spectroscopic sample is constituted by the brightest galaxies
in each bin also subject to a constraint to a minimal star formation rate and stellar mass, such that
the spectroscopic sample is a small (density of at most 10−4(Mpc/h)−3 at each redshift) and highly
biased subset. Figure 2 (not reproduced here) in vDW shows the differences in magnitude and redshift
distribution between the two selected samples.
There will be nz = 16 redshift and nm = 16 apparent magnitude bins, with widths ∆z = 0.05 and
∆m = 0.5, in the range z ∈ [0, 0.8] and m ∈ [13, 21].

In figure 2.1, the results of the vDW model with updated likelihood are shown. A somewhat more
detailed discussion of this figure can be found in the Appendix.

The fiducial model most visibly fails in regimes of low sampling, under which we understand the
low redshift, low luminosity end, as well as the high redshift high luminosity end. The first is lowly
sampled due to some important scales in clustering being undersampled at low redshift due to the
limit on the observed cosmological volume, and thus cosmic variance becomes a problem. The second
is lowly sampled due to the lack of objects that exists with high luminosities to correctly sample this
regime. Still, it fits the distribution accurately, including even the drop-off at low luminosity due to
the limit in apparent magnitude.

To summarize, the vDW model extends previous models by deriving a GLF and redshift distribution
simultaneously, along with their redshift-evolution. An input GLF for a (modified) mock galaxy survey
can be accurately recovered, independent of how the spectroscopic sample has been selected with
respect to the photometric sample. The results are not degenerate with galaxy bias, and by further
development this model could be applied to real data. This development includes the addition and
correction for effects like magnification bias3, dust extinction and K-corrections4 in the conversion
between apparent and absolute magnitude. Additionally, other assumptions made could have an effect.
Firstly, this model assumes that the form of a (candidate) GLF is known, but [Peng et al., 2010] show
that, generally, a sum of Schechter functions is a better fit to real data.5

Secondly, the simple luminosity bias relation assumed in equation (2.19) has a known, fixed parameter
L′ (or M ′), and we assume the redshift evolution of the remaining terms cancels out. These have not
been imposed on the mock sample, but results were still sufficiently valid, so only if the real data has
some residual dependence on m or z that the mock data does not would this give a problem. While
L′ is fixed now, it could also become a free parameter of the model, since it is currently fitted to

3Galaxies appearing closer and/or brighter due to gravitational lensing
4The simulation from [Henriques et al., 2015] does take dust extinction models and reverse K-corrections into account

when calculating apparent magnitudes. Since the results of the current model are promising, these should only serve as
minor corrections.

5It should be noted that [Peng et al., 2010] does this for a galaxy mass function, and not a GLF. Of course these are
linked by the mass-luminosity ratio, but for different objects and eras the mass-luminosity ratio can vary significantly.
Still it is a valid assumption that the underlying physical processes dictating the structure of the double Schechter
mentioned in [Peng et al., 2010], namely the two components being due to mass quenching and environmental effects, as
well as an existing distinction between star-forming and quiescent galaxies, result in the case of a universal GLF better
fitted by a sum of two (or multiple) Schechter functions, e.g. [Johnston, 2011, Muzzin et al., 2013, Tomczak et al., 2014,
Bonne et al., 2015].
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Fiducial model on altered mock sample with Likelihood eq. (2.29)

Figure 2.1: The results for the vDW model, minimized using eq. (2.29) as constrained by the cross-correlation

signal between photometric and spectroscopic galaxies and the total number of photometric galaxies in each bin

of apparent magnitude. Top left: The number of galaxies in different bins of redshift as a function of absolute

magnitude. Solid lines show the data, colors show the redshift bins. Dot-dashed grey lines show the outcome of the

model. Bottom left: The number of galaxies in different bins of redshift as a function of apparent magnitude.

The total over all redshifts, shown by the solid blue line above the rest, is one of the constraints of the model.

Bottom right: The number of galaxies in different bins of apparent magnitude as a function of redshift. The

solid blue line shows the total over all apparent magnitudes. This is as close as we can come to visualizing the

constraint on clustering.

the spectroscopic data, but could thus be fitted to all data (with assigned redshifts from the model)
instead for completeness.
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Chapter 3

Changes to the Model and Results

In this chapter we discuss the changes made to the vDW model, aside from the updated likelihood
discussed in the last chapter, to ensure an effective application of the model to realistic datasets. These
changes have all been introduced during the discussion in previous chapters, but will now be expanded
upon in greater detail. We present three higher order effects or alterations that could improve the
vDW model when wanting to apply it to actual data (although we will only test it on a mock galaxy
catalogue for purposes of this research). These include the addition of a second Schechter function
(section 3.1), the addition of a parameter fitting the luminosity dependent galaxy bias bL (section
3.2) and the addition of K-corrections to the naive distance modulus (section 3.3). We mentioned
before these three additions all become important when applying the model to actual data, so we will
implement them all together. We did check the effect of the additions individually, but the shown
results were the best results of the runs we performed. For all the results we will present, we present the
starting location of the parameters included in the model and collect the best-fit parameters in a table
at the end of the chapter. These starting parameters have been fitted to the data by trial-and-error to
find a sufficiently good starting position.

3.1 Double Schechter function

As mentioned at the end of the previous chapter, [Peng et al., 2010] finds that, generally, a sum of
Schechter functions is a good fit to real data.1 The form of the luminosity function then becomes very
versatile and is allowed to contain many parameters to be constrained at once. Our first alteration will
thus be to see if implementing a second set of parameters belonging to a second Schechter function
allows for a sufficient fit on the selected mock galaxy catalogue.
Modelling the GLF with a sum of two Schechters means that a second term, Ñ ′p,λ, should be added to
equation (2.28), equal to:

Ñ ′p,λ =
∑
i

Ñ ′p,λi = B

zmax∫
zmin

dc(z)
2φ′∗(z)√

Ωm,0(1 + z)3 + ΩΛ,0

[
Γ
(
α′(z) + 1.10

2
5

(M ′∗(z)−Mlim)
)]−1

×

[
Γ
(
α′(z) + 1.10

2
5

(M ′∗(z)−M(m2,z))
)
− Γ

(
α′(z) + 1.10

2
5

(M ′∗(z)−M(m1,z))
)]
dz,

(3.1)

1Note that they prove this for a galaxy mass function, and physically explain their findings by principles of mass
quenching. While this could also be a naive cause for comparable structure in the GLF, the M/L-ratio becomes important
in conversion. Since this ratio depends strongly on galaxy type and environment, effects of this should be studied in
more detail.
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Double Schechter model

Figure 3.1: As figure 2.1, but results for the double Schechter model (equation (2.28) with added equation (3.1))

on the non-altered mock galaxy catalogue, minimized using equation (2.29). Note the difference in the data due

to using an unaltered mock sample now. Top right: The same as the top left figure, but with the two Schechters

plotted separately for an evenly spaced subset of the redshift bins.

where α′(z) = α′0 + α′ez, M
′
∗(z) = M ′∗0 +M ′∗ez and

φ′∗(z) = exp

j=5∑
j=0

ζ ′j

[
2z

zmax
− 1

]j . (3.2)

Therefore, 10 new parameters
(
α′0, α

′
e,M

′
∗0,M

′
∗e and the ζ ′j

)
are added. The results are shown in

Figure 3.1.

As can be seen here, the GLF of the data differs with respect to figure 2.1, due to using an
unaltered mock catalogue. The double Schechter function fits the overall shape of the GLF by having
one of the two functions (try to) fit the low-luminosity slope as well as the high-luminosity end. The
second Schechter then adds galaxies in the midrange to fill up the ’bump’ not fitted well enough by
the first. Looking at the top-left panel, it most visibly overestimates the low redshift, low-luminosity
end as for the fiducial model, while the constraint in the bottom left panel is fitted exceptionally. It
thus does so by compensating for misfitting the low-luminosity slope with less galaxies at intermediate
luminosities and redshifts, again overestimating at higher redshifts and low luminosities. Overall, the
shape is fitted quite well though, and the misfit can be explained by the mock data having significantly
less galaxies than average in the lowest redshift bin and significantly more galaxies than average in
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the second redshift bin (as stated in vDW). The impact hereof worsens when not altering the data to
fit a single Schechter function.

Furthermore, the misfit could be due to degeneracy between different parameters, for example
the degeneracy between the high-z normalization and the low-luminosity-slope-parameter α0 (and
αe) of the Schechter function. This is a degeneracy since the low-luminosity slope is barely probed
at higher redshifts and thus effectively in this regime only serves to normalize the profile. This was
already apparent in vDW, and we now added only more opportunity for degeneracy by adding a
second Schechter with independent normalization and slope.

Still, as we show in the Appendix, fitting only a single Schechter to the unaltered galaxy catalogue
results in a worse fit, so definitely implementing a second Schechter is needed for fitting to actual data.

3.1.1 Choice of Parameters

Inspired by [Peng et al., 2010] we implement the second Schechter such that M ′∗0 = M∗0,M
′
∗e = M∗e

and ζ ′j = ζj . To still enable a difference in normalization, we do add another parameter fφ such that

φ′∗(z) = fφφ
′
∗(z). This new set of parameters we call the ’simple’ double Schechter model.2 The results

are seen in figure 3.2.

Although the general shape of the GLF seems to be better reproduced and Np(m) is fitted as well,
the mismatch over the bins is apparent in the bottom panels, most evidently in the bottom right one.
This points to the model not having enough freedom with this reduced set of parameters, and we thus
lose the constraints where M ′∗0 = M∗0 and M ′∗e = M∗e, making M∗ a free parameter again, to find the
results in figure 3.3.

While this model still has its faults, most importantly in overestimating amounts of galaxies
in higher redshift bins while underestimating those in lower redshift bins, the general shape of the
GLF is reproduced better than in figures 3.1 and 3.2. Starting the model at a different set of input
parameters does have an impact on the result, pointing to left-over degeneracies between parameters,
which already were present in vDW. This means that different starting points could possibly lead
to a better fit. The most important difference one should consider is if the two Schechters should
indeed fit the GLF as they do now, or if we need one Schechter to fit the high-luminosity end while
the other only fits the lower luminosity end. As mentioned in chapter 2 and in [Peng et al., 2010],
for galaxy mass functions of quiescent galaxies often the two Schechter components are linked to
different sources of quenching, namely mass quenching and environment quenching. These effects
could be of importance for this universal GLF as well, and with a better understanding dictate a
more theoretically substantiated starting point. With these considerations in mind, it is still valid to
assume ζj = ζ ′j since the relative number densities of these galaxies can be assumed to evolve similarly
through cosmic time for the redshifts we consider.

3.2 M ′ (L′) as a free parameter

In the previous results, we assumed a simple luminosity bias relation (equation (2.19)), where M ′

was fitted to the spectroscopic sample. This could be fitted better by including all data in the fit,

2During later runs after implementing K-corrections, we noticed fφ becoming negative. Of course this is unphysical,
so we reimplemented fφ as φ′∗(z) = efφφ′∗(z). This did not have a significant effect on the results of the original runs.
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Simple double Schechter model

Figure 3.2: As figure 3.1, but for the simple double Schechter model. Now both the high and low absolute

magnitude regimes are underestimated, which is compensated for by overestimating the midrange. Most worryingly

the bottom right panel shows a significant difference between model and data for all but the lowest three magnitude

bins.

but should then be done by the model itself. While the parameter M ′ is certainly going to have
degeneracies with K, this could give the model more freedom to fit the clustering constraint better. Of
course M ′ could still always be fitted to the dataset, but by making it a free parameter we account for
complications that arise with this. To see what these are, we rewrite equation (2.18) to free bL(mλ, zi)
so we find:

bL(mλ, zi) =

−
∑

j 6=iKbL(mλ, zj)
Np(mλ, zj)

Np(mλ)
w̄ss(zi, zj) + w̄ps(mλ, zi)

K
Np(mλ, zi)

Np(mλ)
w̄ss(zi)

, (3.3)

where we now use the observed w̄ps(mλ, zi) as ˜̄wps(mλ, zi) for fitting M ′. This is a high (in our case
with 16 m and z bins 256-) dimensional linear system of equations. Therefore, for simplicity, we
assume the

∑
j 6=i-term is negligible, and plot the found bL:

bL(mλ, zi) =
Np(mλ)

KNp(mλ, zi)

w̄ps(mλ, zi)

w̄ss(zi)
(3.4)

in figure 3.4 for the mock galaxy sample.

It can be seen that results are spread out significantly, and since all bL should follow the same
line much closer, this is most likely due to the

∑
j 6=i-term not being negligible. This means we should
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Simple double Schechter model with M∗ free

Figure 3.3: As figure 3.1, but for the simple double Schechter model with M∗ a free parameter again. The

most apparent problems with both previous figures have been solved. Still the model overestimates the amount

of galaxies with midrange absolute magnitude, as well as those in high-redshift bins while underestimating the

amount in low redshift bins (see bottom left). Note the ’roles’ of the two Schechters have been reversed due to a

change in starting position to point out degeneracies.

actually solve the 256-dimensional linear system of equations. This is the first of the complications.
The second is the fact that there exist negative correlations between bins in w̄ps, which we cannot
take into account here. Furthermore for actual data only being able to use the spectroscopic set means
we have statistically insufficient data to accurately fit this parameter, leading to insufficient statistics,
which we already had to account for by only plotting points with w̄ps(mλ, zi) > 0, w̄ss(zi) > 0 and
Np(mλ, zi) > 1000 in figure 3.4. However, where and how we should set these constraints can not be
sufficiently substantiated. Therefore, it is more objective to make M ′ a free parameter and fit bL each
iteration of our model to the entire dataset given the parameters at that point. Results of the simple
double Schechter with M∗ free and M ′ free are found in figure 3.5. In conclusion, the addition of M ′

introduces more degeneracies between parameters. During testing the model with M ′ reached a local
minimum much faster, but the final likelihood was always higher than when running the same model
without M ′ free. Still, letting this parameter be free to fit bL to the entire dataset in each iteration
seems more physically substantiated, but of course fitting it in advance to running the model is always
a possibility.

These results show once again how degenerate the likelihood-landscape is. The bottom right figure
shows a better correspondence for high luminosity, high redshift objects, at the cost of the midrange
redshift fit of these quantities. This is understood by looking at figure 3.4, where the fit already showed
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Figure 3.4: Values for bL calculated from equation (3.4) for the mock galaxy sample (of which we know
all quantities, while for actual observed data this only holds for the spectroscopic set). The black line
is equation (2.19) for constant parameter M ′ and the fitted K from the fiducial model. The dashed
line is the fit to the data with both K and M ′ free. Only points with w̄ps(mλ, zi) > 0, w̄ss(zi) > 0 and
Np(mλ, zi) > 1000 have been plotted to reduce the effect of insufficient statistics.

higher values for bL at high luminosities than for the case where M ′ = −23.3 was fixed.

3.3 K-corrections

As introduced in chapter 2, K-corrections are of importance as a higher order correction in our
model, since they have an impact on the distance modulus as seen in equation (1.1), while up
until now we assumed a naive distance modulus from equation (2.23). K-corrections allow us to
transform from the observed wavelength when observed through a particular filter at a redshift z,
into the emitted wavelength in the rest frame at z = 0. Of course if a galaxy spectrum is flat, the
K-correction is zero, but this is never the case exactly. K-corrections exactly correct for the redshift of
the spectrum, which means a different waveband of the spectrum is redshifted to the waveband of
observation, while without K-corrections we implicitly assume that the spectrum looks the same in
both wavebands. The derivation in [Hogg et al., 2002] serves as a great overview of the theoretical
background. The question now is how to most effectively introduce K-corrections into the model. The
past decade, most methodology concerning K-corrections in galactic astrophysics is ultimately based
on the kcorrect code introduced in [Blanton and Roweis, 2007] (other methods have been presented
in e.g. [Chilingarian et al., 2010, Loveday et al., 2012, O’Mill et al., 2011, Beare et al., 2014]., where
the last one gives a good general overview of past methods). In summary, they reduce (using Principle
Component Analysis and observations) model spectra to a base set of general spectra that generate
the low-dimensional subspace galaxy spectra are observed to reside in.3 Then they find for a given

3It should be noted that this is of course based on spectroscopic measurements, so the bias we tried to avoid by not
letting our model depend on SEDs now enters through the calculation of K-corrections, but this is unavoidable, since
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Simple double Schechter model with M∗ and M ′ free

Figure 3.5: As figure 3.1, but for the simple double Schechter model with M∗ and M ′ free. Results are comparable

to figure 3.5, except the bottom right figure shows a better fit of brighter, high redshift galaxies, although the low

luminosity slope is overestimated significantly now. Note the ’roles’ of the two Schechters have been reversed due

to a change in starting position to point out degeneracies.

spectrum the linear combination of the 5 base spectra that reproduces this, and using the known
forms of the base spectra, K-corrections can be estimated by redshifting those base spectra before
linear combination and then finding integrated fluxes over the linear combination. They show that
only knowing the apparent magnitudes in three wavebands is enough to robustly fit galaxy spectra,
with the exception of some specific absorption or emission lines, and thus calculate K-corrections.

Since the process of calculating K-corrections in this way is quite involved, we do not want to
calculate K-corrections in every iteration of our model as this would be computationally too heavy.
Therefore, we introduce more bins, in two observed colours, to correct the distance modulus correctly
for each bin in apparent magnitude, redshift and two observed colors, where we only have to calculate
the K-corrections once for the entire code given the ranges of the bins. To see if this is viable, we do
need to confirm that K-corrections change negligibly over the range of one bin in apparent magnitude,
redshift and the two observed colors.

We take r − i and r − z as our observed colors to be able to cover the largest range in possible
redshifting of the spectrum with the range of wavebands we use. Since we used apparent magnitudes
in the i-band, adding the r and z magnitudes achieves this purpose without going outside the limit of

they exactly depend on the spectrum of the object. We will show below that this, however, is not a problem for our
purposes.
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Figure 3.6: Variation of kcorrect in the r-band over the bins of the model. The mock galaxy sample galaxies

are assigned to their bin and then their naively estimated absolute magnitude MKcorr (blue) and K-corrected

absolute magnitude (orange) are plotted for the lower and upper edge and the midpoint of the corresponding bin,

given the actual absolute magnitude Mtrue extracted from the simulation. The red dashed line shows where all

points should be were the distance modulus estimated perfectly. Top left: Variation over the bin in apparent

magnitude m, showing of course multiple blue points as well, and little spread in K-corrected points over the

width of the bin. Top right: Variation over the bin in redshift z, which has the largest spread in naive as well as

K-corrected values, due to K-corrections only serving as a small correction on top of the naive distance modulus,

which is governed by redshift variation. It can thus also be seen the variation over the blue and orange points is

comparable. Bottom left: Variation over the bin in r − i color, where we see only one blue point since color

does not affect apparent magnitude or redshift and we keep the r-magnitude constant. Bottom right: Same as

the bottom left, but for the r − z color. Note the small variation over a bin in both figures.

SDSS filters.4 The range of the observed colours in our mock galaxy survey is r − i = [−0.3, 1.55] and
r − z = [−0.5, 2.3]. The amount of bins we now take for the two colors depends on the variation of
K-correction values over the range of such a bin, but also we do not want to take too many bins to
avoid insufficient statistics. We take nr−i = nr−z = 8 bins, ∆r−i = 0.23125 and ∆r−z = 0.35 wide. In
figure 3.6 we show the variation of kcorrect over the bins of our model.

Here we see that the most significant variation is seen over a redshift bin, while we can safely
assume that for 8 bins in each observed color, the K-correction is constant over the entirety of the
bin in apparent magnitude and two observed colors. Of course the big variation over z comes mostly

4It should be noted that this thus only works up to some redshift z ∼ 1 because galaxies further away are redshifted
so much that the wavelength range of some SDSS filters is shifted into the IR or even Radio regimes, thus complicating
observations. Since we limit ourselves to z ≤ 0.8 this can be a cause of error in implementing K-corrections, but only
significantly for the highest redshift bin.
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from the naive distance modulus, since K-corrections only serve as a small correction, also apparent
from the variation over the bin being approximately as large in the naive calculation as it is in the
K-corrected calculation. To thus implement K-corrections in the model we need to subdivide over
the redshift bins up to the limit where we can assume the GLF to be constant over z as well, since
the expression in equation (2.27) is non-analytic and has to be numerically integrated. This was
already done as mentioned in chapter 2, so implementation is straightforward. Note that, with this
methodology, we only need to calculate K-corrections for each bin in apparent magnitude mλ, redshift
zi,subj and observed colours r− i and r− z once, where subj denotes the j-th subbin of redshift bin zi.

3.3.1 Updated model for Np

When we do not ignore K-corrections and set c1 ≡ r − i and c2 ≡ r − z, equation (2.27) becomes:

Ñp,λic1c2 =
2

5
ln(10)B

zi,max∫
zi,min

dc(z)
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5
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2
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(
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(3.5)

where B = 4πf(A)c/H0, m1 = min{mλ,min;m(Mlim, z, c1, c2)} and
m2 = min{mλ,max;m(Mlim, z, c1, c2)}. Thus not only the integrand but also the limits depend on
colour. Since K-corrections can be assumed to vary negligibly with m between bin edges, dM

dm = 1
within the limits of integration, meaning the analytic solution is identical, and we recover:
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(3.6)

Here we calculate the integral over bin zi by subdividing it in 10 subbins zi,subj and summing over
them.

It should be noted here that the role of the colour bins is to say what Ñp,λi would be for galaxies
with colours c1 and c2, where the role of the magnitude and redshift bins were to integrate over them.
Therefore the quantities in equation (3.6) can not simply be summed to find Ñp,λ, and thus we should
weigh with the number of observed galaxies in a given bin of colour:
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∑
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∑
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Ñp,λic1c2

Np,c1c2

Np,tot

= B
∑
c1,c2

Np,c1c2

Np,tot

∫ zmax

zmin

dc(z)
2φ∗(z)√

Ωm,0(1 + z)3 + ΩΛ,0

[
Γ
(
α(z) + 1.10

2
5

(M∗(z)−Mlim)
)]−1

×[
Γ
(
α(z) + 1.10

2
5

(M∗(z)−M(m2,z,c1,c2))
)
− Γ

(
α(z) + 1.10

2
5

(M∗(z)−M(m1,z,c1,c2))
)]
dz.

(3.7)

where we remember a tilde denoted the model value, and thus Np,tot and Np,c1c2 denoted the observed
quantities.
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Additionally our model for the clustering (equation (2.18)) changes due to the colour dependence
of bL, since calculating it involves the distance modulus. We could thus choose whether to keep
colour information for clustering. However, since none of our model parameters changes the redshift
distribution in a colour-dependent way, the model does not have enough freedom to for example
increase the amount of red galaxies at higher redshift if it is observed there should be more red galaxies
there. If the parameters change, they change for all colours equally. Furthermore splitting up our
sample would severely degrade the clustering measurements and introduce more insufficient statistics,
especially at the regions we already noticed to have problems with this. Additionally, we would have
to add colour-dependent parameters, but since the model already has difficulty with degeneracies, this
is unwanted. Therefore, we will average over the colour bins to find b̄L. We thus set:

b̄L(mλ, zi) =
∑
c1,c2

b̄L(mλ, zi, c1, c2)
Ñp,λic1c2

Ñp,λi

, (3.8)

but since we have calculated K-corrections for all subbins in redshift we have to weigh b̄L(mλ, zi, c1, c2)
over those already to find:

b̄L(mλ, zi) =
∑
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where:
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− 2
5
M(mλ,zi,subj ,c1,c2)−M ′

, (3.10)

thus equation (2.18) becomes:
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It should be noted here that implementation of a second Schechter function still goes analogous to
equation (3.1), adding a term Ñ ′p,λ to equation (3.7) equal to:
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(3.12)

Again, the simple double Schechter model can be used, and M∗ and M ′ could be made free parameters
again.
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3.3.2 Fitting

When fitting the K-corrected model to the data, we are still subject to the same constraints, w̄ps and
Np,λ, however, we have more information now and should instead use Np,λc1c2 as a constraint, which
can be found from the model and directly compared to observations, not losing any observed data,
decreasing degeneracy. Still, note that K-corrections are imperfect and the error in them is unknown,
which could bias our model outcome. Of course, this is also implicitly true when summing over colour,
but the effect is more apparent without summing.

When using Np,λc1c2 as a constraint, we update the likelihood (equation (2.29)) to include these
quantities:

lnL(θ) = −1

2
ln(|C(θ)|)− 1

2
(wps − w̃ps)

TC−1(wps − w̃ps)

+

nm−1∑
j=0
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[
Np,jc1c2 ln

(
Ñp,jc1c2(θ)

)
− Ñp,jc1c2(θ)

]
.

(3.13)

Clearly, only the second term is affected, and keeps its Poissonian nature, only being extended to
include more data points.

In the next subsection we apply the model with incorporated K-corrections to the mock galaxy
catalogue.

3.3.3 Results

Firstly, we extended the mock catalogue to now include more low magnitude galaxies, so we set
Mlim = −14. Still we use the outcome of the previous runs as starting point for the model, and first
try to fit the dataset roughly by hand, again having one Schechter fit the low-luminosity slope and
the high-luminosity cut-off, while the second Schechter adds the bump visible in the data, since,
independent of which parameters were included, this was the structure of the result of the previous
runs. Preliminary results of the implementation of models including equations (3.7) and (3.11) as
constraints, using equation (3.12) when implementing a second Schechter and using (3.13) when fitting
to data binned over colours are shown in the following figure 3.7.

As can be seen in this figure, the K-correction methodology (whether with or without extra binned
constraints) has trouble fitting the extended mock galaxy catalogue. However, the figure in the bottom
right shows this is not a problem inherent only to the K-correction methodology, since the original model
also misfits this dataset. This presumably points to our likelihood surface having many local minima,
and we tried different starting points, resulting in completely different results as well, confirming this.
Therefore, either better fitting by trial-and-error must be done to find a better starting point, preferably
better substantiated by theory, or we need to reconsider the parameters we want to include or exclude
from the model. We therefore tried fitting the full double Schechter model without K-corrections, and
it still returned comparable results. All results are collected in table 3.1, listing the starting point
as well as best-fit parameters for the fiducial run (figure 2.1) as well as the runs discussed in this chapter.

Note here that the GLF may be highly accurately reproduced even for different parameters than the
input (when this is fitted by trial-and-error) due to degeneracy with the normalization and realization
noise.
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Preliminary K-correction results

Figure 3.7: Top left: The starting point of the model, fitted by hand to the extended mock galaxy catalogue. Top

right: The result of the model using a simple double Schechter with M∗ and M ′ free including K-corrections.

Clearly the model has trouble fitting the data. Bottom left: Result of the same model as the top right, but now

including constraints binned on colour, thus using likelihood from equation (3.13). The extra constraints added

by binning the number constraint on colours do not solve the problems from the top right figure. Bottom right:

Result of the model without K-corrections (thus using equations (3.1), (2.28), (2.18) and (2.29) for a simple

double Schechter with M∗ and M ′ free) on the extended mock galaxy catalogue. Clearly, the problem does not

lie solely with the K-correction methodology, since the original code also has trouble with the extended mock

catalogue.

To further discuss the results in figure 3.7, in the appendix we show the usual figures displaying Nm

and Nz (as in 3.2 for example) for the four cases from figure 3.7 as well. There we see essentially that
without using equation (3.13) one Schechter is made redundant for fitting Np,λ, and that overestimation
of high-redshift, high-luminosity galaxies is a continuing problem in the fit. Possible causes of the bad
performance are discussed in the next section.

3.3.4 Discussion

While the double Schechter model from section 3.1 (figure 3.3) fits the GLF visibly the closest, it
seems further improvements to the model did not lead to better results. Firstly, adding M ′ as a free
parameter is needed to correctly fit bL to the dataset independent of the set itself, but did not lead to
a better visual fit of the GLF. Most likely this is due to introduction of extra degeneracies, in this
case mostly with K, but of course more indirectly also with the φ∗ via equation (2.18). This results
in more local minima in the likelihood surface, meaning the model is more dependent on the input
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Run α0 M∗0 αe M∗e α′0 M ′∗0 α′e M ′∗e M ′

Input -1.01 -21.5 -0.15 -0.8 - - - - -
Fiducial (vDW) -1.050 -21.429 -0.155 -0.927 - - - - -

Input -0.57 -20.97 -0.72 -1.18 -1.36 -20.97 -0.19 -1.18 -
DS -0.211 -20.403 -0.745 -1.312 -1.469 -22.108 -0.318 -1.023 -
Simple DS -0.370 -20.710 -1.199 -1.394 -1.285 - -0.204 - -

Input -1.36 -20.97 -0.19 -1.18 -0.60 -20.50 -0.04 -1.04 -23.3
M∗ free -1.214 -21.856 -0.585 -1.340 -0.564 -20.562 -0.257 -1.131 -
M∗ and M ′ free -1.260 -21.830 -0.573 -1.334 -0.629 -20.490 -0.262 -1.189 -22.498

Input -1.25 -21.16 0.54 -0.50 0.92 -20.13 -0.37 -0.49 -22.29
Kcorrdata 8.028 -17.700 4.899 -3.336 -2.188 -20.308 -1.416 -0.521 -25.571
Kcorrect -3.000 -21.561 -1.239 -0.379 8.023 -17.504 4.672 -3.895 -24.347
Colour likelihood 0.339 -22.159 0.408 -2.116 3.244 -19.067 1.963 -3.238 -21.968

Table 3.1: The best-fit GLF parameters derived from clustering data for each of the model runs above. A “-”

denotes that the parameter is not included in the specific model run. “DS” stands for the double Schechter model

from figure 3.1. “Simple DS” corresponds to figure 3.2. “M∗ free” to figure 3.3 and “M∗ and M ′ free” to figure

3.5. “Kcorrdata” denotes the run of the original model on the extended mock galaxy catalogue, corresponding to

the bottom right figure of figure 3.7. The other panels of figure 3.7 correspond to the last “Input” line (top left),

“Kcorrect” (top right) and “Colour likelihood” (bottom left).

parameters.

This is also a possible cause of the bad performance of the K-corrected model. We would like the
starting point to be explained by physical background, but this remains to be explored, since not
enough is known on this topic yet ([Johnston, 2011]). Discerning between different types of galaxies
(star-forming vs. quiescent) and different sources of mass-quenching in quiescent galaxies seems to be
the best approach, although not knowing enough about M/L in these types of galaxies gets in the way
of making conclusive statements. With these distinctions in the back of the mind, one could say a more
logical starting point could be one Schechter fitting the cutoff, while another fits the low-luminosity
slope, but that would make many parameters redundant (α of the first Schechter for example) and
would also conflict with us wanting to constrain the universal GLF.

The fact that the model from section 3.1 also underperforms on the extended mock galaxy catalogue
as seen in the bottom right panel of figure 3.7 also points to degeneracy being the main problem, more
importantly because it is started at a different starting point than previous models. In table 3.1 we
also see that the M∗0-parameter of the first and second Schechter interchange (Input parameters had
M∗0 < M ′∗0 but the best-fit parameters had M∗0 > M ′∗0) for this run. We could bound the parameter
space to the region where M∗0 < M ′∗0 to reduce at least one possibility of degeneracy.

Another possibility why the model starts to perform worse when including more low luminosity
galaxies, especially for the low and high absolute magnitudes, exactly the limits where we have less
data, could be due to insufficient sampling of the clustering in these regimes. That means that the
assumption of a Gaussian likelihood breaks down in those regimes, since the Gaussian likelihood only
holds in the limit of sufficient data, due to the law of large numbers. It is thus recommended to search
for a more accurate form of likelihood to use in the regimes of statistically insufficient data.
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The errors in kcorrect could be a source of error in these models, but as we see in figure 3.6,
the correction always brings the naive distance modulus closer to the actual value while varying only
slowly over the extent of the bins involved in our model. Therefore this is the least likely source of
problems in the presented results. What could be a problem added to the model when implementing
K-corrections is the extra bins we add for colours, by which we add more possibility for statistical
artifacts to enter our analysis, although this is also partly counteracted by our ability to add more
specific constraints to the model, and the model performs slightly better in overall shape when adding
these constraints.

Lastly, this model certainly breaks down when reality can not be described by a Schechter function.
Then we would need to find a different underlying model for the GLF that we want to fit to the
data. The advantages of our current approach are mainly twofold. Firstly we avoid bias due to
having spectroscopic samples being selected differently, since we do not use the properties of the
spectroscopic galaxies to fit models to (as is done in SED-modelling or semi-analytic modelling as
used in [Bates et al., 2019]). Secondly, we only have to make a simple assumption on the galaxy bias,
namely the shape of the luminosity dependent galaxy bias factor, bL, and incorporate the uncertainty
about the galaxy bias as a free parameter in the model. Other results not able to do this will certainly
be degenerate with the unknown redshift-dependent galaxy bias factor.
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Summary and Conclusion

The main question of this thesis was to find out if improvements and extensions of the vDW method
[van Daalen and White, 2018] would lead to better estimates of the universal GLF and its evolution
through cosmic time. This model was constructed to be less dependent on spectroscopic data and the
resulting biases when fitting galaxy evolution models to observations. In order to do that, we assert
the assumptions made in their paper, as well as incorporate K-corrections in the conversion between
apparent and absolute magnitudes. They do mention dust extinction and lensing magnification having
an effect on the model, but these are outside the scope of this research.

Our research starts with a description, in chapter 1, of the general background of the GLF, most
importantly the Schechter function, and theories of galaxy clustering. Most importantly we discussed
the currently well-established theoretical concepts behind estimating the galaxy two-point correlation
function. How galaxies are biased with respect to the underlying matter distribution, both due to halo
bias and luminosity bias, is important in the context of the model.

Previous work on using cross-correlations to estimate the redshift distribution formed the basis
and starting point of our research, and this is summarized in chapter 2. It presents how, using a
spectroscopic sample of which we know the redshifts, we can assign redshifts to a photometric sample
using cross-correlations between the samples. We describe how we average over multiple spatial scales
and how we need to handle the difference in galaxy bias for the two samples, since objects good for
spectroscopic measurements are more highly biased. Afterwards, we describe how we find a model
value for Np(m, z), the amount of photometric galaxies with apparent magnitude m and redshift z,
given our parametric model dependent on a Schechter luminosity function. The way the model is fitted
to data and the result of the model from vDW (their ‘fiducial’ model) were presented as background
for chapter 3. Their model only serves as a conceptual proof, and should be extended to include effects
that become important when applying this methodology to actual data.

We implemented three improvements to the vDW fiducial model to apply it to realistic data.
The theory and results of these improvements are presented in chapter 3. First is the addition of
a second Schechter function since actual data is often better fitted with two Schechter functions
as proposed for instance in [Peng et al., 2010]. We describe how the choice of which parameters to
include influences the location of local minima on the likelihood surface and conclude the model
in figure 3.3 provides the current best fit to a simulated mock galaxy catalogue from the Planck
Millennium all-sky lightcones simulation [Henriques et al., 2015]. This model implements a second
Schechter function of which the normalization is assumed to evolve equally to the normalization of
the first Schechter and only differs by a relative factor, while other parameters are free. Afterwards,
we describe how the luminosity dependent galaxy bias factor, bL needs to be modelled or fitted to
data, and decide it is better to include an additional parameter for fitting bL to actual datasets,

44



since otherwise we could only fit it to the spectroscopic set and thus introduce the bias we wanted
to avoid. Lastly we discussed how kcorrect by [Blanton and Roweis, 2007] calculates K-corrections
to the distance modulus given three observed apparent magnitudes, and how to incorporate these
corrections into the model by binning over two observed colours. We show that the K-corrections vary
negligibly over the bins. However, the preliminary results of this addition are shown to be less than ideal.

Still, the extensions of the model show promising results for when we ultimately want to apply the
model to actual data, since the overall shape of the GLF is fitted to a very good extent by the model
from figure 3.3. We therefore laid foundations for further work extending the model and accounting
for the problems encountered during this research.

Therefore we advise future research to further study the following:

• Most importantly try to get a better understanding of the likelihood surface and its structure of
minima. Of course this is quite complicated seeing the dimensionality of the problem. Therefore a
good start would be to gain a better theoretical background on the GLF, thereby understanding
even better the dependencies of its parameters, and thus which parameters need to be included,
or need to be subject to what constraints (i.e. constrain M∗0 < M ′∗0). This would also enable
us to find a more substantiated starting point for the two Schechter components for the model.
Since much previous work is about the Schechter mass function [Johnston, 2011], this needs to
be extended to the GLF. Extending it naively brings us to the current assessment, but assumes
a constant M/L-ratio, which is well-established to depend strongly on specific galaxy properties
and environments which were outside the scope of this work.

• The assessment of the errors and the variability of calculated K-corrections from kcorrect could
be extended to find an even more optimal database of K-corrections to use. By this we mean to
reduce the statistical artifacts introduced by subdividing all bins over colour as well as reducing
the bias introduced due to K-corrections being derived from spectral models.

• The mathematics behind the likelihood for the correlation function w̄ps could lead to better
insights of how to fit the model. Since we experience sampling noise at both the high redshift,
high luminosity end (due to only the brightest objects being observed at those distances) and the
low redshift end (due to cosmic variance), the assumption of a Gaussian likelihood breaks down,
and should be altered. The exact mathematical expression is an area that should be explored.

• Lastly, before ultimately applying the model to actual data, the possible effects of lensing
magnification as well as dust extinction need to be implemented to reduce their influence on
the result. Since these effects concern only higher-order effects, their effect should be small, but
important when we want to extract the exact parameters describing the galaxy population. We
note that lensing magnification effects are not present in the mock galaxy catalogue, but will be
in actual data.
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Appendix A

Additional Figures and Derivations

A.1 Chapter 1

A.1.1 Section 1.2.2

Another, more natural way of seeing that the linear bias model introduced in section 1.2.2. is viable
is as follows (from [Mo et al., 2010, pp. 679-681]): When splitting the two-point correlation function
of galaxies into a one-halo and two-halo term, dependent on masses of those respective halos, the
two-point correlation function of the halos can be found from the galaxy-galaxy two-halo two-point
correlation function. Since dark matter halos are correlated in space, the joint probability of finding a
halo of mass M1 at x and one of mass M2 at x′ is proportional to:

n(M1)dM1n(M2)dM2[1 + ξhh(x− x′|M1,M2)]d3xd3x′, (A.1)

where ξhh is the two-point correlation function of the halos, given their masses. Thus, the probability
of having an interhalo galaxy pair, separated by a vector r, hosted by an M1 −M2 pair separated by
x− x′ is equal to the product of the number of interhalo galaxy pairs given the separation and masses
Mi and the joint probability from equation (A.1).

The average number of interhalo galaxy pairs per volume given purely their separation is then an
integral over the halo masses M1 and M2 and locations x and x′. Then we can write:

ξgg(r) =
[GG1h(r) + GG2h(r)]dV1dV2

RR(r)dV1dV2
− 1, (A.2)

where GGih is the number of galaxy-galaxy pairs per volume squared in a single halo (1h) or
interhalo (2h), RR(r)dV1dV2 = n2

gdV1dV2, with ng =
∫
n(M) 〈N |M〉 dM the mean number density of

galaxies, is the expected number of pairs in the absence of clustering. The number GG1h of course
depends on the average spatial distribution of galaxies in a halo of mass M , u(x|M). Therefore, when
ξhh can be obtained, the two-point correlation function of galaxies is determined by the first two
moments of the halo occupation distribution P (N |M) having moments 〈Nk|M〉 ≡

∑
N N

kP (N |M)
and the function u(x|M). On larger scales, where the individual halo sizes can be neglected, however,
the halo correlation function is related to that of the matter, ξmm(r), by the linear bias relation
ξhh(r|M1,M2) = bh(M1)bh(M2)ξmm(r), so we recover:

ξgg(r) ≈ b2gξmm(r); bg =

∫
dMn(M)bh(M)

〈N |M〉
ng

. (A.3)
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A.2 Chapter 2

A.2.1 Section 2.2.1

Equation (2.29) follows from a general likelihood where we combine a Gaussian likelihood for the
spatial correlations and a Poissonian likelihood for the number of galaxies in each bin. We also set
n = nz × nm and θ to be the vector of parameters:

L(θ) =
1

(2π)n/2|C|1/2
exp

[
−1

2
(wps − w̃ps)

TC−1(wps − w̃ps)

]
×
nm−1∏
j=0

Ñ
Np,j

p,j exp[−Ñp,j ]

Np,j !
, (A.4)

thus:

lnL(θ) = −nmnz

2
ln(2π)− 1

2
ln(|C(θ)|)− 1

2
(wps − w̃ps)

TC−1(wps − w̃ps)

+

nm−1∑
j=0

Np,j ln
(
Ñp,j(θ)

)
− Ñp,j(θ)−

Np,j∑
k=1

ln(k)

 . (A.5)

Here we can leave out constants to get to equation (2.29).
Note that the assumption of a Gaussian likelihood only holds due to assumption of enough sampling

that the law of large numbers holds. Where this does not hold, however (which could for instance
happen in the low luminosity and high luminosity high redshift regimes) this assumption breaks down
and we need a different expression for the likelihood. The exact expression needed should be explored
in further research.

A.2.2 Section 2.3

Here we discuss in some more detail what is shown in Figure 2.1.

The top-left panel shows the GLFs as a function of absolute magnitude in each redshift bin. Solid
lines are the GLF as measured from the catalogue directly. The fit by the model clearly overestimates
the amount of dim galaxies in low-redshift bins, largely due to cosmic variance. At high redshift too,
the number is overestimated slightly. Still, in general, the best-fit distribution reproduces the GLF
very accurately, including the bright and dim-end dropoffs due to the rarity of high-luminosity galaxies
and due to the cut-off in apparent magnitude shifting to brighter galaxies at higher redshifts.

The top-right shows the distribution over apparent magnitude, and contains the black line of the
total number of galaxies per apparent magnitude, which is Np,λ, one of the constraints of the model.
Again, at low redshifts the model overestimates the number of dim galaxies, where the effect of cosmic
variance is largest, and the clustering signal has a large relative uncertainty.

The bottom-left shows the redshift distribution in each bin of apparent magnitude, where we see
an excellent reproduction of the data by the model, especially, again, at intermediate redshifts.

In figure 3 from vDW (which was reproduced in figure 2.1), shaded bands for cosmic variance
are plotted which have been calculated from a thousand randomly placed surveys from the same
simulation, with the same sky area as the fiducial survey area. Thus, it can be seen that the lowest
redshift bin contains significantly less objects than average, while the second redshift bin contains
significantly more. This is the main reason the model has difficulty to match the low-redshift end of
the GLF.

Lastly, the sharp downturn at high redshifts means that the bin is not captured in its fullest by the
model, causing the model to overestimate the number of galaxies in that bin. To show the mismatch
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at low redshift is mostly due to cosmic variance, a fit directly to absolute magnitude and redshifts
is done (both of which are unknown to the model), and results are shown to be extremely closely
comparable between the two methods.

A.3 Chapter 3

A.3.1 Section 3.1

For completeness, we show the result of the fiducial model on the unaltered mock galaxy catalogue in
figure A.1.

Fiducial model on unaltered mock galaxy catalogue

Figure A.1: As figure 2.1 but now for the unaltered catalogue with the same model. Starting and best-fit

parameters are shown in table A.1. Clear underestimation in multiple regimes is seen.

When comparing these results to those in figures 3.1, 3.3 and 3.5, we already see that in all cases, a
double Schechter function manages to make a better fit of the data, confirming our belief that we can
better fit this data with a double Schechter model. The starting and best-fit parameters are presented
in table A.1.
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Input -0.57 -20.97 -0.72 -1.18

Fiducial on unaltered catalogue -0.572 -20.790 -1.037 -1.309

Table A.1: Input and best-fit parameter for the fiducial model on unaltered data. Input was the same
as for the double Schechter model in table 3.1.

A.3.2 Section 3.3.3

Here we show the Nm and Nz counterparts to the models shown in figure 3.7 as was done in for
example figure 3.2 too.

Preliminary K-correction results, Nm

Figure A.2: As figure 3.7 but now Nm is shown. Dotted coloured lines show the actual fit from the model, while

the dot-dashed lines show the analytical fit given the best-fit parameters. Note that, while the constraint in the

top left figure is not fit well, it is fitted perfectly by both the top and bottom right models, and is underestimated

by the bottom left model. The binned data is however misfitted completely in the results.

We notice here that, while the starting point is not the best, it does use both Schechters to build
up the contributions to both the total constraint and the binned data.

In the top right panel, we see this structure broken down, and the two Schechters show two clear
maxima, using mostly the second maximum to fit the constraint. This structure is also seen in the
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Preliminary K-correction results, Nz

Figure A.3: As figure A.2 but now Nz is shown. Note the apparent overestimation for higher redshift, high

luminosity galaxies in the top left panel. The original model (bottom right) compensates the underestimation of

low-luminosity galaxies with overestimation of high-luminosity, high-redshift galaxies. This is also apparent in

the top right. The bottom left panel again is closer the the overall shape of the data, but still misfits horribly.

bottom right, where it seems like one Schechter function is actually almost made redundant by the
model.

The bottom left panel of course looks different since the shown total is not used as a constraint
but the data is additionally binned on colour here. The result seems to follow the shape of the data
better, but does not match the data at all.

As already seen in the original runs (for example figure 3.3), the high-redshift, high-luminosity
galaxies are overestimated by the fit made by trial-and-error, meaning this is possibly unavoidable
when assuming the structure of the two Schechter functions we use. This starting point then seems
to retain its bad placement during the fitting of the model, as is apparent in all other figures. For
the bottom left panel, the overall shape comes closest to what we want to have, but it is still clearly
wrong.

For further discussion, see section 3.3.3 and on.
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