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In this reader, by differentiable we always mean C.

We will use the following notation.

Let U € R™ beopen and f = (f1,...,fm): U — R™ be a differentiable map. Then the Jacobian
(matrix) of fat x € U is

y ON(z) ... ()
Df(x) = (33;. (w)) i=1,...,m - ‘ |
J j=1,.'n %‘%(«T) %a%(x)

We also recall the following results which should be well known from calculus.

Theorem 0.0.1 (Implicit Function Theorem)
Consider R"™ x R™ = R"™™ with coordinates (x,y) = (T1,.--,%Tn,Y1,---,Ym) . Given is an open
subset U CR™ x R™ | a point p € U , and a differentiable map f = (f1,..., fm): U — R™ with

f(p) =0 and
Ofi
det <<8yj (p>>i,j:1,...,m> 70

Then there are open V CR"™ , W CR™ with peU' :=V xW C U such that there is a unique
differentiable map g:V — R™ with U'Nf~10)={ (x,9(z)) |z €V }.

Theorem 0.0.2 (Inverse Function Theorem)
Let U CR"™ be open, f = (f1,...,fn): U—R"™ a differentiable map, p € U and

det (Df(p)) # 0 .

Then there is an open U' C U , pe U’ , and an open V CR"™ such that flg:U —V s a
diffeomorphism.



1 Submanifolds of Euclidean space

1.1

Submanifolds of R"

Definition 1.1.1 A k-dimensional submanifold of R"™ is a subset X C R™ with the following pro-

perty:

For every p € X there is an open U, CR"™ with p € U, , and a differentiable map

f:(fl""?fn—k’):Up—)Rn_k

such that f~*(0)=XNU, and

tk(Df(p) =n— k.

Examples 1.1.2 1. We start by describing the dimensionally extreme cases.

(a) The 0-dimensional submanifolds of R™ are precisely the discrete subsets.

(b) The n-dimensional submanifolds of R™ are precisely the open subsets.

Proof: (a) Recall that a subset X C R™ is discrete if and only if for every p € X there exists
an open subset U € R™ such that {p} = X NU . In this case, define

f:U—R" | f(z)=x—p;

then f is differentiable with X NU = {p} = f~40) and tk(Df(p)) = rk(idgn) =n=n—0.
This shows that X is a 0-dimensional submanifold.

Conversely, let X CR™ be a 0-dimensional submanifold and p € X . Then there exists an open
U CR" with pe U and a differentiable map f:U — R" 0 =R" such that X NU = f~1(0)
and 1kDf(p) =n . By the Inverse Function Theorem 0.0.2 we may assume (after making
U smaller if necessary) that f is a diffeomorphism and in particular injective. This implies
{p} = f~10) = X NU . This shows that X is discrete.

(b) If X € R™ is open, then for every p € X take U =X and f =0, the constant function
from U to {0} =R =R"" ; the Jacobian of this map has rank 0, and therefore X is an
n-dimensional submanifold.

Conversely, let X CR"™ be an n-dimensional submanifold and p € X . Then there exists an
open U CR™ with p €U and a differentiable map f:U — R* ™ =R = {0} such that
XNU=f10)=U . This implies that for every p € X there exists an open U C R™ with
peU C X, ie that X is an open subset of R™.

Let S'={ (z1,72) €R? | 22 +22 =11} be the unit circle. For every point p = (p1,p2) € S*
we choose U =R? and f:U — R, f(z1,22) = 22 + 23 — 1 . Then f is differentiable, it holds
St=S'NU = f71(0) , the Jacobian of f is Df(x1,x2) = (2z1,2x2) , and since (p1,p2) # (0,0)
for all (p1,p2) € S, we have tkDf(p1,p2) =1 for all (p1,p2) € S* . Therefore, S is a 1-
dimensional submanifold of R?.



3. Suppose that X CR™ s (locally) the zero set of a map f:U — R™* | but that f is not
everywhere differentiable, or that for some p € X NU it holds tkDf(p) <n —k . Does this
mean that X is not a submanifold of R™? The answer to this question is no, as we see from the
following example.

Consider the diagonal X :={ (z1,72) € R? | w1 = x5 } ; intuitively one expects that this straight
line is a one-dimensional submanifold of R?.

But X equals f~(0) for the differentiable function f(z1,72) = (z1 — x2)? = 2% — 2w129 + 23 |
whose Jacobian D f(x1,x2) = (221 — 229, —2x1 + 229) = (0,0) for all (x1,22) € X , i.e. it
holds rkDf(x1,22) =0<2—1=1 for all (x1,22) € X . Nevertheless, X is indeed a 1-
dimensional submanifold, since it is also the zero set of the differentiable function x1 — xo whose
Jacobian (1,—1) has rank 1 everywhere.

The point we want to make here is that if an X is given as zero set of a map f which does not
satisfy all of the conditions of the definition, it can nevertheless be a submanifold; the given f
might just be the wrong choice.

4. We view elements of R™ as column vectors.

A quadratic hypersurface in R™ is a subset X = fglbc(O) where

n n
fA,b,c :R" — R , fA,b,c(l') =zt Ax + 2tz +c= Z Qi T;T5 + 2 Z bix; + ¢,
ij=1 i=1
b1
with A = (a;j)i j=1,..n a real symmetric (n x n)-matriz, b = : eR”,and ceR . X is

br,
called smooth or nondegenerate if

A b
det<bt C)#O.

Claim: A smooth quadratic hypersurface is an (n — 1)-dimensional differentiable submanifold of
R™.
Proof: It suffices to show

Fape@m) =0 = Dfape(z):= (8g,;,f,c ...,6£2’b70> (z) £0 .

It is easy to see that Dfayp.(x) = (2Az + 2b)" .
Assume that fapc(x) =0 and Dfapc(x) =0 . The second condition means Ax+b=0 or
2t A = —b' . In combination with the first condition it follows that blx 4+ c =0 . This implies

A b\ [z _(Ar+b _,
B e 1) \bet+e ) 7

A
but this means that < bt ZC) ) is not invertible; a contradiction. u



5. Let M(n) = M(n x n,R be the vector space of real (n x n)-matrices which is naturally identified
with R™.
Let S(n)={ Ae M(n)| A= A"} be the vector space of symmetric real (n x n)-matrices; this

n(n+1)
is identified with R™ 2 by taking the coefficients on and above the diagonal as coordinates.

Let I, denote the n x n unit matriz; then O(n)={ A€ M(n) | A-A' =1, } is the orthogonal
group in dimension n, i.e. the group of orthogonal (n X n)-matrices. Observe that an orthogonal
matriz A is invertible with inverse A~! = Al .

. . n(n—1
Claim: O(n) is an %

Proof: O(n) is the zero set of the differentiable map

-dimensional submanifold of M (n).

f:M(n)— Sn) , f(A)=A-A"—1,.
For every A € M(n) , the Jacobian
Df(A): M(n) — S(n)

is given by

Df(A)(B) = % (f(A+tB)) l1=0 = % (A-A'+t(A-B'+ B- A" +#*B-B' - 1) |10

= (A-B"+B-A"+2tB - B')[;.o=A-B'"+B- A" .

Take now A€ O(n) and C € S(n) , and define B:=31C-A€ M(n). Then B =3A". C,
and we get
1
Df(A)(B) :§(A-At-C+C’-A-At) =C.
This means that for every A€ O(n) the Jacobian Df(A) is surjective, i.e. that it has rank
dim S(n) = % , i.e. that O(n) is a submanifold of M(n) of dimension

n2in(n+1) :n(n—l) ‘
2 2

Remarks 1.1.3 1. It is a (nontrivial) fact that not every submanifold of R™ can be given as the
zero set of just one differentiable map satisfying the conditions of the definition. An example for
which this is not possible is the Mébius band realized as a 2-dimensional submanifold in R3.

2. R™, and hence any subset with the induced topology, is second countable and locally connected;
this has the following two consequences.

(a) A discrete subset, i.e. a 0-dimensional submanifold, can contain at most countably many
points.

(b) Since local connectivity implies that connected components are open, an open subset, i.e.
an n-dimensional submanifold, is the disjoint union of at most countably many connected
open subsets.



Theorem 1.1.4 Consider the following properties of a subset X C R™ equipped with the induced
topology.

1. X is a k-dimensional submanifold of R™.

2. For every p € X there exists an open neighborhood U of p in R™, an open subset U’ C R™ |
and a diffeomorphism ¢ : U — U’ such that

dXNU)={x=(21,...,20) €U |21=... =2, =01} .

3. For every p € X there exists an open neighborhood U of p in R™, an open subset W C RF |
and a differentiable map n: W — R"™ such that
-XNU=nW),
-n: W — XNU is a homeomorphism,
-tk(Dn(n~'(p) =k .

4. There exists a k-dimensional differentiable atlas for X, i.e. a set A={ (Vi,h;y,W;) | i€l },
where I is some index set, with the following properties:
- for every i €1,V is open in X, W; is open in R*, and h; : V; — W; is a homeomorphism,

'X:U‘/i;
el
- for all i,5 € I, the map

(Rj 0 by Dl vinvy) : hi(ViNV;) — (Vi V;)
is differentiable. The elements (V;, h;, W;) are called charts for X.

Then 1., 2. and 3. are equivalent, and they imply 4.

Proof: The cases k=0 and k =n are trivial, so we assume 0 <k <n .

1. = 4. Wetake I := X .Forevery p € X choose U, CR" and f, = (f1,..., fa_k): Up — Rk

as in Definition 1.1.1. Define V), := X NU, ; then it holds X = |J V), . Because of
peX

| (2w) ) e=n=

=1,...,

j=1,...,n

we may, after renumbering the coordinates in R” if necessary, assume that

of; >
d 0.
ot << o) i,j:l,...,n_k> +

According to the Implicit Function Theorem 0.0.1, for every (if necessary smaller) U, there is an open
W, CRF> (2, _g41,...,2,) and a unique differentiable map

gp : Wy — R** 5 (z1,...,20_k)

7



such that

To(9p(Tn—kt1s -, Tn), Tn—tt1s---,Tn) =0 forall (zp_gt1,...,20) € Wy, (%)
and such that
V, = Up,NX=U,Nf, (0
= {(z1,...,2n) €Up | (@Tn—tt1,---r2n) EWp, (z1,....2n—k) = Gp(Tn—k+1,-..,Tn) } . (¥%)

Define hy, :V, — W, , hy(x1,...,2,) == (Tp—k+1,.-.,Tn) , 1.e. hy is the restriction to V), of an
orthogonal projection and in particular continuous. Furthermore, h, is bijective with continuous
inverse

hgl(xn,kﬂ, v ) = (Gp(Tn—kt1r - Tn), Tn—ktls - Tn) -
Hence hy, is a homeomorphism, and h,, 1'is differentiable as map from W, to R™, so
hg o h;l = (projection) o (diffb. map)
is differentiable (where defined) for all p,q € X .
1. = 2. Take U :=U,,V,, W, and g, as in the proof of 1. = 4., and define
o:U—R" |, o(x1,...,2n) = ((T1,. -, Tn-k) — 9p(Tn—kt1,- s Tn), Tn—ktl,- - Tn) -

Then ¢ is differentiable, and its Jacobian has the form

o In—k *
D¢ = ( 0 Iy ) ’
where I;, denotes the k x k unit matrix. In particular, it holds det(D¢(p)) # 0 , so (taking U smaller

if necessary) by the Inverse Function Theorem 0.0.2 we may assume that ¢ is a diffeomorphism from
U to an open U’. From (x) and (xx) it follows

HXNU)=¢(Vy)={z=(21,...,20) €V |1 =... =28 =0 }.

2. = 1. For pe X take U, ¢ and U’ as in 2. Define
7R — Rk (T, oy Tn) = (T1y oy Tnk) ;

then 7 is linear of rank n — k, and it is differentiable with Jacobian Dmn(z) =7 for all z € R" .
Define now the differentiable map

fi=mo¢:U—R"F.
then, since ¢ is bijective, it holds
XnU=¢"' ({zel |n@@)=0})=¢"" (771(0)) = (r09)7'(0) = f71(0) .

Finally we have
Df(p) = Dr(¢(p)) o Dg(p) = 7o Do(p) ;



this has rank n — k since D¢(p) is an isomorphism, and 7 has rank n — k.

1. = 3. Take U:=U,, V, W, and h, as in the proof of 1. = 4., and define W :=W,,
n:i= h;l W —V,=XNU CR"; as we have seen, 1 is a homeomorphism from W to X NU, and
differentiable as a map to R"™, so it remains to verify the rank condition.

Since W C R* | it clearly holds tk(Dn(n~!(p))) <k . On the other hand, from hy,on=idy it
follows idgk = Dhy(p) o Dn(n~(p)) , which implies rk(Dn(n~1(p))) >k .

3. = 1. For p€ X take U, W and n as in 3. Write n = (11,...1,) . Since Dn(n~!(p)) has rank k,
we may assume (by renumbering the coordinates in R™ if necessary) that

det ((S—Zml(p)))i’j:lrwk) 40

By the Inverse Function Theorem 0.0.2 (and after shrinking U and W if necessary) there exists an
open W’ C R* such that
g:= (7717---a77k:) W — W

is a diffeomorphism. Let
7:R* — RF | (T1,...,zn) — (z1,...,28) ,
the projection; then

W‘XﬂU

g:ﬂon:ﬂn(w)on:ﬂ){m(]on:WL XNnU—"—"%Ww,

SO
Tlxau =gon ' : XNU — W’

is a homeomorphism with inverse
p=nog t:W —XNU.

Observe that ¢, viewed as a map (¢1, ..., ¢,) from W’ to R™, is injective and differentiable.
Now let be (z1,...,2,) € X NU , then

(1, yxpn) = O(m(x1, ..o 2p)) = (a1, ..oy 2k) = (P1(z1, .oy k), - ooy On(T1, - oy X))

ie.
VeeXNU : x;=¢i(z1,...,25) , i=1,...,m. (xxx%)

On the other hand, for (z1,...,x;) € W’ it holds

(ml,...,xk) = W((b(wl,...,a;k)):W((¢1(x1,...,xk),...,(ﬁn(xl,...,xk))
= (¢1([]31,...,xk),...,¢k(1'1,...,ajk))),

i.e.
V (21, m,) €W 2 @iy, xp) =25 5 i=1,..., k. (%%%x)



Observe that, by replacing U by U N7~ (W’) if necessary, we may assume that
(1, ywp) €U = (21,...,28) €W L (%% % x)
Define now the differentiable map

frU—R"" | fler,. . mn) = (@1 — Ot (T, TR)s oy T — O (@1, T1))

then from ( * %) it follows immediately X NU C f~!(0) . Furthermore, since the Jacobian of f has
the form
Df = (A In—k)

with some ((n — k) x k)-matrix A, it holds rkDf = n — k . Hence it remains to show that
zeU and f(z)=0 = z€X,;

for this it is sufficient to show that such an x = (z1,...,2,) is contained in the image of 7. Now
(x1,...,2) € W' by (xx%%x%) so ¢(x1,...,xx) is defined. By (x * *x) it holds

<Z>(x1,...,xk) = (:L‘l,...,xk,¢k+1(:r1,...,xk),...,¢n(:):1,...,xk)) .

On the other hand, f(z) =0 means z; = ¢;(x1,...,2,) ,i=k+1,...,n, so we get

T = (xla N '7xk7¢k+1(xla s 7:(:]6)7 ce 7¢n(x1; s ,.Z'k)) = ¢(x17 cee 7xk) = 77(971(9517- s 71'16))

as wanted. [ |

Remarks 1.1.5 1. Observe that property 4., in contrast to the other ones, makes sense for any
topological space since it does not refer to the ambient space R™ of X. In fact, this property will
be the main ingredient of the definition of an abstract manifold in the next chapter.

2. In general the implication 4. = 1. is not true; an example is the following. Let be
X ={ (z1,22) €R? | zy = |z4] } .

Now take I:={0}, Vo:=X, Wo:=R, and ho: (x1,|z1]) — 21 . ho is continuous because
it is the restriction to X of the linear, and hence continuous, projection (xy,x9)— x1 . It is
bijective with inverse x1 +— (x1,|z1|) , which is continuous because x1 — |x1| is. This means
that hg is a homeomorphism, and hence that {(Vo, ho, Wo)} satisfies the first two conditions in
4. But the third condition for this setup is trivially satisfied: the only pair (i,j) to check is (0,0),
and for this we have hgo hal = idg , which of course is differentiable.

But can X be a submanifold of R%2? And, if yes, of what dimension k? The answer to the second
question seems intuitively obvious, namely k =1 . Indeed, since X s neither discreet nor open
in R?, this is the only possibility by Example 1.1.2.1.

The proof of the fact that X is no submanifold of dimension 1 is not so easy and will be given in
the next paragraph. In any case, this does not follow from the fact that X is the zero set of the
function (x1,x2) — x2 — |x1| which is not differentiable at (0,0); it is not obvious that there is
no other function with the right properties (compare Examples 1.1.2).

10



Excercise 1.1.6 1. Let X be a k-dimensional submanifold of R", pe X and ¢ :U — U’ as

in Theorem 1.1.4.2. We identify R* with { (z1,...,2,) € R" | 2341 = ... = 2, = 0 }; then
W :=U'NRF is open in R*.
We denote by 7 :R™ — RF the projection m(x1,...,2,) = (21,...,78) .

(a) Show that U, W and n:= ¢ |y satisfy the conditions of Theorem 1.1.4.5.

(b) Show that there exists a k-dimensional differentiable atlas for X (in the sense of Theorem
1.1.4.4) such that each chart is of the form (X NU, 7 o ¢|xnu, W) for some pe X .

(c) Let 1,72 be two curves in X through p. Show that +1(0) = 42(0) if and only if

d d
pn (modon(t)) =0 = o (modoat)) |t=o -

2. Show that X CR"™ is a k-dimensional submanifold if and only if the following holds:

For every pe€ X there exists an open U, CR"™ with p€ U, , an open W, C RE  and a
differentiable map g, : W, — R™ % such that, after renumbering the coordinates in R™ if
necessary, it holds

XnUp={(y,9) eEREXxR"F=R" |y W, } .

Show further that then n,: W, — R™ , n,(y) := (y,9p(y)) satisfies the conditions in Theorem
1.1.4.8, and that A:={ (X NUp,n, xrv,, Wp) | p€ X } is a k-dimensional atlas for X in
the sense of Theorem 1.1.4.4.

1.2 Tangent spaces

Let X C R™ be a k-dimensional submanifold, and p € X.

Definition 1.2.1 A curve in X through p is a differentiable map ~: (—e,e) — R™ ;0 < e € R, with
v(—€,€) C X and v(0)=p .

Remarks 1.2.2 1. Since a curve v in X through p is differentiable as a map to R™,

dy
¥(0) = —(0) e R"
7(0)=—(0) €
s well defined.

2. There are many curves through every point p € X :if n: W — R" s as in Theorem 1.1.4.3
with p=n(q) , and v :(—€,€) — W a curve through q in R*, then ~:=no~' is a curve
i X through p.

Definition 1.2.3 1. The set
T,X :={ 4(0) | v a curve in X through p } C R"

is called the tangent space of X at p.

11



2. Let f:U, — R"* be as in Definition 1.1.1; then we define

TIX :=ker Df(p) .

3. Let ¢:U — U be as in Theorem 1.1.4.2; then we define
TPX = Do(p) "' (RY) = D(¢~")(¢(p)(RY),
where we identify R* with { (x1,...,2,) ER" |21 =... =2, =0} .
4. Let n: W — R" s as in Theorem 1.1.4.8 with p =n(q) ; then we define

T X := Dn(q)(R*) .

Theorem 1.2.4 It holds
T,X =T{X=T¢/X =T)X .

In particular, T,X is a k-dimensional linear subspace of R", and TJX resp. T,?X resp. Ty X is
independent of the choice of f resp. ¢ resp. .

Proof: Tzf X, Tg’ X and T,/ X are image respectively kernel of a linear map and hence linear subspaces
of R™ and the rank conditions on the maps involved imply that they all have dimension k. Therefore,
it suffices to show that

T)X CTYX CT,X CTJX .

By making W sufficiently small, we may assume that n(W) C U so that ¢on: W — R" is well
defined and differentiable. Since n(W)C X NU and ¢(X NU) C R* | we have (¢ on)(W) C R,
implying, using the chain rule,

RF 5 D(¢on)(@)(RY) = Dé(p) (Dnla)(®Y)) = Dé(p) (X))

ie.
T)X C Do(p) ' (RF) =T X .

Every vector v € TI? X is by definition of the form

d

= (0 M o(p) +t-w)) li=0

v =D¢(p)~" (w)

with w € R .
Since ¢ maps X N U bijectively to R¥ N U, it holds ¢(p) € R* and hence ¢(p) +t-w € RF for all
t. This implies that for ¢ small enough the curve

v (_676) — R" V(t) = ¢_1(¢(p) +t- w) )

is a curve in X through p, and hence

d

U= G

(07 (8(p) + t - w)) [t=0 = ¥(0) € T, X .

12



This shows the second inclusion
TYX CTX .

Finally, let be 4(0) € T, X ; by choosing € small enough we may assume ~v(—¢,e) C X NU, . Then
fo~v =0, and hence, by the chain rule,

0= (Fo5(1)) o = DIP)(3(0) |
h 4(0) € ker Df(p) = TS X .

This proves the last inclusion
T,X CT/X .

Example: We consider R"™! with standard inner product ( , ), and the submanifold
St i={zeR"™ | (r,x)=1}.
For f(z):= (x,2) — 1,2 € S" and y € R""! it holds Df(x)(y) = 2(z,y) , hence

T/ 8" = 2+ c R,

Remark 1.2.5 Consider X ={ (v1,72) € R? | 23 = |71 } ; we will now show, as promised in Re-
mark 1.1.5.2, that this is not a 1-dimensional submanifold of R2.

If X would be a I1-dimensional submanifold, then it would have a 1-dimensional tangent space at the
point (0,0). In particular, there would be a differentiable curve ~ = (v1,72): (—¢,€) — R2  with
y(—€,€) C X , v(0) = (0,0) and #(0) # (0,0) . v(—e,€) C X implies ~2(t) =~3(t) for all t; dif-
ferentiating this twice we get 271(t)% + 2y1(1)51(t) = 2%2(t)? 4 272(t)32(t) . Using v1(0) = 72(0) = 0
this gives

71(0)* =42(0)* . (*)

On the other hand, ~v(—e,€) C X implies ~v2(t) >0 for allt, and ~(0) = (0,0) implies ~2(0) =0 .
This means that 2 has a minimum at t =0, and hence that 42(0) =0 . But then (x) implies
41(0) =0, too, so 4(0) = (0,0) ; a contradiction.

13



2 Differentiable manifolds

2.1 Manifolds

Let X be a topological space.

Definition 2.1.1 1. X is called locally FEuclidean if for every point p € X there exists an open
neighborhood U of p in X, an n € N and an open subset V C R", and a homeomorphism
h:U—V.

2. An n-dimensional topological atlas for X is a set

where I is an index set, and for each i € 1

- U; is an open subset of X and X = | Uj,
el

- V; is an open subset of R",

-h;:U; — V; is a homeomorphism.

3. An n-dimensional topological manifold is a pair (X, A), where X is a topological space and A
an n-dimensional topological atlas for X.

It is obvious that an n-dimensional topological manifold is locally Euclidean.

Excercise 2.1.2 1. Give an example of a locally Euclidean space which is not Hausdorff.

2. A standard result in topology states that open subsets V € R™ | W € R™ can be homeomorphic
only if m =n . Use this to show that every connected component of a locally Euclidean space
has the structure of a topological manifold of a well defined dimension.

3. Let (X,.A) be an n-dimensional topological manifold. Show that for all i,5 € I the gluing map
(hj © by Dlnywinw;) = hi(Us NU;) — hy(U; N Uy)

is a homeomorphism.

Example 2.1.3 Consider R with standard coordinates x = (x1,22,...,Znt1) - The n-dimensional

unit sphere is defined as
n+1

S"mi={zc R | Zx?zl}.
i=1

Define for 1 <i<n+1 Ujx:={xeS"| £a; >0} ;itis clear that these hemispheres cover S™.
Let

n
D*:i={yeR"| > yi <1}
=1
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be the n-dimensional open unit disk. Then the projections
hi,:l: : Ui,:l: — Dn s (.iUl, e 7$n+1) = (.1}1, s i1y Li41y - - - ,$n+1)
are continuous with continuous inverse
n
hz_,i = (ylv"'7yn) = (yl s Yi-1, +,|1- Zy? yYiy - 7yn) .
j=1

This means that S™ is an n-dimensional topological manifold.

Definition 2.1.4 Let A={ (U;,h;,Vi) |i €1} be an n-dimensional topological atlas for X. A is
called an n-dimensional differentiable atlas for X if for all 1,57 € I the gluing map

(hj o by Dy winoy) = hiUi NU;) — hi(U; N U;)

1s differentiable.

From Exercise 2.1.2 it follows that each gluing map (h; o h; ') hi(Uinu;) 18 bijective; the inverse is
(hjo h;1)|h]-(UimUj)' Since differentiability of A means that both these maps are differentiable, it holds

Remark 2.1.5 A is a differentiable atlas if and only if all gluing maps are diffeomorphisms.

Examples 2.1.6 1. By Theorem 1.1.4, every k-dimensional submanifold X of R"™ admits a k-
dimensional differentiable atlas.

2. If U CR™ isopen and h: X — U is a homeomorphism, then {(X,h,U)} is an n-dimensional
differentiable atlas because hoh™' =idy is differentiable.
A particular example for this is the standard atlas A(U) := {(U,idy,U)} for an open subset
U C R" ; another is the atlas {R, h, R} where h(x) = 23 .

3. Consider X = { (z1,72) € R? | 33 = |x1| } ; we have seen in Remark 1.2.5 that X is no subman-
ifold of R%. But X has the 1-dimensional differentiable atlas {X,h,R} where h(z1,22) = 1 ,
since this projection is continuous with continuous inverse h~'(z) = (z, |z|) .

Example 2.1.7 The topological atlas { (U; +,hi+,D™) | 1 <i<n-+1} for the unit sphere S™ C R"
(see Example 2.1.3) is a differentiable atlas; e.g. for i < j it holds

n
i o by Ly yn) = W1, %imts | 1= D U2 Uise o Uiy Yjs - Un) -
j=1

Another way to see the differentiability of the atlas is to observe that each gluing map hj+ o hl_i is the
composition of the differentiable map hz_j[ : D" — R™ with a projection from R™ ! to R™, which is
differentiable, too.
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Two n-dimensional differentiable atlases A= { (U;,h;,V;) |i €1}, A'={ (U}, h},V))|je€J} for

a topological space X are called equivalent, notation A ~ A’ , if their union AUA’ is an n-dimensional
differentiable atlas, too, i.e. if for all ¢ € I, j € J the maps

hio (W) iy R5(UiNUf) — hi(U:NU7)
W o hi vy ¢ hi(Ui N Uf) — k(Ui N Uj)
are differentiable. It is left as an easy exercise to check that this indeed is an equivalence relation.

An n-dimensional differentiable atlas A is called maximal or an n-dimensional differentiable structure
in X if it holds

A~r A = ACA.
It is easy to see that the equivalence class of an atlas A contains the unique maximal atlas

Ma= |J A.
A~ A

Remarks 2.1.8 1. Let be (U;,h;,V;) € A.
(a) If U C U; 1is open, then (U, h;|ly,hi(U)) € My .
If V. CV; is open, then (hi_l(V),h,-]hﬂ(V),V) eMy .

(b) If g:V; — V CR" is a diffeomorphism, then (Uj,goh;,V) € M4 . In particular, for
every point p € X there exists a chart (U h,V)e M4 with V={zeR" ||z <1}
the open unit ball and h(p) =0 .

2. Consider for R the two 1-dimensional differentiable atlases {(R,idg,R} and {(R,h,R}, where
h(z) = 2® (see Examples 2.1.6). These are not equivalent since (idg o h™!)(z) = x5 is not
differentiable at © =20 .

Excercise 2.1.9 Consider the standard atlas A(R™) = {(R",idgr~,R™)} . Show that the associated
mazimal atlas is

Mpwny =1 (U,h, V) | U,V CR" open , h:U — V diffeomorphism } .

Definition 2.1.10 An n-dimensional differentiable manifold is a pair (X, M) where X is a second
countable Hausdorff space, and M is a mazimal n-dimensional differentiable atlas for X.

Remarks 2.1.11 1. If a second countable Hausdorff space admits some n-dimensional differen-
tiable atlas, then it has the structure of an n-dimensional differentiable manifold.

2. The induced topology in every subset of a second countable Hausdorff space has these properties,
too. Therefore:

(a) Since R™ is second countable and Hausdorff, every k-dimensional submanifold of R™ has
the structure of an k-dimensional differentiable manifold.
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(b) Let (X, M) be an n-dimensional differentiable manifold and Y C X open. Then it is easy
to see that
My ={ Y NnU,hlyau, (Y NU)) | (Uh,V)eM}

is a maximal n-dimensional differentiable atlas for Y, so (Y, My) is an n-dimensional
differentiable manifold, too.

Remark 2.1.12 Ezample 2.1.6.1 states that a k-dimensional submanifold X of R™ admits a k-
dimensional differentiable atlas. In the proof of the implication 1. = 4. in Theorem 1.1.4 we have
constructed an atlas A for X consisting of charts (U, h,V') with the following properties:

h is the restriction to an open subset of X of an orthogonal projection,
h=1 is differentiable if viewed as a map from V C RF to R™.

But any two atlases consisting of charts of this type are equivalent because the composition of a differ-
entiable map with a projection, and vice versa, is differentiable. This means that each of these atlases
defines the same k-dimensional differentiable structure in X. We call this the natural differentiable
structure i X.

Excercise 2.1.13 Let X be a k-dimensional submanifold of R™. Show that an atlas for X as in
Ezxercise 1.1.6.1 defines the natural differentiable structure in X.

Excercise 2.1.14 Show that the 0-dimensional differentiable manifolds are precisely the discrete topo-
logical spaces with at most countably many points.

Example 2.1.15 Let (X,7) be a topological space, Y a set and ¥ :Y — X a bijective map. Then
there is a unique topology Ty in'Y such that 1 :(Y,Ty) — (X,7T) is a homeomorphism, namely
T,={¢v'(U)|UeT}.

Now let V' be an n-dimensional real vector space. Every basis B = {bi,...,ba} of V determines a
n

bijective linear map (the coordinate isomorphism) ¥ :V — R™ by (> Nibi) = (A,..., ),
i=1

and hence a topology T in V' such that g becomes a homeomorphism.

Let B' be another basis of V. Since linear maps between Euclidean spaces are continuous, the bijective

linear map pr o 1/11;1 :R" — R"™ s a homeomorphism. Hence the composition of homeomorphisms

jopt 1117/1
idy : (V,Tg) 5 R 220, gn s

(V, )

is a homeomorphism, too; this implies Tg = Tg . In other words, there is a unique topology Ty in
V' such that each coordinate isomorphism p : (V,Ty) — R™ is a homeomorphism; Ty is called the
natural topology in V.

According to Example 2.1.6.2, each {(V,vp,R™)} is an n-dimensional differentiable atlas for V' with
its natural topology. Since each linear isomorphism Vg ogbél s not only a homeomorphism but even a
diffeomorphism, it follows that all these atlasses are equivalent, i.e. that they define the same natural
differentiable structure in V.
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To close this subsection we state without the easy proof

Proposition 2.1.16 1. Let X and Y be n-dimensional differentiable manifolds with atlases Ax
and Ay . Then the disjoint union AxUAy is an n-dimensional differentiable atlas for the disjoint
union XUY equipped with the topology defined by

UcCXUY isopen < UNXCX isopenand UNY CY isopen .

The equivalence class of this atlas depends only on the equivalence classes of Ax and Ay, and
the resulting n-dimensional differentiable manifold is denoted X +Y and called the differentiable
sum of X and Y .

2. Let X be an n-dimensional and Y an m-dimensional manifold with atlases Ax and Ay. Then
an (n + m)-dimensional differentiable atlas in the topological product X XY is given by

Axxy ={ (Ux U hx K,V xV') | (UnV)e Ax , (U, K, V)€ Ay },

where (h x W) (p,p) := (h(p), W' (p")) . The equivalence class of this atlas depends only on the
equivalence classes of Ax and Ay, and the resulting (n+m)-dimensional differentiable manifold
is (again) denoted X x'Y and called the differentiable product of X and Y.

2.2 Differentiable maps

Let (X, M) be an n-dimensional differentiable manifold, where M = { (U;,h;,V;) |i €1 } .

Definition 2.2.1 A function f:X — R s called differentiable if for every i €1 the function
fo hi_1 : Vi — R is differentiable.

Remarks 2.2.2 1. If f: X — R is differentiable, then every f o hi_1 : Vi — R is differentiable
and hence continuous. Since continuity is a local question, each h; is a homeomorphism, and
the U; cover X, it follows that f is continuous.

2. Let A C M be any atlas for X. Then for the differentiability of f it is sufficient that f o h;l
is differentiable for all (Uj, hj,V;) € A ; this can be seen as follows:
Let be (Ui, hi, Vi) € M and x €V, ; it is sufficient to show that f o h;l is differentiable in
some open neighborhood of x.
Since A is an atlas, there exists an (Uj,hj,V;) € A such that p:=h;'(z) € U; . Then U;NU;
resp. hi(U;NUj) resp. hj(U;NUj) is an open neighborhood of p resp. x resp. hj(p), and it holds

(f o hi_l)’hi(UiﬂUj) - (f © hj_l)‘hj(UiﬂUj) o (h] o h7,_1)|hl(U-LﬂUJ) .

This is differentiable since (hj o hi_l)|h¢(UmUj) is differentiable because M is a differentiable
structure, and (f o hj_l)]h].(UiﬂUj) is differentiable by assumption.
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Definition 2.2.3 Let (X, M) be an n-dimensional and (X', M) an m dimensional differentiable
manifold. Let f: X — X' be a map.

1. f is called differentiable if it is continuous, and
(h'o foh™pwns-1wn) : MUN FHU)) — V'
is differentiable for all (U,h,V)e M , (U W, V") e M .

2. f is called a diffeomorphism if it is differentiable and bijective, with differentiable inverse map
X —X.
(X, M) and (X', M") are called diffeomorphic if a diffeomorphism f:X — X' ewists.

Remarks 2.2.4 1. In contrast to the definition of a differentiable function on a manifold, for the
definition of a differentiable map between two manifolds we ask f to be continuous a priori for
the following reason. Differentiability of a map between subsets of Euclidean spaces makes sense
only if the domain of this map is open. Therefore, if we want to check differentiability of ” f
viewed in charts”, i.e. of K o f o h™1, we have to know that its domain, i.e. h(U N f=Y(U")),
is open. Since h is a homeomorphism, this is true iff U N f=1(U’) is open, which holds if f is
continuous.

2. An argument analogous to that in Remark 2.2.2.2 shows that the differentiability of a map f can
be checked by verifying the differentiability of f viewed in charts from some atlases for X and
X'.

3. Let (U, h,V) be a chart for X; then U resp. V' has a differentiable structure as open subset of X
resp. R”, and h:U — V is a diffeomorphism since idy ohoh ' =idy =hoh lo id‘_/1 .

Conversely, if UC X and V CR"™ are open and h:U — 'V s a diffeomorphism, the
(U, h, V) belongs to the mazximal atlas M of X. Indeed, (U, h,V) is a topological chart since h
is a homeomorphism, and for every chart (U',h', V') € M it holds (where defined)

hoh'™ = idyohoh™",
Woh™ = Kohloid,!'.
But the two maps on the right are differentiable because h is a diffeomorphism.

In other words it holds
M={(Uh,V)|UC X open, VCR" open, h:U — V a diffeomorphism } .

4. A diffeomorphism is, in particular, a homeomorphism. Thus, for topological reasons, diffeomor-
phic manifolds have the same dimension.

Example 2.2.5 Consider for R the two atlases {(R,idg, R)} and {(R,h,R)}, where h(z) = 2% (see
Ezamples 2.1.6); the differentiable structures My = Myrazr)y ond Mz = Mygpr)yy in R are
not equal by Remarks 2.1.8. But

Wl

Vi (R7M1) - (RvMQ) ) f(:L‘) =T
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s a diffeomorphism of manifolds since
(ho fo(idr)™!)(z) =2 = (idro f oh™!)(z),
i.€.
hofo(idg) ™t =idg =idgo ftoh !,
i.e. f and f~1 are differentiable in the charts idg and h.

From now on, when we write ”a differentiable manifold X” we assume that some differ-
entiable atlas for X has been fixed.

Lemma 2.2.6 Let Xy , Xo, X3 be differentiable manifolds and f1: X1 — Xso, fo: Xo — X3 dif-
ferentiable maps. Then [ := foo f1: X1 — X3 1is differentiable.

Proof: Let (Uy, hi, V1) resp. (Us,hs, V3) be a chart for X resp. X3; we have to show hs o f o h1_1
is differentiable in hy(U; N f~!(U3)). This is a local question, so let be =z € hy(U; N f~4(U3)),
p1i=hi'(2), pa:= fi(p1) , p3 = fa(p2) , and let (Us, ha, Vo) be a chart for Xo with py € Us . Since
f1 and fy are continuous, there are open W; C U; with p; € W; ;i =1,2,3 | such that f;(W;) C W11
for i=1,2. Since hy(W7) is an open neighborhood of z it suffices to show that hg o f o h1_1 is
differentiable on this. This follows from

(hso fohi")n ) = (hso fao fro i )n ) = ((hso f20hy lnywa)) © ((hz o fro hT Nl wn))

and the fact that (hgo foo h;l)\hQ(WQ) and (hg o fy o hl_l)’hl(Wl) are differentiable because f1 and f,
are. [ ]

Definition 2.2.7 Let f:X — X' be a differentiable map between differentiable manifolds and
pe€ X . The rank of f atp is

rk, f := 1k (D(I' o f o ™) (h(p))) ,
where (U, h, V') resp. (U',h', V') is a chart for X resp. X" with p e U resp. f(p) €U’ .

Lemma 2.2.8 The definition of vk, f is independent of the choice of the charts.

Proof: Let (U,h,V) and (U’,', V') be other charts around p and f(p), then by the chain rule it
holds

D@ o foh™)(h(p) = D o (B ol o foh™ ahoh™)(h(p))
= [DW o (W) HFH (@) o [DR o f ok )(hw))] o |D(hoh™)(R(p))

Since the gluing maps h' o (B )N_1 and h o h=! are diffecomorphisms (Remark 2.1.5), the Jacobians
D(h' o (K")~Y)(R'(f(p))) and D(h o h=1)(h(p)) are isomorphisms. This implies

tk (D o f o k™) (h(p)) = xk (D(H o f o h™") (h(p))) -
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Theorem 2.2.9 (Rank Theorem) Let X resp. X' be an n- resp. m-dimensional differentiable
manifold, pe X , f: X — X' a differentiable map, and k € N .
Suppose that there is an open neighborhood Uy of p in X such that rk,f =k for all q € Uy . Then
there are charts (U, h, V) for X with pe U , (U, W', V') for X" with f(p) € U, such that f(U) C U’
and

(W ofoh™) (z1,29,...,20) = (21,22, ...,25,0,...,0) € R™

for all (zq1,x9,...,2,) €V .

Proof: In this proof, when we write ”we may assume that” without comment, then we mean ”we
may assume, by shrinking charts if necessary, that” (see Remarks 2.1.8).

Choose a chart (U’, b}, V) around f(p). Since f is continuous, there exists a chart (U, hy, V1) around
p with f(U) C U’ ; we define

f:(fly-~~afm) 1:h/10fohI1;Vi _>‘/1’ .
By assumption we may assume that
tkyf =k forall qeU,

i.e. that .
tk(Df(z)) =k forall x€Vj.

This means in particular that the Jacobian matrix D f(h1(p)) contains an invertible k x k-submatrix
which is invertible. Therefore, after renumbering the coordinates in V; and V] if necessary, we may
assume that D f(z) has the block form

o 3]?1. N [ A(z) B(x)
Df(w) = ( ot >> =2 0m)

with det A(h1(p)) #0 . Since Df(z), and hence det A(z), depends differentiably and thus continu-
ously on x, we may assume that det A(z) #0 for all = € V; . We define

A~ A

g:Vi—R" | glxy,...,xpn) = (filz1,. s 2n), oy fo(T1, ooy T0), Thg1y e oo, Tn)

oy = (A7)

In—k

then

and hence
det Dg(x) = det A(z) #0 forall z € V; .

By the Inverse Function Theorem 0.0.2 we may assume that V := g(V7) isopenand ¢g:V; — V a
diffeomorphism. Then h:=goh;: U — V is a chart for X around p by Remarks 2.1.8, hence for

f=(f o fm)=Mofoh™ =fog .V —V
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it holds
rk(Df) =tkyf =k in V. (1)

For
Vo (@n,..omn)=2=91) =9 yn) = (L), o) vkr1, - )
we have
(@1, ) = (@), - fe)
and hence

f@) = 1) = (h@), - @) = @1,z fia @), fn(@) - (2)
This means in particular that Df has the block form

o= iy )

of;

8:(}]'
We may assume that V' is connected; then (3) implies that the fi, k+1<1i<m, are independent of
the zj, k+1<j <m, ie that

(1) implies A(x) =0, i.e.

=0 for i,j>k+1. (3)

ﬂ-(ml,...,xn):ﬁ-(:cl,...,xk,x2+1,...,x2) ,L,j>k+1, (4)

where (29,...,2%) = h(p) .

r'n
We leave it as an exercise to show (using (2)) that we may assume that for all z = (21,...,2m,) € V{
it holds (z1,... ,Zk71’2+1, ...,22) € V | and define
g = Vi —R",
9(z) = (21, 2k 2kt — Frr1 (B ooy 20 Tty oo B0y 2 — Fn (210 ey 2y T gs e D)

Then the Jacobian matrix Dg’ has the block form

I Ik 0
Dy _( R ’

and by the Inverse Function Theorem 0.0.2 we may assume that there is an open V' C R™ such that
g :V/ — V' is a diffeomorphism. In particular, b’ := ¢’ o h} : U’ — V' is a chart for Y around
f(p), and it holds for x = (x1,...,z,) €V

(W' o foh™)(x) = (g ohyofoh™ ) (z)= (40 f)(z)
= '@,z fipa (@), fnl@) by (2)
= g(T1, e Ty foi1(T1s oo Ty Ty e @0) sy fn (@1, T T, -, 20)) Dy (4)
= (x1,...,7,0,...,0) by the definition of ¢ .

22



Corollary 2.2.10 Suppose that in the situation of the Rank Theorem 2.2.9 it holds n=m =%k .
Then f is a diffeomorphism locally around p, i.e. there exist open neighborhoods p € U , f(p) € U’
such that fly : U — U’ s a diffeomorphism.

Proof: With respect to charts as in the Rank Theorem it holds locally around h(p)
(h’ofohil) (z1,22,...,2n) = (T1,T2,...,Tpn) ,
ie.
h, o f o h_l = idR”|V .

Hence h' o f o h™! is a local diffeomorphism and in particular homeomorphism. Since A’ and h~!
are homeomorphisms, it follows that f is a local homeomorphism around p, in particular that £~ is
continuous around f(p). Furthermore, with respect to these charts it holds

hof o)t = (h/ ofo h_l)il = idgn |y~

in the neighborhood V" = (h'o foh™1)(V) =K (f(U)) of W (f(p)); this shows that f~! is differen-
tiable in the neighborhood f(U) of f(p). |

2.3 Tangent spaces

Let X be an n-dimensional differentiable manifold and p € X . A differentiable curve in X through p
is a differentiable map +: (—€,¢) — X , e > 0, with v(0) = p . The set of all these curves is denoted
by K. We say that two curves 71,72 € K, are equivalent, notation ~; ~ 7o , if the following holds.

Let (U, h,V) be a chart for X with p € U . Then for « € K, , and for a suitable 0 < < e, we get
a differentiable curve ho~y:(—0,0) — V , and we define

L hon)(0) c R .

Y(0)p == 7

We say that two curves 71,72 € K, are equivalent, notation ~; ~ 72 , if for a chart (U, h, V') as above
it holds

1(0)n = F2(0)n -
Lemma 2.3.1 ~ is a well defined, i.e. independent of the chosen chart, equivalence relation in K.

Proof: Assume that 41(0);, = 42(0) , and that (U’, ', V") is another chart with p € U’ . Then

O = (W o)(0) = S oh™ oho)(0)
= D(h' oY) (h(p)) (%(h o 7)(0)) by the chain rule
= D o A~ )(h(p)) (31(0)n) = D(H 0 A=) (h()) (32(0)n) by assumption

= “2(0)p using the previous arguments reversely.
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This shows that ~ is well defined. The fact that = is an equivalence relation in R"™ immediately implies
that ~ is an equivalence relation in £C,. [ ]

Definition 2.3.2 The geometric tangent space of X at p is the quotient

D SEESTA

where ~ s the equivalence relation defined above. The equivalence class of €K, s denoted
] € , and called a geometric tangent vector o at p.
T X d called tric ¢ t vect X at

Theorem 2.3.3 77" X has a natural structure of an n-dimensional vector space.

Proof: Let (U,h,V) be a chart for X with p € U , and define the map &, : R" — Ty X as
follows.

Since V' is open, for every v € R™ there exists an € > 0 such that h(p) +t-v €V forall t € (—e,e€) .
Then
Yo i (=€) — X, () :=h7 (h(p) +t-v)

is an element of IC,, and we define
Dy (v) := 1] € TgeomX .

We want to show that @ is bijective; for this first observe that it is easy to see that

This implies that for v,w € R™ it holds
Pp(v) =Pp(w) & W= © Y~ © wOh=%0)r & v=uw,
i.e. that @ is injective.
Now take v € ICp , and define v, :=%(0), € R" . Then from (x) it follows
V) (On =vy =50 & Pp(vy) = [v,] =11,

i.e. that ®; is surjective.

Hence, &, is bijective with inverse

If (U', W, V') is another chart for X with p € U’ , then we define the bijection ®p : R" — T3 M
in the same way; we are done by Lemma 2.3.4 below if we show that @,:,1 o®p : R" — R" is a linear
isomorphism.
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We have, using (),

Byt 0 @4 (v) = 2 (13]) = ol0 = (W 072)(0)

Since by definition

(R o y)(8) = (W' o B ) (h(p) +t - v) |
the chain rule implies

0! 0 ®y(v) = D(h' o B 1) (h(p))(v) .

We are done since h’oh™! is a local diffeomorphism, and hence D(h'oh~1)(h(p)) a linear isomorphism,
by Remark 2.1.5. u

Lemma 2.3.4 LetV be a set, and & : R®™ — V' a bijective map.

1. A structure of an n-dimensional vector space induced by ® can be defined in V as follows:
For v,w €V define v+w:=®(@ v)+ o L(w)).
For veV ,AN€R define \-v:=0\-d(v)).
With respect to this structure, ® is a linear isomorphism.

2. Let ® :R"™ — V be another bijective map. The structures of n-dimensional vector space in
V induced by ® and ®' are the same if and only if

(@) o®:R" — R"

is a linear isomorphism.

Proof: This is an easy exercise in linear algebra and therefore left to the reader. [

Definition 2.3.5 For data as in the proof of Theorem 2.3.3, we define

0 .
6$z(p) = q)h(ei) y U= 1)"'7” )
where (e1,...,ep) is the unit basis of R™.
Remark 2.3.6 Since, according to Lemma 2.8.4.1, ®y is a linear isomorphism, (a%l(p), R %(p))

n
is a basis of T3 X . Furthermore, for a linear combination > \; - %(p) it holds
i=1 i

n a n
Z)\i'axi@) = ;q)ho\i'ei):q)hO‘lp--w)\n)

= [tl—>h_l (h(p)—kti)w&)]
i=1

= [t b7 )+t Oy )]
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Excercise 2.3.7 Let M be an n-dimensional differentiable manifold, p € M , (U,h, V), (UK, V')
two charts for M with pe UNU", (x1,22,...,2,) resp. (Y1,Y2,---,Yn) coordinates in V resp. V',
and 8%1_(])), (%i(p), i=1,2,...,n the associated bases of Ty M (see Definition 2.5.5).

1. Show that for [y] € T M it holds

> D). Ly
— dt 83:1
where (Y1,72,-+.,Yn) ;== ho~y:(—€€) — R™.
2. Show that
89] 0 .
E — =1,2,...
8"171 a:L‘Z 8y] (p) ) Z M M ) n )

where g = (g1,92,--.,9n) :=h o ff1 s the gluing map.

We now give an alternative definition of the tangent space which sometimes is more convenient.

A differentiable function near p is a pair (f,U) where U C X isopen with pe U ,and f:U — R
is a differentiable function. We say that two such pairs (f,U), (f’,U’) are equivalent, notation
(f,U) ~ (f,U’) , if and only if there exists an open V C UNU’ with p € V such that f|y = f'|v
i.e. if f and f’ coincide in a small neighborhood of p. It is easy two see that ~ is indeed an equivalence
relation, and hence we get a quotient

& = {(f,U) | (f,U) differentiable function near p } I

the equivalence class of a pair ( f, U) is denoted by [f, U] and called the germ of a differentiable function
at p. Since different functions defining the same germ are the same near p, the value

[£,Ul(p) :== f(p)
is well defined.

Definition 2.3.8 Let X be a topological space, A C X a subset, V a vector space, and f: A —V
a map. Then the support of f is the set

supp(f) :={z€ A f(z) #0 },

where { | } denotes the topological closure in X.

Excercise 2.3.9 1. Let X be a differentiable manifold, U C X open, and f:U — R a diffe-
rentiable function with supp(f) C U . Show that the function

f: X —R, f(p)::{ f(op) ig;g:

1s differentiable in X.
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2. Show that for every germ [f,U] €&, there exists a differentiable f:X —R such that
(£, Ul =1f, X] .
Hint: For the proof of 2. you may use (besides of course 1.) the following fact from calculus (the
existence of a bump function).

Let be xo € R" and U CR" an open neighborhood of xg. Then for every e >0 such that the
closed ball B.(p) of radius € around p is contained in U, there exists a differentiable (bump) function
¢:R" — [0,1] with the following properties:

1. ¢ is the constant function 1 on Bc(p),

2. supp(¢) C U .

One readily verifies that &, is a vector space by the following rules:
£ U1+ [ U = [flonor + floeo, UNUT, A-[fU]:=[X- f,U] .
Similarly, a multiplication in &, is defined by
15,0110 = [fluavr - fluaw, UNU'

since this multiplication obviously obeys the distributive law with respect to the addition defined
above, it follows that &, is a real algebra.

An element v of the dual space (see Appendix 5.1)
&, =Hom(&,R) ={v:& — R | v linear }
is called a derivation if for all [f,U],[f’,U’] € &, the following product rule holds:

o ([£,0]-[f,U7]) = o([f.U]) - [f,U')(p) + [, Ullp) - v([f, U']) -

Lemma 2.3.10 1. Let (U,h,V) be a chart for X with p € U and coordinates (x1,...,xy) in V.
Then for i =1,...,n the map

O(foh™1)

g —R . ull W)= S

(h(p)) ,

is a derivation.

2. View cc€ R as a constant function in some neighborhood U of p. If v is a derivation on &,
then v([c,U]) =0 .

Proof: 1. If f and f’ coincide near p, then foh~! and f'oh~! coincide near h(p), and hence it holds

o -1 5 —1
AL ) = L2 o
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this shows that v;([f, W])) is well defined, i.e. independent of the choice of the representative ( f, W)
for the germ [f, W]. Linearity of v; follows from

/O 1 ° 1 /O -1 o —1 ’O —1
(S + (;;) ) iy = 220 8;f h )<h<1’>>=a(fax]z ) (hip)) + Wa_;>(h<p))

and
. o -1 . o —1 o 1
(A g; h )(h(p)):a(A (foih ))(h(p)):xa(faxi; )(h(p));

this shows that v; € 51’," . That v; is a derivation follows from the product rule for % as follows:

o((f - f)oh™") O((foh™") - (f'oh™"))

w(ruipe) = 2D g, A (o)
o h-1
= (AL ) - (7o)

o b1
# (o) - (L)

= u ([£.0) - [ Up) + [£.U1(p) - vi ([f, U]) -

2. We have
v([e,U]) = wv([e-1,U]) viewing c and 1 as a constant functions
= (e, U]-[1,U])
= o([c,U]) - 1(p) + c(p) - v([1,U]) since v is a derivation
= v([e-1(p),U]) +v([e(p) - 1,U]) since v is linear
= 2v([e,U]) ;
this clearly implies v([¢,U]) =0 . ]

Definition 2.3.11 The algebraic tangent space of X at p is

Tgng :={ve& | va derivation } .

An element of Tﬁng 18 called an algebraic tangent vector of X at p.

Theorem 2.3.12 Tﬁng is an n-dimensional linear subspace of £

Proof: Let be v1,v € T,‘)z lax . By the definition of addition of linear maps it holds
(1}1 + ’02) ([fa U] ’ [f,a U/]) = u ([f7 U] ’ [f,’ U,]) + v2 ([f7 U] ’ [flv U/])
= u([f,0)-[f,Up) + [f,Ulp) - i ([f,U'])
+oa([£,U]) - [f, U')(p) + £, UL(p) - v2([f', U'))
= (v +u)(£,U])-[f,Up) + [, Ulp) - (v1 +v)([f,U])
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this shows that v; + vy € TeX . It is even easier to verify that A-v e T9¥X for A€ R and
v e THX ; hence T3 X is a linear subspace of &

Let (U,h,V) be a chart for X with p € U and coordinates (z1,...,x,) in V; we may assume that
h(p) =0 . Write h = (hq,...,hy) ; then for each i it holds h; o h™! = x; , and each pair (h;,U) is a
differentiable function near p.

Let vy,...,v, € T;ng be the derivatives associated to this chart by Lemma 2.3.10.1; we are done if
we can show that these are a basis of T2 X

n
Assume that there are Aq,...,\, € R such that >  \;-v; =0, i.e. such that
i=1

n

Z()\ Uz ZA vl fa ))

i=1
for all [f,W] e &, . Then in particular for all j it holds

O—Z)\ (vi([h;,U))) Z)\ hOh )(h(p))—Z)\i-gZ(h(p))—/\j,

i=1

this proves that the v; are linearly independent.
It remains to show that the v; generate To'/X. Take v € TpYX and define \; := v([h;, U]) ; we are

done if we can show that v = > \;-v; , i.e. that o([f,W]) = D> A\i-vi([f, W]) forall [f,W]e&
i=1 i=1

For such an [f, W], choose an open ball B around h(p) =0 inside V N h(W), and define the differen-
tiable function g:= foh™':B — R . Then fl,-1p)=gohl,-1(p),ie [f,W]=[gohh ' (B)].
According to Lemma 2.3.13 below there are differentiable functions v; in B such that ;(0) = 2£(0)

ox;
for all i, and g(z) = g(0) + >_ ¥i(x) - ¥; . In h~1(B) this means
i=1

f=goh=f(p)+) (ioh) (xioh)=f(p)+ Y (¥ioh) h
=1 i=1

Since v is linear and vanishes on constants (Lemma 2.3.10.2) we get !

n

o) = D u(@ioh)-hy)

= Z (1; o h) p) + Z ;o h)( (h;) since v is a derivation

1=1

= Zwi(O) -v(h;) since h(p) =0, so in particular h;(p) =0

'Here and later on we save on notations by writing only functions in place of (equivalence classes of) pairs. It is a
good exercise to write down the details at least once.
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= Z Ai aag (0) by definition of the \; and choice of the v
T

n -1
= Z i - %(0) by definition of ¢

= > Xi-vi(f) by definition of the v; ;

this is what we wanted. [ |

Lemma 2.3.13 Let B CR"™ be an open ball around 0, and ¢g: B — R a differentiable function.
Then the functions

gfi(t-x)dt Ci=1,....n,

1
Vi B—R | ¢(x):=
/
are differentiable with ;(0) = %(0) for all i, and g(z) = g(0) + i Yi(z) -z
i=1

Proof: We know from standard calculus that the 1); are differentiable, and it holds

1
ui0) = [ L= 520)
0

For fixed =z € B define the differentiable function
h:[0,1] — R , h(t):=g(t-x) .

The chain rule implies

dh, .~ Oy '
E(t)_z;a_xi(t'x)'w“

1 1
@)~ 90) = (1) -h(0) = [ T | (Z gji@-x)-xi) it
0 0

30



Theorem 2.3.14 1. Let v be a curve in X through p. Then

d
vy & — R oy ([f,U]) = @(fO’Y)(O)
is an element of T;,lng.

2. The map
U, TmX — TH9X | U,([y]) i= v,

is a well defined linear isomorphism.

Proof: 1. This is shown in the same way as Lemma 2.3.10.1 using f o~ in place of f o h~! and the
product rule for % instead of %‘ details are therefore left to the reader.

29
3

2. Let (U,h,V) be a chart for X with p € U, coordinates (x1,...,2z2) in V, and h(p) =0 .
Assume that [y] = [§] € 9" X , i.e. that v~ 4 in K,. Then it holds for every [f,u] € &,

B(BDLU) = v (0] = 57 0m)0) = & ((foh™) o (hom)) (0

d
= D(fo h_l)(O) . E(h 07)(0) by the chain rule and since (ho~)(0)=h(p) =0
d
= D(foh™H(0)- Z7(ho7)(0) by the definition of ~ in K,
= U,([F))([f,U]) by reversing the argument above ;
this shows that ¥, is well defined.

Let (see Theorem 2.3.3 and Remark 2.3.6) &, : R" — T37°"*X be the linear isomorphism associated
to (U, h,V); it suffices to show that ¥, 0 @) : R" — T;fng is a linear isomorphism. Since (eq, ..., e,)
resp. (v1,...,v,) is a basis of R™ resp. T;ZQX (see the proof of Theorem 2.3.12), this is certainly the
case if

Uy o ®p(Ayenydn) = ) Ai- vy
i=1

for all (A1,...\,) € R™ | ie.
(Wp 0 @a(A, -, An)) (f) = D A - wilf)
i=1

for all (germs of; see the footnote for the proof of Theorem 2.3.12) differentiable functions f near p.

Since h(p) =0, ®,(\1,...,\,) is the class of the curve ~:t+ h=1(t-(\1,...,\n)) by Remark
2.3.6; this implies

(Wp o (i, M) () = ‘I’p([ﬂ)(f):vw(f)Z% t= (Foh™)(t- (A1, An)) | (0)

" O(foh!
— Z %(0) - A; by the chain rule
i=1 :

= Z i - vi(f) by definition of the v; .
i=1
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Remark 2.3.15 1. The isomorphism ¥, is a natural one, independent of any choice.

2. Since a%i(p) = ®p(e;) by definition, it holds v; = Wy o0 Pp(e;) =V, (%(p)) )

2.4 The tangent map

Let X resp. Y be an n- resp. m-dimensional differentiable manifold, f:X — Y a differentiable
map, and pe€ X .

Definition 2.4.1 The geometric resp. algebraic tangent map of f at p is defined by

eom
Y

DI (p) : TI*"X — TH"Y , Tg"X 3 ] = [fon] € TH)

(»)

resp.

Df(p): T3OX — T30V, TE9X 30 (€4 3 [0, W] = v([go f, ffl(W)D] S

Theorem 2.4.2 1. Df9™(p) and Df%(p) are well defined linear maps.

2. Let W, : TI*"X — T39X and Uiy i Ty Y — T;f(lg)Y the natural isomorphisms from

Theorem 2.8.14; then D f*9(p) o Uy, = Wy 0 DI (p) , i.e. the following diagram commutes:

D foeom(p) geom
T Y
f(®)

TZ‘)qBOmX
Yp Vs (p)

alg alg
Tp X D falg(p) Tf(P)Y

3. Let (U h, V) resp. (U W, V') be a chart for X resp. Y with pe U resp. f(p)eU' . Let
(X1y... @) Tesp. (Y1,--.,Ym) be the coordinates in V resp. V', and let

9 9 eom a
B P o @ €K v v € TVX
resp.
O F @)oo (F0)) ETESY | thoe sty €TES Y
By PV gy T WPIE Sp) B P Um & ()

be the bases associated to these charts (see Remark 2.3.6, Lemma 2.3.10 and the proof of Theorem
2.3.12). Then the matriz of Df9°™(p) as well as of Df%9(p) with respect to these bases is the
Jacobian matriz D(h' o f o h=1)(h(p)) .
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4. If Z is another differentiable manifold and f':Y — Z a differentiable map, then the chain
rules

D(f o f)*™(p) = (Df)*"(f(p)) o DF*“""(p) ,
D(f'o f)"(p) = (Df)™(f(p)o Df*(p).

hold.

Proof: 1. We first show that D f9¢°™(p) and Df9(p) are well defined. Regarding D f9°°™(p), we
have to show that v ~ o implies fo~ ~ foo . For this we take charts (U, h,V) and (U', 1/, V') as
in 3. Then p p

y~o = —(hoy)(0) = —(hoo)(0)

dt dt
implies, using the chain rule,
d d d
Lo fom)0) = (o fohohoy)(0)= D o foh™ ) (b)) (hon)(0)
= Do f o k) (h(p)) 4 (ho0)(0) = SL(H o foh 0 hoa)(0)
d
= Woroo)0),

ie. foy~ foo as wanted. Regarding Df%9(p) first notice that if g and ¢’ are functions which
coincide in a neighborhood of f(p), then the functions gof and ¢’o f coincide in a neighborhood of p, and
hence it holds (in sloppy notation) wv(go f) =wv(g' o f) . That indeed D f%(p)(v) € T}l(lz)Y follows

casily from (Ag+pug') o f =Mgo f)+u(g' o f) . (g-g)of=(gof)-(gof),and veTX .
Linearity of D f%9(p) is obvious, and using this the linearity of D f9¢™(p) will follow from 2.

2. For all [y] € T X and functions g around f(p) it holds

(s (DI )(]) (9) = (Psep) ([f 27])) (9) Dy definition of D fo" (p)

d "
= E(g o fov)(0) by definition of Wy, ,

and on the other hand

(Ds9(w) (@p(11) (9) = (@p(la]) (g0 f) by defmition of Df%(p)

d
= a(g o fo~v)(0) by definition of ¥, .

3. Because of 2. it suffices to show the statement for D f9¢°™(p) or D f9(p), since ¥, (resp. ¥ £(»))
maps {%(p) (resp. aiyj(p)) to v; (vesp. v}) by Remark 2.3.15. For every function g around f(p) it
holds

(Df“lg(p)(vi)> (9) = wilgof) by definition of Dfal9(p)

33



-1
— M(h(p)) by definition of v;

8:@
B 8(gohlflohlofoh—1)
- o (h(p))
m 1—1 !/ — .
= Z a(%y};)(h,(p)) : oh Oéf; h); (h(p)) by the chain rule

m / -1\ .
s o o f © h™"); (h(p)) - v}(g) Dy definition of v/

= Ox;
m ' foph!
S DA AL T AR
j=1 ’

This is equivalent to

i.e. the claim.

4. For every [y] € T3 X it holds

(DU o () (W) = [f o For] = (DI (f(p)) (If 07])
= (D" (1() (DI ) (1))

= (@) (£@) o D)) ()

this proves the geometric case. The algebraic one follows from this and 2. [ |

Excercise 2.4.3 Prove the statement for D f9°°™(p) in Theorem 2.4.2.3 directly, i.e. without using
Df¥9 and 2.4.2.2. More precisely, use only definitions and facts from the geometric context, and
standard analysis.
Similarly, prove the statement of Theorem 2.4.2.4 in the algebraic case directly, without referring to
the geometric case.

Remark 2.4.4 In what follows we will identify T X and Tﬁng by the natural isomorphism W,
and just write T, X . Furthermore, since this identification is compatible with tangent maps by Theorem
2.4.2, we will just write Df(p) instead of D f9°™(p) or Df9(p).

An immediate consequence of Definition 2.2.7 and Theorem 2.4.2.3 is
Corollary 2.4.5 It holds rk,f =rtk(Df,) .
Definition 2.4.6 Let X, Y and f: X — Y be as above.
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1. f is called an immersion if rky,f =n, i.e. if Df(p) is injective, for all p e X .
2. f is called an submersion if rk,f =m , i.e. if Df(p) is surjective, for all p e X .

3. f is called an embedding if it is an immersion and f: X — f(X) is a homeomorphism when
f(X) CY is equipped with the induced topology.

Excercise 2.4.7 Let be Ry :={ xR | x>0} . Consider the differentiable sum (see Proposition
2.1.16) R+ Ry , and the map

f:R+R, — R% | f(w)::{(m,O) ifxeR,

(0,z) if x e Ry .

Show that f is an injective immersion, but not an embedding.

2.5 Submanifolds

Let X be an n-dimensional differentiable manifold.

Definition 2.5.1 A subset Y C X is a k-dimensional submanifold of X if for every p €Y there
exists a chart (U, h, V) for X with p € U such that

RYNU)={z=(x1,...,2n) EV | 231 =... =2, =0 }.

Remark 2.5.2 A diffeomorphism R"™ D o CR"™ s a chart for the standard differentiable
structure in R™ by Exercise 2.1.9. Therefore, Theorem 1.1.4 implies that a subset Y CR"™ s a k-
dimensional submanifold in the sense of Definition 1.1.1 if and only if it is a k-dimensional submanifold
in the sense of Definition 2.5.1.

Excercise 2.5.3 (compare Example 1.1.2) Show that the 0-dimensional (resp. n-dimensional) sub-
manifolds of X are precisely the discrete (resp. open) subsets of X.

Example 2.5.4 Consider the n-dimensional unit sphere S™ C R**1 |

n+1
St={x=(21,...,7041) € R | fozl b,
i=1

with the differentiable atlas { (U;+,hix,D™) | 1 <i<n-+1} asin Example 2.1.7 (see also Example
2.1.8). By viewing R" as the subset R" ={z € R"™! | x,,1 =01}, the (n — 1)-dimensional unit
sphere S™ 1 C R™ as the subset

STl ={2ecS" |y =0}CS™.
For every p € S™ 1 there exists a Ui+, 1<i<n,with peU+, and it holds

hie(S" P NU;+) ={ (z1,...,2,) €D™ | 2, =0} .
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This shows that S"~1 is an (n — 1)-dimensional submanifold of S™.

The argument can be easily generalized to show that, for every k <mn , S¥ is a k-dimensional sub-
manifold of S™.

Excercise 2.5.5 Show directly, i.e. without using the results below, that the inclusion map
Sk sm Sk s (zy, . xpg) — (21, 23g1,0,...,0) € ST

s an embedding.

Proposition 2.5.6 A k-dimensional submanifold Y of X, equipped with the topology induced from X,
has a k-dimensional differentiable structure such that the inclusion map iy : Y — X is an embedding.

Proof: Let
pr:Rn —>Rk ) pr(xlv"'axn) = (‘Tla"')xk) )

be the linear projection, and
i RF SR (2, x) = (21, .., 2, 0,...,0)

the linear inclusion. pr and i are differentiable (so in particular continuous), and obviously it holds
proi = idps . If we identify R* with i(R*) C R™ via the injective map i, then it is easily seen that the
standard topology in R* coincides with the topology induced from the standard topology in R™; this is
equivalent to saying that i: R¥ — §(R¥) is a homeomorphism with inverse DI |;(Rry : i(RF) — RF .

Let (U, h,V) be a chart for X as in Definition 2.5.1, and define
U:=YnU,V :=pr(h(YNU)) cR* | i :==proh|p : U — V.

By assumption it holds that U’ is open in Y and that h(U’) = V Ni(R¥) ; since V is open in R™ this
means that h(U’) is open in i(R¥), and hence that V' = pr(h(U’)) is open in R¥. Since A is bijective,
the map hlyr : U — h(U’) is bijective, too, and since prl;gsy : i(RF) — R* is bijective it follows
that A’ is bijective. Furthermore, since the restriction of a continuous map to a subset with the induced
topology remains continuous, it follows that h|y» and hence h' = proh|ys is continuous. Since its
inverse h~!oi|ys is continuous, too, h' is a homeomorphism, and hence a k-dimensional topological
chart for Y. Since a chart (U, h, V') as above exists around every point in Y, we get an k-dimensional
atlas for Y. Now observe that any two of the charts (U’, h', V'), (U, B,V ) for Y obtained in this way
glue differentiably; this is true because the gluing map is of the form

h o (h')_1 =pro(ho h_l) X

and ho h~! is differentiable. Thus we have produced a k-dimensional differentiable atlas in Y.

That Y has the topology induced from X is equivalent to saying that the inclusion ¢y : Y — X isa
homeomorphism onto its image Y C X ; hence it remains to show that iy is an immersion, i.e. that
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it has constant rank k. For this, choose around p € Y a chart (U, h, V) for X around p as above with
associated chart (U’, ', V') for Y; then

(h 04y © (h’)—l) (X1y...,z) = (h o (h/)fl) (X1,...,2k) = (h ohlo i‘V’) (€1, .., 23)
= i\vr(ml,...,xk):(ml,...,xk,o,...,O).
It is obvious that the Jacobian of this map has rank k at every point. u

Theorem 2.5.7 For a subset Y C X the following are equivalent.

1. Y is a k-dimensional submanifold of X .

2. For every p €Y there exists an open neighborhood U of p in X, an (n — k)-dimensional
manifold Z, a point q € Z , and a differentiable map f:U — Z such that Y NU = f~1(q)
and tkyf =n—Fk .

3. Y, with the topology induced from X, has a k-dimensional differentiable structure such that the
inclusion map iy 1Y — X is an embedding.

Proof: 1. = 2.: We take a chart (U,h,V) for X around p as in Definition 2.5.1, and define
Z:=R"%* ¢q:=0eR**, and f:=proh:U — Z , where pr:R" — R" % is the projec-
tion pr(z1,...,2n) = (Tpy1,---,Tn) - Then f is differentiable with f~!(q) =Y NU . idgn-r is a
chart for R”*_ and it holds

(idgn-r o f o ) (z) = pr(z) ,
hence

D (idgn-r o fo h™) (&) = ( Oputyue Tnk )

where 0(,,_)x 18 the (n — k) x k zero matrix and I, is the (n — k) x (n — k) unit matrix. This
means in particular that

rkp,(f) =tk (D (idgn-x © f o h_l) (h(p))) =n—Fk .

2. = 1..For peY takeU, Z, f and q as in 2. Let (U’, 1/, V') be a chart for Z with ¢ € U’ and
h'(q) =0 . After shrinking U around p if necessary, we may assume that f(U) C U" (because f is
continuous), and that U is the domain of a chart (U, h, V') for X. Define

fi=Wofoh™:V —V,

then f is differentiable, and since h and k' are bijective it holds

Furthermore, we have



so that (Y NU) is a k-dimensional submanifold of R™ in the sense of Definition 1.1.1. By Theorem
1.1.4 (and after shrinking U again if necessary) we may assume that there exists an open V; C R"
and a diffeomorphism g :V — V) such that

g(h(Y NU)) = (goh)(Y NU) ={ (z1,...,2n) € Vi | (Ths1,...,20) =0} . (¥)
Since ¢ is a diffeomorphism, (U,g o h,V7) is a chart for X, too, and (k) says that it meets the
requirements of Definition 2.5.1.

1. = 3.: This follows immediately from Proposition 2.5.6.
3. = 1.: Since iy is an immersion and hence has constant rank k, according to the Rank Theorem
2.2.9 around every point p € Y there is a chart (U’, b/, V') resp. (U, h, V) for Y resp. X with p € U’
and p=iy(p) € U, such that U’ =iy (U’) CU and

(hoiy o (W) (21, ., 2k) = (21, .., 24, 0,...,0)  (%%)

for all (xq,...,2p) € V.

That iy is a homeomorphism onto its image is equivalent to saying that the topology of the manifold
Y coincides with the topology induced from X. Therefore, there exists an open U; C X such that
U =Y NU, , so, by replacing U by U N U; if necessary, we may assume that U’ =Y NU . Since
YNU=U" = (h)"YV'), (+*) implies

hYNU)C{ (x1,...,zn) €V |21 =... =2, =0} .
On the other hand, from (xx) it follows
h(Y NU) = (hoiyo (W) H)(V)=V'x {0} c RF x {0} cR" .
Since V' is open in R¥, there exists an open V; C R such that V' x {0} = (R¥ x {0}) N Vi (compare
the proof of Proposition 2.5.6). Thus, by replacing V by V N'V; and U by h=1(V N V7) if necessary,

we get

RYNU)=V' x{0} =R x {oHNV ={ (z1,...,2,) €V | Zpp1=... =2, =0 } .

Excercise 2.5.8 Let X and Y be differentiable manifold, and f:Y — X an embedding. Adapt
and extend the arguments of the proof of the previous Theorem to show that f(Y) is a submanifold of
X (and hence a differentiable manifold), such that f:Y — f(Y) s a diffeomorphism.
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3 Differential forms

For the facts about duality and exterior powers used in the following we refer to the Appendices 5.1
and 5.2.

3.1 The exterior algebra of a manifold

Let X be an n-dimensional differentiable manifold. Consider for k € Ny the disjoint union
k% L ko
AT X = ] AT X
peX
where T7 X is the dual of the tangent space T}, X.

Recall that a chart (U, h,V) for X with coordinates (x1,...,2,) in V produces for each pe X a
basis %(p), cee %(p) of T, X; we denote by dzi(p),...,drn(p) the dual basis of Ty X. Then for

1 <k <n thedz;(p)AN...\dz; (p), 1§i1<...<ik§n,areabasisofAkT;X.

Remark 3.1.1 If (U, 1/, V') is another chart around p € U with coordinates (yi,...,yn) in V', then
we know that

0 "9 ((Woh™); o '
8xi(p) = ;(a—xij)(h(p)) : 8—%(1?) , 1<i<n.
Hence it holds 5 .
= h oh™t);
dy;(p) = %(h(p)) ~dxi(p) , 1<j<n
i=1 v
and

dyr(p) A ... Ndya(p) = det (D(B' o h™1)(h(p))) - dx1(p) A ... A dn(p)

Definition 3.1.2 A differential form of degree k or k-form on X is a map

w:X — AFT*X

such that w(p) € AkT;X forall pe X .
A k-form w is called differentiable if for every chart (U, h,V) as above it holds

w\U = E Qi ..y, dmil VANPIAN d.%'ik
1<i1<..<ig<n

with differentiable functions a;, _;, .
We denote by QFX the space of differentiable k-forms on X.

Remarks 3.1.3 1. QFX is a vector space. The addition and scalar multiplication are defined by
(w+n)(p) :=wp)+n(p) ,(a-w)(p) :=a w(p) forall peX.
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w+n and a-w are again differentiable because if with respect to a chart (U,h,V') it holds e.qg.

w|U = Z Qi ...y, -d:L‘il /\.../\d:L'Z'k R T]|U: Z blllk -dl‘il /\.../\d:L‘,L',c R
1<i1 <..<ip<n 1<i1 <. <ixg<n
then
(w+n)v = Z (@iy..dp, +biyip) - dxig Ao ANdxg, .

1<i1<...<ip<n

Similarly, for f € C®(X,R),w € QFX itholds f-w € QX | where (f-w)(p):= f(p)-w(p) .
This means that QX is a C°(X,R)-module.

2. Since AOT;X =R by definition, a (differentiable) 0-form is nothing but a (differentiable)
function, i.e. Q°X =C®(X,R) .
3. For k>n it holds QFX = {0} .

4. To check the differentiability of a k-form it suffices to check it for the charts in some atlas for
X.

We have maps
AQFX x X — QX (wn)—wAn , (WARD)(p) :=w(p) An(p) forall pe X ;

in case k=0 the wedge A is the usual (pointwise) multiplication.
In particular, for w € Q*X |, n e AX itholds wAn=(-1)FnpArw.
We get a map

A:éQkXxéQlXHéQkX : (Zn:wk,zn:m)H y <Z szm) ;
k=0 =0 m=0

k=0 =0 m=0 \k+l=m

n
It is easy to see that <@ OF X, +, /\) is a non-commutative ring with unit 1 € Q°X , and that this
k=0

n
ring structure is compatible with the vector space structure such that @ QFX becomes a real algebra,
k=0
the exterior algebra of X.

Let f:X — R be a differentiable function. For p € X we define df(p):T7,X — R by
df (p)(v) == v(f) ,

where we view v € T,X as a derivation and f as a function around p. It is obvious that df(p) is
linear and hence an element of 77 X'

Observe that if we identify a geometric tangent vector [7] with the derivation v., then

GO0 = A @)(w) = v (1) = L2 0)
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Proposition 3.1.4 With respect to a chart (U, h,V) around p with coordinates (x1,...,x,) in V it
holds

n oh-1
i) =3 M) ) - )

o0x;
i=1 v

In particular, the 1-form df : p— df(p) is differentiable; df is called the (exterior) differential of f.

Proof: Let v; be the algebraic tangent vector corresponding to %(p); then it holds

o h-1
o)) = u(h) = )

so the claim follows from Lemma 5.1.6. [ ]

Examples 3.1.5 1. If we define x;(p):= i—th coordinate of h(p) , then xz; is a differentiable
function in U. The value of the exterior differential dz; of this function at p coincides with
the basisvector dx;(p) introduced before; this follows from Proposition 3.1.4 since x; 0 h™! is the
function (x1,...,25) — x5 .

2. i1) We consider R with standard atlas {(R,idg,R) and standard coordinate x, so 8%(}9) resp.

dxz(p) is a basis vector of T,R resp. TyR. Let f:R— R be a differentiable function, and let
us for the moment write a% for the usual derivative on functions, i.e. f' = %ﬂé . It is a natural
question to ask if there is a relation between the three kinds of derivatives of f, namely f’ (usual
derivative), df (exterior differential) and Df (tangent map).

1t follows from Proposition 3.1.4 that

df = I(f oidg)

o dr = f'-dx .

This implies

On the other hand, it holds

idg o f oidy?
D1 (5o00) = =L e ) 5 (10D = ) 5 ()

Now observe that &, : TR — R, ®(a- 8%(10)) :=a , is a natural linear isomorphism for all
p € R . It follows that

df (p) = Py o Df(p) -

Now let Y be an m-dimensional manifold, and f: X — Y a differentiable map. Then for each
p € X we have the linear tangent map

Df(p) : T,X — Typ)Y
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and its dual
f(p):==Df(p)": T;(p)Y — T, X

given by
ff(p)(w*)(v) =u"(Df(p)(v)) forall veT, X, u"e T;(p)Y .

Lemma 3.1.6 Let be pe X and (U h,V) resp. (U, 1, V') charts for X resp. Y around p resp.
f(p) with coordinates (x1,...,2y) resp. (Y1,---,ym) in V resp. V'. Then it holds

L "o foh™ 1),
Py () = 3 2L

i=1

(h(p)) - dzi(p)

Proof: This follows from

m "o foh 1),
Dfw) (50)) = 3 XS0 (7o)

j=1
and the general theory of duality. [ |
We generally define for 1 <k <n
*(p) == A*Df(p)*: AkT}k(p)Y — AkT;X ;

applying this pointwise we obtain linear pullback maps mapping k-forms on Y to k-forms on X.
Furthermore, we define

fFC®(Y,R) = Q% — QX =C®(X,R) , f*(g):=gof.
Then locally it holds
fa-dyi AN dyy) = (ao f)- [5(dyi) Ao A f(dyy) = f(a) - 7 (dyi) Ao A fP(dyiy) -

In particular, from Lemma 3.1.6 it follows that the pullback of a differentiable k-form on Y is differ-
entiable on X, i.e. that we get linear pullback maps

0y — oFx
satisfying [*(w Aq) = F*(@) A 7 (n) .
Lemma 3.1.7 Let g:Y — R a differentiable function on Y. Then it holds

d(go f)=d(f*(9)) = f*(dg) .
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Proof: For any (algebraic) tangent vector v € T,X it holds

[f*(p)(dg(f(p)))](v) = dg(f(p))[Df(p)(v)] = [Df(p)(v)|(g) = v(go f) = [d(go f)(p)](v) .

Example: Consider R? with standard coordinates (x,y) associated to the chart h = idg2 . For
R?\ {0}, we also have charts k via with polar coordinates (7, ¢), i.e. of the form

k7 (r,@) = (- cosp,r-sing) .
Viewing = and y as the component functions of the gluing map h o k= we have
x=ux(r,p)=r-cosp , y=y(r,p)=r-sinp .

This implies

dw:%.dr+%‘dgpzcosgp‘dT—T'Sin(P'dﬁp,
or Jp
and
Jy

:—-dr+@-dgz):sincp-dr—i-r-cosg0~dcp.
or dp

Observe that this implies
dr ANdy=r-dr ANdp .

Now consider for S' C R? a chart x of the form x~!(p) = (cosp,sing) . Let i:S! < R? be the
inclusion map; then

(koiok™)(p) = (L) = ((koior )i(p),(koior )a(p)) .

This implies
d(koio ,{—1)1
e

Since in a point (z,y) € S' it holds 7 =1, we get

d(koio /-i_l)

i*dr = o 2dg0 =dp .

dp=0 , i*dp =

i*dx =1i*(cos @ - dr —siny - dp) = cosp - i"dr —siny - i"dp = —siny - dp ,

and similarly
i*dy = cosp - dp .

Roughly speaking, these relations are obtained because “on S' it holds r =1 , implying dr =0, and
p=p".
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3.2 The exterior differential

Let X be an n-dimensional differentiable manifold. We state without proof

Theorem 3.2.1 There are unique linear maps (exterior differentials)

d: FX — QX | keNy,
with the following properties:

1. For k=0, this is the map f v df as defined in the previous section.
2. Forall we QFX andall U C X open it holds (dw)|y = d(w|y) .

3. Locally in a chart (U, h, V') with coordinates (x1,...,xy) in V it holds
n Bl
d(f -degy Ao Ndxg) = df ANdxg, A A deg, = (Z%m) cdxg Adai, AN dag,

i=1

Proposition 3.2.2 1. For we QFX |, ne QX it holds

dwAn) =dw)An+ (=D)*w Ad(n) .

2. For we QFX it holds
Pw=(dod)w=0.

3. If f:X —Y s a differentiable map and w € QFY | then it holds
fHdw) = d(f*w) -
Proof: 1. For two functions f and g on X, p € X and an algebraic tangent vector v € T, X it holds

d(f-9)p)(v) = wv(f-g)=v(f) 9(p)+ f(p)-v(g) = ldf (p)(v)] - 9(p) + f(P) - dg(p)(v)
= [(df g+ f-dg)(p)](v)
which means
d(f-g)=df -g+ [f-dg;
This is the claim for k=1=0. In the general case, since d is linear and the A-product is bilin-
ear, and because of 2. in Theorem 3.2.1, it suffices to consider the case w = f-dx;; A... Adx;, ,
n=g-drj A...ANdzj, . Then wAn=f-g-dx; N...Ndx; Ndxj N...\dx; and hence
dlwAn) = d(f-g) Ndxyy A...Ndxy, Ndzj, A... Adxy, by 3. in Theorem3.2.1
= (df -9+ f-dg) Ndx;y; A... Ndxy, Ndxj, A...Ndxj,  as seen above
= (df Ndxi, N o Ndx,) AN (g-dxy, Ao Adxg,)
(=D f - dayy Ao ANdxg) A (dg Adag, A A da)
= dw)An+ (=D)rwAdmn) .
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2. Again it suffices to prove the claim locally in a chart. For a function f we have, using the local

formula for d of a function and 3. in Theorem 3.2.1

n o ohil -1
2f = d(Z(fTi)oh-de) Zd( ) h>/\dmi

i=1
= E E i Mohoh oh-dxj | Ndz;
- - &vj 8%1
=1 7j=1

~ [N~ P(for™)

aQ(foh—l) az(foh_l)
R Z < Ozi0z; - O0x;0x; ) oh-drjNdr; =0

1<j

fo fo

since - = 2 — on C®-functions. Now recall that dx; is in fact the d of a function z;, so
0x;0x O0x;0x; ’

d*x; = 0 by what we have just seen. Using 1. (and induction) we deduce

d*(f - dxiy Ao Ndeg,) = d(df Ndxy AN dag,)

= d&f Nz, A /\dxlk—i—z Ydf ANdxg, A NPz AL A dg,

= 0.
3. By Lemma 3.1.7, the claim holds for k£ =0 . Since f* is defined pointwise in X it holds

[ wlo) = (ffw)|p

and since f* is linear it again suffices to consider the case w =a-dy;, A ... Ady;, . For this we have

ffldw) = f*(dandyy N...Ndy;,,) = f*(da) A f*(dyi,) Ao A f5(dyiy,)
= d(f (@) Ad(f(yi)) A - Ad(f*(yi,))  (case k=0)
= d(f*( DA (i) A A A (i)

+Z D) - d(f i) A A @ (i) A - Ad(f(y)) (dod=0)

- d(f*(a) A i) A A i) = d( @) F(dyi) A A P ()
= d(f'w) .

Definition 3.2.3 w € QX s called closed if dw =0 , and exact if there exists an n € Q*~1X  with

w=dn.
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Every exact form is closed by Proposition 3.2.2 2, so one can ask if the converse holds, i.e., is every
closed form exact? The following theorem (which we state without proof) asserts that there is a purely
topological condition on X which is sufficient for this to be true, but the subsequent exercise shows
that the answer in general is no.

Theorem 3.2.4 (Lemma of Poincaré) Assume that X is contractible, i.e. that there is a point
po € X and a continuous map F :X x[0,1] — X such that F(p,0)=p and F(p,1)=py for
all p € X . Then every closed differential form on X is exact.

We consider the unit circle S'={ (x,y) € R? | 22 +y? =1} . It can be shown that there is a 1-
dimensional topological atlas for S* consisting of two charts (Uy, h1, V1), (Ua, ha, Vo), where

Ur=S"\{(1,0)}, Vi =(0,27) , hy'(¢1) = (cos ¢1,sin 1) ,
Uy =S"\{(=1,0)} , Vo= (m,3m) , hy"($2) = (cos ¢a,sin ¢s) ,

where ¢; is the coordinate in V;, 1 =1,2 .

Excercise 3.2.5 1. Show that the given atlas for S' is differentiable, so it produces differentiable
1-forms d¢; in U;, i = 1,2 .

2. Show that there exists a unique w € Q'S' such that w|y, =dg; , i=1,2 .

3. Show that this w is closed but not exact.
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4 Integration on manifolds

4.1 Orientations on a manifold
Let X be a connected n-dimensional differentiable manifold, n > 1 , and
QX ={weQ"X |wlp)#0 forall pe X }.

Lemma 4.1.1 For w,n € QyX there exists a unique nowhere vanishing differentiable function f,, ,
on X with w=f,,-n.

Proof: Since for every p € X it holds dim A"T;X =1 and w(p) # 0 # n(p) , there exists a unique
fon(p) € R such that w(p) = fo,,(p) - n(p) . It remains to show that the thus defined function f,,
on X is differentiable; this can be done locally.

Let (U,h,V) be a chart for X with coordinates (x1,...,zy) in V; then

wlp = fo-deyN...ANdxp , 9y = f-dey AN AN dy,

with nowhere vanishing differentiable functions f,, and f, in U. This implies that w|y = J}—“ﬁ’ nlu
and hence that f, v = % is differentiable. [ |

Since X is connected it holds either f,, >0 or f,, <0 .It is easy to see that
wr~n o= fun>0

defines an equivalence relation in QfX, and that either QX =0 or QSLX/N has precisely two
elements.

Definition 4.1.2 X is called orientable if QfX # 0 . An orientation of X is then an element of
QSX/N, and an oriented manifold is a manifold together with a fized orientation on it.
Since for w € QfX it holds 0 # w(p) € A"T; X , w defines simultaneously orientations in all tangent

spaces 1, X by Corollary 5.3.3. Observe that these orientations coincide for two forms in the same
class in QFj X since they differ by a strictly positive function.

To prove another useful characterization of orientability of manifolds we need the following concept.

Let X be a topological space and X = (J U; an open cover. A partition of unity subordinate to
el

this cover is a collection { 7; | ¢ € I } of continuous functions 7;: X — [0,1] with the following

properties.

1. supp(ri) ={ze X | n(z) A0} CU; foral iel.

2. For every x € X there exists an open neighborhood U of p in X for which there are at most
finitely many i € I with supp(r)NU #0 .
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3. For every x € X it holds Y m(z)=1.
iel

Observe that the sum in 3. is well defined because by 2. for every x € X there are only finitely many
iel with 7;(z)#0.
In the case of a differentiable manifold X, a partition of unity is called differentiable if all 7; are

differentiable functions.

We state without proof the following result whose proof uses the second countability of X in an
essential way.

Proposition 4.1.3 If X is a differentiable manifold and X = |J U; an open cover, then there exists
i€l
a differentiable partition of unity subordinate to this cover.

Theorem 4.1.4 For an n-dimensional differentiable manifold X with n > 1 the following are equiv-
alent:

1. X is orientable.

2. There exists a differentiable atlas A ={ (U;,h;,V;) | i € I } for X such that

Vij eIV pelint « det(D(hiohi)(hi(p)) >0.  (x)

Proof: We will use the following notations: if { (U;,h;, Vi) | i € I } is a differentiable atlas for X,
then for i € I we denote by (2%, 2%,...,2%) the coordinates is V; and write

w'i=dai Adah AL A dal € QU
Observe that w'(p) #0 forall p e U; .

1.= 2.: Let [w] € QgX/N be an orientation of X, and A= { (U;,h;,V;) | i€} a differentiable
atlas for X such that each V; is an open ball around 0 € R” ; then in particular each U; is connected.

For each i € I we have w|y, = fi -w® with a differentiable function f; in U;. Since w(p) # 0 # wi(p)
it holds fi(p) #0 for all p € U;. Because f; is continuous and U; is connected, it follows that
fi is either strictly positive or strictly negative. In the second case, we replace h; by g o h;, where
g:V; — V; is the diffeomorphism g(z%, 5%, ...,2%) = (=24, 25,...,2%) ; this means that we replace
dz’ by —dz' but keep dxb, ..., dzl, i.e. that we replace w® by —w® and hence f; by —f;.

In other words, we may assume that for all ¢ € I and all p € U; it holds fi(p) > 0. We know (see
Remark 3.1.1) that for all 4,5 € I and all p € U;NU; it holds

% w(p) = I (p) = det (D(hy 0 h7 ) (hi(w))) - () = det (D(hy o ) (hi(p))) - % w(p) .
Since w(p) is a basis vector of the 1-dimensional vector space A"T, » X, it follows
_ _ Jilp)
det (D(hj oh; 1)(hi(p))) R
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2. = 1.:Let A={(U;,hi,V;) |i€l} beanatlasasin 2., and { 7 | ¢ € I } a differentiable partition

of unity subordinate to the open cover |J U; of X. Then for each i € I we define 7' € Q"X by
i€l

iy . mlp)-w'(p) ifpels,
fo={ Y

observe that 1’ is indeed well defined and differentiable since supp(7;) C U; . Because each point in
X has an open neighborhood in which at most finitely many of the 7;, and hence of the 7, are not
Zero,
W= Z n' e Q"X
i€l
is well defined, too. For p€ X define I,:={ie€l|peU; };then n(p)=0 forall igI,,

implying w(p) = Y. 7'(p) . Since also 7;(p) =0 for all i & I, ,it holds > 7(p) =1 ; in particular,
i€l i€lp
there exists ig € I, with 7;,(p) > 0 . We have

wip) = Tiplp) W)+ Y. 7i(p)-w'(p)
ioAiEl,

= Tip(p) - wp)+ > 7i(p) - det (D(hi o hy ") (hig (p))> W (p)

loF#i€Elp

= (7@ + > 7ilp)-det (D(hso b (hiy (1)) | () -
toF#i€l,
Since 7;(p) >0 for all 4, 7;,(p) > 0 and det (D(hi o hi_ol)(hi0 (p))) >0 forall i € I, by assumption,
we see that w(p) # 0 since it is a strictly positive multiple of w®(p) # 0 . ]

A differentiable atlas A = { (U, h;,V;) | i € I } of X is called oriented if it satisfies the condition ()
in the theorem above. Observe that this condition is equivalent to

Vi, jeIVpeUnU;3a>0: w'(p)=a-w’(p), (%%
where the w' are as in the proof.

By Theorem 4.1.4, the existence of an oriented atlas is equivalent to the existence of a nowhere
vanishing n-form. To understand this equivalence more precisely, let D be the maximal differentiable
atlas of X and define

A:={ ACD| Ais an oriented atlas } .

It is easy to see that
A~ A = AuAd €A

defines an equivalence relation ~ in A.

Let now be w € QfX and A€ A an oriented atlas as above. We say that w and A are compatible
if
VicIVpeU;Ja>0: w'(p)=a-wp). (xx%)
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Then (from in particular (k%) and (* * %)) it follows:

1.

In the proof of the theorem, we constructed for every w € QfX a compatible A, € A, and
for every A€ A a compatible wy € QfX .

If we QX is compatible with A € A, then n € QfX is equivalent to w if and only if it is

compatible with A, too.

. If A€ A is compatible with w € QfX , then A’ € A is equivalent to A if and only if it is

compatible with w, too.

Using the symbol ~ for compatibility, we get

and

wen = nprA, = A, ~A4,,

A A —= wpr~rA = wyg~way.

We conclude

Corollary 4.1.5 The map

WX B WA,

is well defined and bijective, with inverse [A]— [wa] . In particular, either A is empty or A/g has
precisely two elements.

Remarks 4.1.6 1. Let (X, [w]) be an oriented manifold. A chart (U, h,V) for X with coordinates

(X1y...,xy) in V is called compatible with [w] if it is contained in an atlas which is compatible
with w, i.e. if the form dxy A ... A dx, equals [ -w|y with a positive function f.

If (U, h,V) is any connected chart for X, then either it is compatible with |[w], or the chart ob-
tained by composing h with the diffeomorphism (x1,...,2n) — (T1,. .., Th1, =Tk, Thtls-- -, Tn)
for some 1<k<n.

The standard orientation of the manifold R™ is the class of the n-form dxi A dzo A ... N\ dz,
associated to the standard coordinates.

Remark 4.1.7 Observe that the contents of this section so far really makes sense only for n>1 .
On the other hand, by Ezercise 2.1.14 a 0-dimensional manifold is an at most countable collection of
discrete points X ={ p; |i €I}, with T,, X ={0} forall i €I, soin agreement with Definition
5.3.1 4. we define an orientation in such X to be a map o:X — {1,—1} . In particular, if X is
connected, i.e. a single point, there are precisely two orientations in X.
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4.2 The integral

Let X be an n-dimensional differentiable manifold.

Lemma 4.2.1 Let K C X be a compact subset. B
Then there exist N € N, charts (U], h, V) and (U;, h;, Vi) with U; C U} , h; = hl|y, , and differen-

' Vg

N
tiable functions 7 : U := |J U; — [0,1] with U; =7, *((0,1]) , 1 <i < N, such that K CU and

=1

N
Y7i(p) =1 forall peU .
i=1

Proof: Choose an atlas { (U/,h}, V) |i € N} for X, and a partition of unity { 0% | i € N } subordinate

07 Y
to the open cover X = (J U/ .
€N
For all i € N define U; :=o;'((0,1]) ; then U; is open in X with U; = supp(c?) C U/ and it holds

N
X = | U; . Since K is compact, for some N € N it holds K € |J U; .
iEN i=1
For 1 <i< N define

N
hi = hil, , Vi:=hi(U;) V], U= Ui, 7=y .
=1

7i(p) >0 forall pecU ;

o8

The (U;, h;, V;) are charts, and it holds U; = (79)71((0,1]) and 7(p) :=
i=1

therefore, the functions 7; := 771 : U — [0,1] have the desired properties. ]

Remark: If X is oriented, we can start in the proof above with an oriented atlas; as a consequence,
the (U], hl,V/)’s and (U, hi, V;)’s will be oriented, too.
Let X be an oriented n-dimensional differentiable manifold, and o € Q"X a differentiable n-form

with compact support

K :=supp(a):={peX|alp)#0}.
Choose for K oriented charts (U/, b}, V), (U;, h;, V;) and functions 7, : U — [0,1] as in Lemma 4.2.1,

0 Vg

and let (x¢,...,2%) be the coordinates in V/, 1 <i < N .

Remark 4.2.2 Consider the 1-forms dmé inU;, 7=1,...,n, induced by the chart (U;, h;,V;). Then

(hfl)* (dzt) = da’ |

) J J

where on the right hand side we view d$§- as the 1-form in V; induced by the standard atlas idy; .

Define differentiable functions o' : U; — R by

aly, = a' dzi AL A dal

n
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then in V; it holds (see the Remark above)

(b)) (@lvy) = (@ o hih) - dxi A ... A dat

n

and hence, defining functions «; in V;,

(h.‘l)* (ri-aly,) = (1 - ) oY) - day AL ANdal) = oy - dai AL A da

K3 n

Since K is compact, K N U; and B B
supp(;) N'V; = hi(K NU;)

are compact, too; in particular, a; is bounded in V;. The open set {zeV;|aizx)#0} is contained
in the compact set supp(«;) N'V;, and hence bounded in R™.
From standard analysis we recall the following
Fact: Let A CR™ be an open subset, and f: A — R a continuous and bounded function with
{zeA] f(z) #0 } CR" bounded. Then f is integrable over A, and [ f(z)dx is finite.

A

Therefore, the following definition makes sense.

Definition 4.2.3 The integral of o over X is defined as

Theorem 4.2.4 [ « is well defined, independent of the chosen data.
X

J i g

Proof: For 1<j <N, let (U, K, V), (Uj,ﬁj,f/j), U, 7; be analogous data (in particular with
oriented charts!) with coordinates (y7,...,¥3) in \7j/ , and define &; as above.

Since K c UNU , and « vanishes outside K, we may assume that U = U . Then it holds

N N
Ui:UUiﬂUj , m:th(UlﬂUj)
j=1 j=1

N
Because of Y. 7 =1 and the linearity of (k; *)* it holds
j=1
N N
—1\*x/_ . _ ‘—1* L — ‘—1* L 5 .
(hi ") (7i - alv;) = Z;(hz ) (7i - 75 - aly;) Z;(hz ) (7i - 7 O"Uz-mUj) )
J= j=

the last equality holds because 7; - 7; vanishes outside U; N U; .
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The first set of data thus gives

/a—z 3 / NGO R 0‘|UmU)

X =1 j=

and analogously the second gives

/O‘ ii / (A1) (7i - 75 - alyng,) s
X

=1j= 1h (Uiﬁ(:]j)
The following Lemma implies
/ (h;l)*(’Tl . ’7F:‘7 . a|Uim0j) = / (iL;l) (Tl 7'] a|UﬂU )
hi(UiﬂUj) hj(UiﬂUj)

for all pairs (7, ), and hence the Theorem. [ |

Lemma 4.2.5 Let (U, h,V) and (U, k,W) be two oriented charts for X with coordinates (x1,...,xy)
resp. (Y1,...,Yn) in V resp. W, and w € Q"U . If

(k)" (w) = f-dyi A... Ndy, € QW ,

then
(WY (w) = (fo¢)-|det(De)|-dxy A ... Adx, € X'V (%)

where ¢ :=koh™1:V — W .
Since ¢ is a diffeomorphism, the Transformation Formula from calculus (Theorem 4.2.6 below) implies

[t @ = [(Foo) -l detDo@lds = [ 1wy = [0 @)

\%4 \%4 w w

Proof: Write in U
w=g-dyi A...Ndyy ;

then according to Remark 3.1.1 it holds in U
w=g-(det(Dp)oh)-dxi A... Ndxy, .
Using Remark 4.2.2 we get in W
(k™) (w) = (go k™) -dyt A... Adyn

ie.

f=gok™,
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and in V
(h"H*(w) = (g- (det(Dp) o h))oh™ -day A... Adxy = (goh™Y) - det(D¢)) - dxy A ... Aday, .

It holds goh™! = fo¢ , and since the charts are oriented it holds det(D¢) = |det(D¢)| ; this proves
() and hence the Lemma. ]

Theorem 4.2.6 Transformation Formula: Let A,B CR™ be open, ¢ : A — B a diffeomor-
phism, and f: B — R an integrable function.
Then (fo@)-|det(Dg)|: A— R is integrable, too, and it holds

J1aeta)-(roo)= [ |aetDo)l- (7o) = [ 1.

A ¢~1(B) B
Remarks 4.2.7 1. Define QIX :={ a € Q"X | supp(«) compact } . This is a linear subspace of

Q"X and the map
/:Q?XHR , ou—>/a
X

X

is linear.

2. Letbe X, a € Q?X , and A C X open. Then, even if the support of a|a might not be compact,

the integral
[ o [ o

Lhi(AnU;)

s always well defined.

3. Consider R™ with its standard differentiable structure and orientation.
Let be ao=f-dxy A...Ndzxy, € Q"R™ | and A CR" open. If supp(«) is compact, then

A/oz:A/f(:r)d:Eldxg...dmn,

where the right hand side is the usual (Lebesgue or Riemann) integral. Observe that this integral
is also well defined for arbitrary o € Q"R"™ if A is compact.
Furthermore, using the notations from above it holds

(h; (7 - alu,) = ai - dzi A ... A\ dal

/ / “(1i-alu,)
Vi

Vi

since (hy')*(dai) = dai , so
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The definition of the integral given above is not very useful for calculations, e.g. because in general
it is very hard to explicitly construct a partition of unity. But in many cases a fact of the following
type is helpful.

Proposition 4.2.8 Let X be an n-dimensional oriented manifold, and o € Q"X a differentiable
n-form with compact support supp(«).

Let 'Y C X be a submanifold with dimY < dim X | and (U, h;,V;) , 1 <1 < N, oriented charts
for X \Y such that UyNU; =0 for 1<i%# j< N, and

N
supp(a) \'Y C U U; .

i=1
Define functions «; in V; as above. Then it holds
N
/a: / a:Z/ai(x)da:.
X x\Y =1y,

Examples 4.2.9 1. Consider R? with standard coordinates (x,y), and, for differentiable functions
f and g, the 1-form o = f(x,y)dz + g(z,y)dy € Q'R? . Let S' C R? be the unit circle with
inclusion map : S — R? . 1*(«) has compact support since S is compact, hence

[+ gt = [ (@)
St St

is well defined.

It is easily verified that an oriented atlas for S* is given by the two charts
h™1:t— (cos(t),sin(t)) , t € (0,27) , k1t (cos(t),sin(t)) , t € (m,37) ,

and a correct interpretation of Proposition 4.2.8 yields

27 2T
/Um+ww=/w%wwm=/@*mw,
S1 0 0

using (h™1)*o1* = (toh™)* and toh ' =h"1:(0,27) — R%.
Now observe that

d cos

(A1) (d)] (8) = [d(z o h™H)] () = [d(cos(t))] () = —

(t)dt = —sin(t)dt ,

and similarly
[(R™1)*(dy)] (t) = cos(t)dt .
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This implies
() (@] (1) = [(h™)"(fdz + gdy)] (t)
(foh™) - (A1) (da) + (9o ™) - (h™1)"(dy)] (t)

= < — sin(¢) f(cos(t),sin(t)) + cos(t)g(cos(t), sin(t)))dt :

—

As an explicit example, take f=1, g=0, i.e. a=dx ; then we get

27

/dm = —/sin(t)dt =0.
St 0

2. Consider the open square A:={ (r,y) €eR? | —1<xz <1, -1 <y<1}. Although the rect-

angle DA is not smooth in its four corner points, [ « is well defined (of course only after choosing
0A
an orientation) for every o € Q'R? ; the integral can be calculated by integrating along the four

open sides.

4.3 Subsets with smooth boundary

Let X be an n-dimensional differentiable manifold and A C X an open subset with topological
boundary 0A. 2 We always equip 0A with the subspace topology induced from X.

Notation: For an open subset V C R" we write
Vi ={(x1,...,zp) €V |21 >0},
Vo ={(x1,...,zp) €V |21 <0},
VW ={(z1,...,2p) €V |2z1=0}.

Definition 4.3.1 We say that A has a smooth boundary if for every p € 0A there exists a chart
(U,h,V) for X such that h(ANU)=V_.

Theorem 4.3.2 Suppose that the open subset A C X has a smooth boundary, and that (U, h,V) is
a chart as in the definition above.

1. We define Uy :=0ANU ; then it holds
h(Ua) =V
2. If we identify R"~! with {0} x R"~1 C R" | then
ha:=hly, : Us — Vo

is an (n—1)-dimensional topological chart for OA; these charts (Ua,ha, Vi) form a differentiable
(n — 1)-dimensional atlas for A which is an (n — 1)-dimensional submanifold of X.

2Recall that 0A :Z\j} is the set of points p € X such that for every neighborhood V of p in X it holds
VNA#D#AVN(X\A).
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3. An orientation in X induces an orientation in OA.

Proof: 1. This is an exercise in topology (using that h is a homeomorphism) and therefore left to the
reader.

2. This follows from 1. and the theory of submanifolds.

3. We consider first the case n > 2 ; then by using only connected charts and by composing with
(x1,29,...,2pn) — (1, —T2,...,2,) if necessary we may assume that all the charts for A asin 1. or
2. are coming from charts for X which are compatible with the given orientation in X; we want to
show that this atlas for 0A is oriented.

Let (U,h, V), (U, W, V') be two of these charts, and define

,¢ = (wlvdea v ,T/}n) = h, © h_1|h(UﬁU’) ) qu)A = (7»054’ s 711Z)71?) = hi4 © h:41|hA(UAﬂU14) .

We know that det(Dv(z)) >0 forall z € h(UNU’) , and have to show that det(Dw*(x)) > 0 for
all o€ ha(Uan UA) .

By construction for (z2,...,z,) € ha(UaNUY) it holds

V(0,29, .., xn) = (0,05 (22, - . ., Tn), s P (22, .. )

This implies 91(0,z2,...,z,) =0, and hence g—i}i(O,xQ, cooyy) =0, 2 <k <n. Furthermore we
get 5
(0,2, .., 2n) O 0
*
POt = 5 DA s ) |
*

hence it suffices to show that %(o, x9,...,%y) > 0 . For this observe that for ¢ > 0 it holds

(t,zo,...,on) € V_ = h_l(t,ﬂj‘z,...,l'n)€x4 = Y(t,xo,...,x0) €V = P1(t,z0,...,2,) >0,

and thus

Owl . ¢1(t,$2,...,xn)—Qﬂl(o,xg,...,l'n)

—(0,z9,... = |

gy OEzoma) = Hm :

t
— lm P1(t,xo,..., ) >0
t—0,t>0 t

as wanted.

In the case n =1, 0A is a 0-dimensional submanifold, i.e. a set of discrete points. We give a point
p € 0A the orientation +1 if a connected chart as in the definition is compatible with the given
orientation in X, and the orientation —1 otherwise. [ ]
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Remark 4.3.3 In terms of oriented bases of tangent spaces the induced orientation in a smooth
boundary is described as follows:

Let be p € A and take an oriented chart as before with coordinates (x1,...,xy,). Then, intuitively,
aiﬂgl(p) is pointing outward from A. A basis {ba,... by} of T,0A is then oriented if and only if
{%(p), ba,...,bn} is an oriented basis of T, X.

Example 4.3.4 Consider R? with its standard differentiable structure.

The circle S' ={x € R? | ||z|| =11} is the boundary of the open disc D*>={xz € R? ||z <1},
and (e.g. using polar coordinates) one verifies that S* = 0D? is a smooth boundary. The inverse of
a chart for St compatible with the orientation induced by the standard orientation in R? is then e.g.
one of type ¢ +— (cosp,sinp) , but not one of type ¢ — (sinp, cos p) .

If we view S* as the boundary of { x € R? | ||z|| > 1} , then the contrary is true.

4.4 The Theorem of Stokes

We begin with a useful lemma. Consider R" with standard coordinates = = (z1,...,2,) and define

U={zeR"| —1<x;<1,i=1,....,n},
U_:={zeU|x1<0},
oU_:={zeU|x1=0},
Vi={(22,...,7,) ER* | (0,29,...,2,) €OU_ } ,
h:0U_ —V | (0,z9,...,2y) — (T2,...,2Tp) .

Observe that U_ is an open subset of U with smooth boundary 0U_, and that h is a chart for the
submanifold U_ C U .

Let be a € Q" 'R™ with supp(a) C U ; then supp(«) is compact.

Lemma 4.4.1 It holds
1. [da=0;
U

2. [da= [ *(a), where +:0U_ — U is the inclusion map.
U- oU_

Proof: We will use without comment the following fact: If f:R™ — R is a continuous function

and A C R™ open, then
/f(:z:)dx:/f(x)da:
A A

Let a;, 1 <7 <n , be the differentiable functions with

n
a:Zai-dxl/\.../\d:ci_l/\da:iﬂ/\.../\dmn;
=1
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then supp(a) C U is equivalent to supp(a;) C U , 1 < i < n . In particular, we have

aj(x) =0 if |z;| =1 forsome 1 <j<n. (x)

Furthermore it holds

Oa; " - Oa;
da = Lodai Adxy Ao ANdziog Adxiga A AN dy, = —D)FN 22 de AL A dy,
a = ;; xj A dxy i1 A dxig T ;( ) oz, 1 T
1. We have

n
; Oa;
_ 1—1 ? .
/da—Z(—l) : 8xi-dx1/\.../\dxn ;
U
it suffices to show that each of the n integrals vanish. For this, first note that by the definition of the

integral of differential forms on R™ and by the Theorem of Fubini it holds

11 1
Oa; Oa; 0
8? cdxi N ... ANdz, = 8(;« (x)dx1dzy . .. dx, = // / 8:;2 x)dxidzsy . .. dx,
ir (2 ir 7 12 ] (2
1 1 5
= (/ 8;1 d{L‘Z d{L‘l e dfxifldmy}lrl e dl‘n .
(2
Using the Fundamental Theorem of Calculus and () we get
8ai
837’ (.%')d:b‘Z = ai(azl, ey Li—1, 1,a;i+1, . ,l‘n) — ai(ml, ey Li—1, —1,(1},‘_,_1, . ,a:n) =0
7

-1
and thus the claim.

2. Asin 1. we have

i , da; &
_ i—1 ? _
/da— E_l(—l) . awi-d:vl/\.../\dxn = E (—
U i=

d$1d.%‘2 d

=1

Jf

)—‘\,_.

For i #1 we get

1 1 0a 1 1 0
/// aZ z)dridzsy ... de, = ///
-1 —-1-1 -1 —1-1

by the same argument as in 1. Hence it remains to show that the summand with =1 equals

[ *(«v). For this we first calculate as before
oU_

d.%'z d.%'l . d:ci_ldmiH . d.%'n =0

H\H

1 1

1 1
/8@1 )dzy | dzo .. .dx, = /.../(al(O,xQ,...,xn)—al(—l,m,...,xn))da:g...dxn
21 4

1
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1 1

= /.../al(O,xQ,...,xn)dxg...dacn,

104
since aj(—1,z2,...,2,) = 0. On the other hand, we have

) —mor=d O =1,
R A A

and hence
" " 0 ifi =1,
K(dxy) = d((xy)) = { dr; QAL

Furthermore, it holds
a;ot(xe,...,xy) = a;(0,22,...,2,) ,

SO

Ca)(xa, ., Ty) = Zai(0,$2,...,$n)'L*(dl‘l)A...AL*(d$i,1)AL*(d$i+1)/\.../\L*(dl‘n)
= a1(0,z9,...,xy) -dxa A ... Ndzy, .

Thus it holds indeed

1 1
/ () :/.../al(Ojazg, Xy )dzo ... doy,
oU_ S

Let M be an n-dimensional differentiable manifold, and A C M open with smooth boundary JA.
Denote by ¢:0A — M the inclusion map. We fix an orientation in M and the induced orientation

in 0A.

Let be a € Q"'M with compact support supp(a) . Every point p ¢ supp(a) has an open neigh-
borhood U with «|y =0, and thus da|y =0 . This implies supp(da) C supp(«) ; in particular,
supp(da) is compact. For p € A \ supp(a) it holds a(p) =0 and hence ¢*(a)(p) = ¢*(a(p)) =0.
This implies supp(¢*(«)) € 0A Nsupp(«) ; in particular, supp(¢*(«)) is compact, too. Therefore, both
integrals in the following are well defined.

Theorem 4.4.2 (Theorem of Stokes) For every o € Q" 'M with compact support it holds

for- [0
A 0A
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Proof: Let U,U_,0U_,h,V be as above. Since A is open, for every point p € A there is an oriented
chart (Up, hy,U) for M with p € U, C A , and since 0A is smooth, for every ¢ € 0A there is a chart
(Vs kg, U) for M with kq(ANV,) =U-_ ; observe that then (AN Vg, kylany,,U-) is an oriented chart
for A, and (0ANVy, hokgloany,,V) is an oriented chart for 9A.

Define K := ANsupp(a) = (AUJA) Nsupp(a) ; since supp(a) is compact and A is closed, K is
compact. Since

KcAvoAc [Ju, |ul U V|
peEA qeOA

there are k,l €N and p1,...,pr €A, q1,...,q € DA such that
k l
KC<UU1>U Uvy | =M.
i=1 j=1

It holds supp(da) C supp(«) . This means that only points in K contribute to the integrals in the
theorem, so we may assume that M = M’ .

Write U; :=U,, , h; :==hp, , Vj = ‘/Qj . kj ::kqj , W Z:VjﬂaA y Kj 2:h0kj‘wj .
Let {7,0;|1<i<k,1<j<l} bea partition of unity subordinate to the open cover

k l
-(Ur)u(uw).
i—1 j=1

and define o; :=7; -, oj:=0j-a . Then supp(a;) C U;, supp(e;) C Vj, and

k l k !
o= Zai—i-Zaj , da = Zdai—i—Zdaj .
i=1 j=1 i=1 j=1
If we define
ﬁi = (hz_l)*az sy Vo= (k‘y_l)*a] )
then since d commutes with pullback it holds
dp; = (h; )da,,d’yj (k; )daj,
and by the definition of the integral we have
/da_Z/ daﬁz/ o )day = Z/dﬁz—i—Z/dfyj\U_ |
=1 U
Since supp(a;) C U; , supp(aj) C V; , it holds supp(3;) C U , supp(vy;) C U . Inparticular, [dB; =0
U

by the first part of the lemma, and the second part of the lemma implies

/da—Z/d'mU Z/wj,

=1y I=lay_
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where 7:0U_ — U is the inclusion map. Next observe that
[ o= oy
oU_ 14
and
(A1) (@) = (o h™)*yy = (o k™) (k] 1) ay) = (k; otoh™ ) ay = (kT o h™ ) ay = (r71) "y 5

This implies
!

i s

A i=ly
Since supp(«;) C U; C A, it holds «a;|spa =0 and hence t*a; =0 , implying

/L*a:/ ib*ai+ib*aj Z/L aj .

A oA \=1 J=1 I=lg4

On the other hand, supp(«;) C V; implies supp(t*o;) C W; and hence

/L aj = /L aj = / () / LOK; /(’@j_l)*o‘j )

which completes the proof. [ |
A corollary of the Theorem of Stokes which is used often is

Corollary 4.4.3 Let M be an n-dimensional oriented compact differentiable manifold, and o € Q"M .
Then [da=0.
M

Proof: Taking A= M it holds 9A =0 . Since supp(«) is closed in M and M is compact, supp(«)
is compact, too, so the Theorem of Stokes applies. The claim follows since obviously the integral over
(0 is zero. ]

Example 4.4.4 Consider on R™ the n-form wo = dx1 A ... Adxy, , called the (standard) volume form.
For an open or closed subset A C R™ its volume vol(A) is defined by

vol(A):/dm:/dxl...dxn:/wg;
A A A

this integral exists by standard calculus, and it is finite if e.g. A is bounded. The volume of A is called
length (resp. area) of A if n=1 (resp. n=2 ).
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Of course we know that the area of the open unit disc D*> ={ x € R? | ||z|| <1} equals 7, i.c. that
it holds

/da:l ANdxg =7 .
D2
Observe that dxi N dxo = da , where « := x1dzsy , so the Theorem of Stokes asserts that

- /i*(a)

Sl

because OD? = S' C R? with the orientation induced by the standard orientation in R? (see Example
4.8.4). This is in fact true, because according to Example 4.2.9.1 we have

/i*(a) = 7cosz(t)dt =7 ;
51 0

the last equality being a simple exercise in calculus.

4.5 The Integral Theorem of Greene

Let a = (a1,a2) : [a,b] — R? be a differentiable curve, and f : [a,b] — R a differentiable function.

Definition 4.5.1 1. « is called reqular if &(t) #0 for all t € [a,b] .

2. A reparametrization of v is a curve «og: [c,d] — R? | where g:[c,d] — [a,b] is differen-
tiable and surjective with ¢(s) >0 for all s € [c,d] .

[= /b 7(0) - laolldt .

Lemma 4.5.2 For a reparametrisation 3= caog of a it holds [f= [fog.
(0%

3. The integral of f along « is

B
Proof: From t = g(s) it follows dt = gds . Furthermore, we have
f=taog)=(4og) 4
= —(x o = (@ o .
dt g g9)9,
hence ||| = ||&ogl| ¢ since ¢ > 0. Integration by substitution yields

b d d
/ f - / £(8) - |t dt = / F(a()) - ()] - §(s)ds = / (f 0 9)(8)) - |13(s) lds = / fog.
a a c c B
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Let v be a vector field on R?, i.e. a differentiable map v = (vy,vs) : R? — R? .

Definition 4.5.3 1. The divergence of v is the function

div(v)::%+88—1;:R2—>R.

2. The oriented normal component of v along a regular curve « : [a,b] — R? s the function

ng :la,b) — R

defined by

_ wialt)) - da(t) —va(a(t)) - @ ()
0] |

Let U CR? be open with U compact, and with smooth boundary OU. Assume further that
a:a,b] — AU is a bijective regular curve in R? such that (af(,p)~"' is an oriented chart for

oU \ {a(a)}.

Theorem 4.5.4 (Integral Theorem of Greene) For every differentiable vector field v = (vy,v3)

on R? it holds
/div(v)dajdy = /ng .

U a

Proof: Define w := v1dy — vadx € QY (R?) ; then it holds dw = div(v) - dx A dy , and hence

/dw = /div(v)da:dy.
U U

Using a*(w) = ((v1 0 @)(t) - @a(t) — (v2 o a)(t) - &1 (t)) dt and the Theorem of Stokes, we get

/M=/Mw=jfwzj%®WMWﬁ=/%.
U oU a a

«

4.6 The Fixed Point Theorem of Brouwer

For n>1 let D":={xze€R"||z|]| <1} be the open n-dimensional unit ball; then D™ C R"
is open with smooth boundary 9D" = S l={zeR"||z]| <1} (the (n — 1)-dimensional unit
sphere) and closure D" ={ x € R" | ||z|| <1} (the closed n-dimensional unit ball).

The aim of this section is to prove, using a suitable version of the Theorem of Stokes, the following
theorem.
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Theorem 4.6.1 (Fixed Point Theorem of Brouwer) Let f: D" — R™ be a differentiable map
such that f(D™) C D™ . Then f has a fived point, i.e. there exists a point p € D" with f(p)=p .

For this we have to make precise what e.g. ”differentiable”means for a map f: D" — R" |, so we
begin with some general stuff.

Let X be an n-dimensional differentiable manifold and A C X open with smooth boundary dA; then
A= AUOA is the closure of A.

Definition 4.6.2 1. Let Y be another differentiable manifold. A map f: A —Y s called dif-
ferentable if for every point p € A there exists an open U C X with p € U and a differentiable
map fu:U —Y such that fulpni = fluni -

2. A differentiable k-form on A is a map oa:A — ]_[AAkT;X with a(p) € A*Tx X for all
pe
p € A, such that for every point p € A there exists an open U C X with p e U and an
ay € QFU with ay|yai = Alyna -

It is obvious that for a differentiable map f: A — Y (resp. a differentiable k-form a on A) the
restriction f|a: A—Y (resp. «|a4) is differentiable in the usual sense, i.e. with respect to the
manifold structure in A as an open subset of the manifold X.

Excercise 4.6.3 1. Let f:A—Y be a differentiable map and o € QFY . Show that f*(c) is
a differentiable k-form on A.

2. Let a be a differentiable k-form on A. Show that i*(a) € Q¥(OA) , where i: DA — X s the
inclusion map.

3. Show that if DA+ there exists an o« € Q" 1A with [ a#0.
0A

4. Show that the Theorem of Stokes holds for a differentiable (n — 1)-form on A with compact
support.

Lemma 4.6.4 Assume that dimY =n—1, a € Q" 'Y , and f:A—Y is differentiable. If
[*(«) has compact support, then it holds [ (foi)*(a) =0 .
0A

Proof: It holds

/(fOi)*(a) _ /i*(f*(a)):/d(f*(a)) by Exercise 4.6.3.4
0A 0A A
= /f*(da) by Proposition 3.2.2.3
A
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the last equality holds because da vanishes as an n form on the (n — 1)-dimensional manifold Y and
f* is linear. [ |

Proposition 4.6.5 If A # () is compact, there is no differentiable map f: A — X such that

f(/_l)CaA , f‘aA:id8A~ (*)

Proof: Assume to the contrary that an f exists satisfying condition (). Since A # () and f(A) C 9A

it holds OA # 0, so by Exercise 4.6.3.3 there is an o € Q" 19A with [ a# 0. Observe that
_ 0A
compactness of A implies the compactness of supp((f oi)*(«)) . Then it follows

0 # /a = /(idaA)*(a) = /(f 01)"(«) since the second equation in (x) means foi =idga
0A 0A 0A
= 0 by Lemma 4.6.4 ;

a contradiction. [ |

Now we are ready to give the

Proof of Theorem 4.6.1: Assume that there exists an f as in the Theorem without fixed point. Let
be p€ D" ;since p# f(p) € D", the line through p and f(p) intersects S™~! = D™ in precisely
two points. In particular, there is a unique ¢, <0 such that g, :=p+t, - (f(p) —p) € S" 1. It
is easy to see that the map g: D" — R", g(p) := g, , is differentiable with g¢(D") C S"~! and
glgn—1 = idgn—1 , thus contradicting Proposition 4.6.5. [ |
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5 Appendix: (Multi)Linear algebra

5.1 Duality

Let V be a real vector space.

Definition 5.1.1 The dual vector space is
V*:=Hom(V,R) ={ v* : V — R | v" lineair } .

Since V* is again a vector space, we have its dual space (V*)* = Hom(V* R) , called the bidual of
V. Observe that we have a natural linear map ¢ :V — (V*)* defined by 6(v)(v*) := v*(v) for all
veV vteV*,

Remark 5.1.2 [t can be shown (using the Axiom of Choice) that 6 is always injective. Later we will
show that § is an isomorphism if V is finite dimensional.

Let U be another vector space over R, and f:V — U a linear map. The dual map f*:U* — V*
is defined by
ffu)y=u"of:V—R
for all w* e U*,ie. f*(u*)(v):=u"(f(v)) for all veV and u* € U*. Notice that f* is linear
because
(" (Al + pug))(v) = (Auy + pus)(f (v) = AMui(f(v))) + p(uz(f(v)))
coincides with

(Af*(u) + pf* (uz))(v) = A" (1) (v) + p(f*(u3) () = Mui(f(v)) + pluz(f(v)))
forall A, peR,uj,u5€U* and veV.

Proposition 5.1.3 1. The map
Hom(V,U) — Hom(U*,V*) , f f*

1s linear.
If f is surjective, then f* is injective.

2. If W is a third vector space and ¢g:U — W a linear map, then
(gof)'=fog W — V",
Proof: 1. For all fi, fo € Hom(V,U) , \,p € R, u* € U* and v € V it holds
(O +uf2) @) @) = w (i + ) @) = 0 (M) + 1fa(v))

= M (f1(0) + pu (f(0)) = M) (0) + 3 () ()
= (M@ +pf50) @) = (A + 8 0) @)
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This means
(Af1+ pf2)" (") = (AT + pf)(u®)
for all w* € U* | ie. Afi+ ufa = Af{ + pfs which proves the first claim. For the second assertion

let be 0 # u* € U* ; then there is a u € U such that w*(u) # 0 . Since f is surjective, there exists
v €V such that u= f(v) . Then f*(u*)(v)=u*(f(v)) =u*(u)#0,ie f*(u*)#0.

2. For all w* € W* it holds by definition

(go f) (w") =w"o(gof)=(w"og)of=g"(w)of=[f"(g"(w"))=(f"og")(w).

Remark 5.1.4 Later we will show that for finite dimensional spaces it holds that f* is surjective if
f is injective.

For the remainder of this section we assume that dimV =n < oo .

Proposition 5.1.5 1. Let B={v1,ve,...,v,} be a basis of V. Then there is a unique basis (the
dual basis) B* = {vi,v;,...,v5} of V* such that
. x L ifi=j,
< < : : ) = 0,5 1=
(¥) V1<i,j<n : v(v;) =0 {0 ifidt]

In particular, it holds dimV* =dimV .

2. Let B’ be another basis of V' and (B')* its dual basis of V*.
If A= (ay)}';—, is the (invertible) transition matriz from B to B', then the transposed matriz
A" = (aji)};=y s the transition matriz from (B')* to B*.

3. The natural map §:V — (V*)* is an isomorphism.

Proof:
1. Since B is a basis of V, for every 1 <i<mn there is a unique element v € V* satisfying
v} (vj) = 60;; for all 1 <j <n;we have to show that these v} form a basis of V*.

n
Assume that Y A\jvf =0, A1,..., A\, € R. Then for every 1 < j <n it holds

=1

n

0= <Z; )xiﬁ) (vj) = Z)\i (v (v5)) = Z;)\i%' =\

=1

this shows that the v’s are linearly independent.
For every v* € V* and all 1 <j <n it holds

<Z vt (vi) - v?) (v) = D0 (i) - (vf (v)) = D 0" (vi) - 83 = v* (1) ;
i=1 i=1 ;
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n
this implies that every v* € V* is a linear combination v* = ) v*(v;) - v} , i.e. that the v}’s generate

i=1
V.

n
2. By definition, for all i we have v; = >~ a;v; . Let B = (b;;);_; be the transition matrix from
=1

J:
bijv; ; then we have

|
M=

B* to (B')*, so that it holds (v})*

1

j=1
n n n

dij = (v)"(v5) = Z aikbjivg(vi) = Z ikbji0k = Zaikbjk ;
k=1 k=1 k=1

ie. B=(A")"!. The claim follows since the transition matrix from (B')* to B* is B~

3. By 1. we have
dim(V*)* =dimV* =dimV ;

hence it suffices to show that § is injective.

n
Using notations as in 1., suppose that V € v = )" A\jv; and d(v) =0 ; then for all j it holds
i=1

0 = d(v)(v)) = (5(2 )\m)> (v5) = A (6(vi)(v])) since & is linear
=1 =1

n

= D Aw(w) =D A=A
i=1

i=1

ie. v=0. [ |

Lemma 5.1.6 Let {v1,...,v,} be a basis of V and {v},...,v}} the dual basis of V*. Then it holds
v o= Z’U;‘(v)-vi forall veV
i=1

vt o= Zv*(vi) ~vf for all v* e V™.
i=1

n n
Proof: Write v =} A\ju; and v* = }_ p;v] ; then for each i it holds
j=1 j=1

Vi) =D Nui () =Y Ndig =N ot (o) = Y pvi(vi) = Y S = pi -
Jj=1 Jj=1 j=1 j=1
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Proposition 5.1.7 Let U be another vector space with m :=dimU < oo , and f:V — U a linear
map.

1. Let B be a basis of V, B' a basis of U, and B*, (B')* the dual bases of V*, U*. If A is the matriz
of f with respect to B and B', then the transposed matriz A is the matriz of the dual map f*
with respect to (B')* and B*.

2. If [ is injective, then f* is surjective, and vice versa (compare Proposition 5.1.3 and Remark
5.1.4).
Proof: 1. Write B={vi,...,v,}, B ' ={ui,...,un}, B ={v],...;v5}, (B)" ={u},...,u}},
m
and A = (a;j) 1<i<n ; then by definition it holds f(v;) = > ajju; for all ¢ and j. It follows
1<j<m Jj=1

Fr) () = wi(f () = awuf(up) =Y apbin = aij = ¥ ajoy; = (Z aljvz*) (vi)
k=1 k=1 =1 =1

n
for all 7 and j. Since B is a basis, it follows f*(u}) = >_ ajjvf for all j, i.e. the claim.
=1

2. This follows from 1. since A and A! have the same rank. [ ]

Remark 5.1.8 For bases as in the proof of Proposition 5.1.7 1. it holds
n
Frup) = wi(fw)of
i=1

because for all k we have

n

(Z u;‘-(f(vi))v2‘> (o) = D uj (F (vi)of (og) = w5 (f (on)) = () (vg) -
i=1

=1

5.2 Exterior powers

Notation: For n € N we denote by S,, the set of permutations of {1,2,...,n}.

Let V be an n-dimensional vector space over R, and k € N . The kth exterior power of V' is the vector
space AFV defined as follows:

The elements of AV are finite sums of the form
E Qipig..ip * Vipg N Vg N oo o NV 5 Qygig.iy, € R , Vigs Vigy oo+, Vg € V.
11,82,k

Addition of two of these is obvious, and multiplication by a scalar a € R is multiplication of the
Qiyiy..i, Dy a. Furthermore, elements of A¥V obey the following rules:

viA.A(a-vi+ad V)AL A =a v A AU A A +d v AL AVEA Ay
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for all vq,...,v,0,,...,0, €V ,a,a’ € R, 1<i<k (the A-product is multilinear), and
VIAAUGAN ANV AN A= =01 AL AU A LAY A A g
for all vy,...,v, €V ,1<i<j<k (the A-product is alternating).
It is easy to see that the second rule is equivalent to
Vo(1) A -+ AN VUg(ry = sign(o) - v1 A Ay
for all o € Sy , and (assuming the first rule) also to
vi A A, =0 if v; =v; forsome 7 <j.
Other important properties of A¥V are the following:
-If{b1,...,bp} isabasisof Vand k <n,then { b, A...Ab;, |1 <i; <...<ip<n}isa basis of
ARV,
- APV = {0} for k>n.

This has the following consequences:

- AV is naturally identified with V.

-For 1<k<mn it holds dimA*V = (Z) ; in particular, A™V is a 1-dimensional vector space with
basis by A ... A by.

-For 1<k <n,every vector in A*V can be written uniquely in the form

Z iy ..y, ‘bil /\---/\bik Qg eR forall 1<y <... <z <n.
1<i1<..<ip<n

We furthermore define A%V := R . Then for all k,l € Ny we define the wedge product
A ARV x AV — ARy (a, ) — aNnp,
to be the bilinear extension of
(A AV, WA Aw) o A AR AW A LAy
where in the case k=0 resp. | =0 we set

aNwi A...\Nw:=a-wi AN...Nwy resp. viN...NvpNa:=a-v1/N\N...\Nv .

Then from the second rule above one deduces

aAB= (D3 Aa
for a € AFV |, ge AV .
Observe that we have a natural map

Ve VX Vix . x Vo — AV VR, o) = ot Ave AL Ay

k times
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This map has the following properties :
i) the image of v* generates AFV;
ii) ¥ is k-linear, i.e. linear in each of its arguments, by the first rule;

iii) ¥ is alternating, i.e. satisfying v*(v1,..., ;... JVjy e, V) = —vk(vy, ... Ujy ey 0y ..., 0y) for
i < j , by the second rule;

iv) for every vector space W and every k-linear alternating map p:V xV x...xV — W there
exists a unique linear map m : A¥V — W with g = mov* (thisis called the Universal Property
of the exterior power).

Remark: Be warned that the map v* is in general not surjective, i.e. in general a vector in A*V is
not of the form v Ava A ... Awv . For example, 1?2 is surjective if and only if dimV <3 .

Example 5.2.1 We write vectors in R™ as column vectors; then the map

0: R"XR"x...xR" — R | §(v1,v2,...,0%) :=det(vi,ve,...,0,) ,

~~

n times
is n-linear and alternating. Hence there exists a unique linear map d: A"R"™ — R satisfying
d(vi Ava A ... Avy) = det(vr,v2,...,0,)

for all vi,ve,...,v, € R™ . Since

n

dim A"R" = ( ) =1=dimR

n

and
dlet Nea N...Nep) =det(er,ea,...,e5) =150

for the unit basis {e1,ea,..., ey}, it follows that d is an isomorphism.
Let W be another finite dimensional vector space, and f:V — W a linear map. It is easy to see
that, for each k, the map

VXxVx...xV — AW | (vi,v9,...,0) = Fu1) A f(va) Ao A Fug)

k times

is k-linear and alternating, hence there exists a unique linear map
AR f ARV — AR
with
A flor Avg AL Awp) = f(u1) A Floa) A A fug)

for all vy,v9,..., v, €V .

3In fact, A* is characterized by these four properties in the following sense:
Let L be a vector space with a k-linear alternating map A:V XV x ... x V — L such that the image of A\ generates
L, and such that for every vector space W and every k-linear alternating map u:V XV x ... x V — W there exists
a unique linear map m:L — W with g =mo\ . Then there exist a unique isomorphism I:L — A*V  with
Tox=v".
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Example 5.2.2 1. Let f:V — V be alinear map. Since dim A"V =1 | the induced linear map
A" f A"V — A"V is the multiplication by a real number; we claim that this number equals the
determinant of f. To see this, let {b1,...,b,} be a basis of V and A = (aij)ij=1,..n the matric

n

of f with respect to this basis, i.e. f(b;) = Y ajb; for all 1 <i<n;then det(f)=det(A) .
j=1
Since by A ... ANby is a basis of A"V, it suffices to show that

A"F(by A ... Aby) =det(A) by A... Aby .

Since the N-product is multilinear we have

Anf(bl/\.../\bn): Z aj11~aj22-...~ajnn~bj1/\bjz/\.../\bjn

Since it is alternating, it holds
aj11~aj22-...~ajnn‘bj1 Aij/\.../\bjn =0

if {j1,---,Jn}t #{1,...,n}, because then there are k <1 with ji = j; . The remaining terms
are precisely those for which there exists a permutation o € S, with j;=o0(i),1<i<n,
hence of the form

@jy1 e Qo by AL AD, = ag(l)l'...~ao(n)n-bo(1)/\.../\bg(n)
= sign(o) - Ag(1)1 " -+ - * Qo(n)n * bi AL A
bn
where the last equality holds because A is alternating. Hence we get
Af(by Ao ADy) = ( Z sign(o) - Ag(1)1 " Ag(2)2 " - - - ao(n)n> by Aba AL ADy

geSy,
= det(A) by A... Aby .

2. Let {b1,...,bn} and {c1,...,cp} be two bases of V', then by A...Ab, and c1 A ... Acy are both a
basis of the 1-dimensional vector space A"V, so they differ by a non-zero factor. To determine
n

this factor, let A = (a;j)ij=1,..n be the invertible matriz such that ¢; =) aj;-b; , 1 <i<n.
j=1

Then A is the matriz with respect to {by,...,by} of the linear map f:V — V'  determined by
f(b)) =¢ ,1<i<mn. Hence from i) it follows

det(A)‘bl/\.../\bn:Anf(bl/\.../\bn):f(bl)/\.../\f(bn):Cl/\.../\cn.

Excercise 5.2.3 Let V be an n-dimensional real vector space and 1<k <n .
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1. Show that there is a natural linear map
AR ARV — (AkY)

satisfying

-----

forall vi,...;,vp € V* v,...,0, €V .

2. Let {b1,...,by} be a basis of V and {b},...,b"} the dual basis of V*.
Let

{(bil/\.../\bik)* ‘ 1§i1<...<ik§]€}
be the basis of (A*V)* dual to the basis
{bi1/\"'/\bik | 1§i1<...<ik§k}

of A*V'. Show that
AR A ABE) = (b A AT

and conclude that A* is an isomorphism.

5.3 Orientation of vector spaces

Let V' be an n-dimensional vector space, n >0, and B = B(V) the set of bases of V. We define an
equivalence relation ~ in B as follows:
For B,B" € B, B ={b1,ba,...,by} , B ={by,b,,...,00} ,let fpp:V — V Dbe the linear isomor-
phism defined by fp/p(b;) =0V, ,i=1,2,...,n. Then

B~ B < det(fpp)>0.

Since fpp= fgé, and fgrp = frp o fprp , it is easily seen that ~ is indeed an equivalence
relation.

Definition 5.3.1 1. An orientation in V is an equivalence class 0 € B/N ; the pair (V,0) is then
called an oriented vector space.

2. If (V,0) is an oriented vector space and B € B , the B is called a (positively) oriented basis if
Beo.

3. The standard orientation in R™ is the equivalence class of the unit basis.

4. We define the orientations of the zero vector space V = {0} to be the numbers +1.

Lemma 5.3.2 Let V' be an n-dimensional vector space, n > 0 .

1. 'V has precisely two orientations.
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2. The map
B(V) —>]B(AnV) , {bl,bg,...,bn} — {bl/\bg/\.../\bn} ,

induces a bijection between orientations in V' and orientations in A"V .

3. The map B(V)— B(V*) , mapping a basis {b1,...,b,} of V to the dual basis {b7,..., b5} of
V*, induces a bijection between orientations in V' and orientations in V*.

Proof: 1. Let be B = {b1,b2,...,b,} €B ;then {b1,ba,...,bn} % {—=b1,b2,...,b,} , hence there are
at least two orientations. On the other hand, if B « B’ # B” , then B ~ B” , hence there are at
most two.

2. This follows from the fact that for B = {b1,bg,...,b,} , B' = {b},b,,...,b),} it holds
bi Aba A...ANby, =det(fgp) by AbyA ... AV,

(see Example 5.2.2.2).

3. This follows from det(fpp/) = det(f(p/)-p~) , which is an easy consequence of Proposition 5.1.5.2.
|

Corollary 5.3.3 The map
B(V) — B(A"V™) |, {b1,ba,...,bn} — {b]AbSA...Ab}

induces a bijection between orientations in V' and orientations in A"V*.
In particular, every 0 # w € A"V* defines an orientation 0, in V by

{b1,ba,...,bp} €0, <= DbIADZA...AD, =0 -w with a>0.

5.4 Tensor products

Let R be a commutative ring with unit, and M, N two R-modules.

Definition 5.4.1 A tensor product of M and N (over R) is a pair (M ®@r N,T) with the following
properties.

1. M ®gr N is a R-module, and T : M x N — M ®gr N s a bilinear map.

2. (Universal property) For every R-module L and bilinear map F : M x N — L there exists a
unique linear map f: M Qr N — L such that F'= foT .

Proposition 5.4.2 A tensor product (M ®@r N,T) of M and N exists.
It is unique up to isomorphism of pairs, i.e. if (M®RN,T") is another tensor product, then there is a
unique isomorphism I: M ®@r N — M®LN satisfying T'=10T .
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Because of the uniqueness statement in this proposition we may speak of the tensor product of M and
N and write it just as M @ N. For (m,n) € M x N we define m ®n :=T(m,n) . M ® N has the
following properties:

1. M ® N is generated by the image of T, i.e. every element of M ® N is a finite linear combination
of the form > A\;m; @ n; with \; € R, m; € M, n; € N for all i.
2. Forall A ue R, m,m'e€ M, n,n’ € N it holds
A(m®@n)=(Am) @n=m®e (An)

and
Om+um)@n= men+pum' @n, m@ M +un)=Imen+umen’ .

3. If M resp. N is freely generated by {mi,ma,...,m,} resp. {ni,ng,...,ns}, then M @ N is
freely generated by { m; @n; |1<i<r, 1<j<s}.

4. Let M', N’ be two other R-modules and f: M — M’ , g: N — N’ linear maps. Then there
is a unique linear map f®¢g: M @ N — M’ ® N’ such that (f ® g)(m®n) = f(m)® g(n)
forall me M, ne N .

Observe that the last property follows from the fact that the map
MxN— M &N, (m,n)— f(m)®g(n)

is bilinear, and the universal property.

Let A resp. A’ be a (r X s)- resp. (1’ x s')-matrix with coefficients in R. Let f: R" — R® resp.
'+ R” — R% be the linear maps such that A resp. A’ is the matrix of f resp. f’ with respect to
the standard set of generators {mq,...,m,} of R", {n1,...,ns} of R® resp. of f’ with respect to the
standard set of generators {m/,...,m.} of R”, {n},...,n*} of R® . Then we define the (rs x r's')-
matrix A ® A’ to be the matrix of f ® f’ with respect to the bases { m; ® m; [1<i<r1<j<s}
of FQR* and { np ®@n] | 1 <k<rr,1<l<sr}of R"®RY.

Let V resp. W be an n- resp. m-dimensional R-vector spaces.
Lemma 5.4.3 There is a natural isomorphism h: V* @g W — Hom(V, W) such that
h(v* @ w)(v) =v*(v) -w (%)

forall veVov*eV weW.

Proof: The map H : V* x W — Hom(V, W) defined by H(v*,w)(v) := v*(v) - w is bilinear, hence
by the universal property of the tensor product there exists a unique linear map h satisfying (x); it
remains to show that is is bijective. Let By = (v1,...,vy) resp. By = (wi,...,w,,) be a basis of V
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resp. W, and B}, = (v}, ...,v};) the basis dual to By. Let be f € Hom(V,W) and (a;;) the matrix
of f with respect to By and By. Then it holds

h Zaiﬂ’; ®wj | (vg) = Zakjwj = f(vk) ;
2% J

this shows that h is surjective. Bijectivity follows because V*xW and Hom(V, W) both have dimension
nm. [

6 Vector bundles and connections

6.1 Vector bundles

Let X be an n-dimensional differentiable manifold.

Definition 6.1.1 A vector bundle of rank r over X is a triple (E, w, A¥) with the following properties.

1. FE is a differentiable manifold of dimension n+r, and 7: E — X s a differentiable map.

2. AP is a bundle atlas for E, i.e. AP = { (UF,hF,U; xR") | i€}, where

1 2

(a) forall i€ ,U; CX isopen, UE =77 1(U;) and h¥ :UEF — U; xR" is a diffeomor-
phism;

(b) it holds X = U; , E=JUF;
iel iel
(¢c) Forall i €1 let p;:U; x R" — U; the projection onto the first factor; then it holds
TyE = P © hE .
In particular, for p € U; and E,:=n"1(p) , the fibre of E at p, it holds that
hip = hz‘E|Ep tEp, — {p} xR"=R"

s a bijection.

(d) Forall i,j €1 and pe UNU; the composition
9ij(p) == hipoh;, :R" — R

is linear, and hence (by (c)) an isomorphism.
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A simple example of such a vector bundle (called the trivial bundle) is the product E := X x R" with
the natural projection 7 : X x R" — X onto the first factor: take an atlas A ={ (U;,h;,V;) | i€ I }
for X, then it is easy to see that

{(U¢XRT,hiXidRr,ViXRT) |i€[}

is the atlas for an (n + r)-dimensional differentiable structure in E such that 7 is differentiable. With
AF = {X x R",idxxrr, X x R"} the triple (E,r, AF) satisfies all conditions.

Remark 6.1.2 Let (E,m, AE) be a differentiable vector bundle of rank r over X, with data as in the
definition.

1. The map m is surjective.

2. For all i,j €l the gluing map g;; : UiNU; — GIl(r,R) = R™ s differentiable. For all
i,j,k €l and pe U NU;NUy it holds

gik(p) = 9ij(p) o gjr(p) 5 (%)

this is called the cocycle condition. In particular, for all i,j €1 and pec U;NU; it holds
gij(p) = gji(p)~t , and for all i € I and p € U; it holds gi;(p) = idg- .

3. For pe X choose i€l with pecU;. The bijection h;, induces the structure of an r-
dimensional vector space in E,, but by 5.4.1.2(d) this structure is independent of the choice of
1 € I . This means that the given data define a natural structure of r-dimensional vector space
in each E,. In particular, there is a natural zero-element 0, in each E,.
In the case of the trivial bundle X x R" it obviously holds 0, = (p,0) .

Definition 6.1.3 Let (E,n, A”) be a vector bundle over X of rankr. A section of F is a differentiable
map s: X — E such that mos=1idx , so in particular it holds s(p) € E, forall pe X .
A zero of a section s is a point p such that s(p) =0, .

Excercise 6.1.4 1. Show that the map
Op: X —FE , p—0,,
is differentiable, and therefore rightfully called the zero section of E.

2. Show that every section s: X — E is an embedding.

3. Consider the trivial bundle E := X x R" with r > 1, andlet {bi,ba,..., b} € R" be a basis.
Show that the maps
si:XHE ) pH(pvbi)ai:L"wnv

are differentiable, and hence sections of E without zeroes. Observe that for all p € X the set
{s1(p),...,sr(p)} is a basis of E,.
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Consider the tangent bundle of X. i.e. the disjoint union

TX = [[ X ;
peX

We want to explain that T'X has the structure of a vector bundle of rank n over X; for this we first

observe that we have a natural projection

7:TX — X , 7(v)=p & velX.

Let A={ (U;,hi,V;) | i €I} be a differentiable atlas for X with coordinates (z,

each 7€ I define
Ul =) = [ Tox
peU;

and

;U x R* — UIX Z)\k
&ck

then W; is bijective by the theory of manifolds. Observe that
moW, =pr; , pr1:U; x R" — U; the projection . ()
Observe further that X = |J U; implies that TX = |J UTX .

i€l el
Recall that for p e U; NU; and 9 = (Y1,...,¢,) :=hjo hi_1 it holds

J
&Uk 1= 1 axl

and hence

B 0) = SN ) = D0 e G ) S50 = (Z s (m@»-&)-

w@
K
,_.

k=1
This implies
and thus
Ui oWi(p,A) = (p, Dib(hi(p)) - A) . (¥ % %)

x!)in V;. For

Using the fact that D (hi(p) : R — R™ is a linear isomorphism and hence a homeomorphism it’s

not hard to prove the following topological fact.

Excercise 6.1.5 There is a unique topology in T X such that for all i € I the subset UiTX 18 open
inTX, and V; :U; x R*" — UiTX 1s a homeomorphism, where U; X R™ is equipped with the product
topology. This topology in T X is Hausdorff, second countable, and independent of the choice of the

atlas A we started with.
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For 7 € I define
kX = (hy x idgn) o ;1 UIY — U; x R® — V; x R™

it follows from the exercise above that this is a homeomorphism. We have earlier seen that the UI¥
form an open cover of TX, so { (U kX, V; x R") | i € I } is an 2n-dimensional topological atlas
for TX. For all i,j € I it holds on k{ X (U/X nUX)

KX o (k7)™ = (b x idgn) 0 51) 0 (0 (! X idgn)
and using (*#) we get for all (z,)) € hy(U; NU;) x R™ (with 1 = hj o h; ! as above, and p = h; !(z))
(ijX o (k:ZTX)_1> (2,0) = ((hj X idgn) o \p]fl) (Ti(p, \)) = (hy x idgn) (\p;l o Wi(p, A))
= (hj xidgn) ((p, DY (Ri(p)) - A)) = (¢(x), DY (hi(p)) - A) -

Since ¥ and Dy are differentiable, it follows that { (UTX, kI V; x R") | i € I } is indeed a differen-
tiable atlas.

We have
(hi oo (k:,L-TX)il) (x,\) = (hjomo;) (hi_l(:n), A)
— hi(h7 @) by (+5)

T,

this shows that 7 is differentiable.

Excercise 6.1.6 Show that { (UFX, W1 U; xR") | i € I } is a bundle atlas for TX in the sense of
Definition 5.4.1, and that the associated gluing maps (in the sense of Remark 5.4.2) are given by

9ij(p) = D(hi o h; ") (hj(p)) .
Now assume that X = |J U; is an open cover, and that we are given a set
iel
{gij:UimUj —>GL(T,R) ’ Z,jGI}
of differentiable maps satisfying the cocycle condition (). Define

HUz x R"

E =€l I~

where the equivalence relation ~ is defined as follows: for (p,A) € U; x R" and (q,p) € U;j x R" it
holds
(p:A) ~(q,p) & p=q and A=gij(p)-p .
Let 7: ][] Ui x R" — E' be the natural projection, and define 7: E — X by n(7(p,A)):=p.
i€l
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Excercise 6.1.7 Show that there is a unique topology in in E such that each 7|y,xrr 15 a homeo-
morphism onto its image. Show further that (E,m, AF) is a vector bundle of rank r over X, where

AE = { (ﬂ-il(U’i)? (ﬁ’UiXRT)ilan X RT ‘ ) S I } .

As an example consider
St={(z.y) eR? |2? +y* =1}, Ur:=S"\{(1,0)}, U2:= 5"\ {(~1,0)} ;

then Uy NUy; =UtUU™ , where Ut ={ (z,y) €S| £+y>0}.
Define ¢;5: U;NU; — GL(1,R) =R by

gm=1, go=1, gulpr =01lp+ =1, gi2lv- =9g2lv- =-1.

It is obvious that { gi; | ¢, € {1,2} } satisfies the cocycle condition (x) and hence defines a vector
bundle M of rank 1 on S!. This is a (slightly abstract) form of the Mobius Strip.

Excercise 6.1.8 1. Let X be a differentiable manifold, X = |J U; an open cover,
el

{gij:U;NU; — GL(r,R) | i,j€1}

differentiable maps satisfying the cocycle condition (%), and E the vector bundle defined by these
data. Show that a section s of E is the same as a family { s; :U; — R" | i €1} such that
forall i,5 €I and pe U;NU; it holds s;(p) = gi(p)(sj(p)) -

Show further that s(p) =0, < si(p)=0 forall peU;.

2. Show that every section of the Mdobius strip M (constructed above) has a zero.
Let (B, 7, AF) and (F, 7, A) be vector bundles on X

Definition 6.1.9 A bundle map between E and F is a differentiable map f:E — F with the
following properties:

1. f is fibre preserving, i.e. 7 o f =7F [ ie. f(E,) CF, foral pe X .
2. fp:=flg, : Ep — F, s linear for all pc X .
3. tk(f) =rk(fp) is constant as a function of pe X .

A bundle map f is called bundle isomorphism if f, is bijective for every p € X .

Excercise 6.1.10 Let f: E — F be a bundle map, and v the rank of E.

1. Define
ker(f) := U ker(f,) C E .

peX

Show that ker(f) has a unique structure of vector bundle of rank r—rk(f) such that the inclusion
ker(f) — E is a bundle map.
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2. Define
im(f) = | im(f,) C F .

peX
Show that im(f) has a unique structure of vector bundle of rank rk(f) such that the inclusion

im(f) — F is a bundle map.

3. Assume that f is a bundle isomorphism. Show that f is a diffeomorphism of manifolds, and that
its inverse f~1 is a bundle isomorphism, too.

Let f: FE — F be a bundle map and s a section of E. From the first condition in Definition 6.1.9
it follows that f o s is a section of F', and the second condition implies that if p is a zero of s, then it
is also a zero of f os. From this observation, Exercise 6.1.4.3 and Exercise 6.1.8.2 we conclude

Corollary 6.1.11 The Moébius strip M is not bundle isomorphic to a trivial bundle.

Let £/ and F' be vector bundles on X, given with respect to a suitable open cover by cocycles g;; and
hij. Then we get new vector bundles via standard algebraic operations as follows

bundle cocycle fibre
L (g;;")" (E%)p = (Ep)”
EaF 9 0 (E®F),=E,&F,
0 hij
E®F Gij @ hij (EQF), 2 Ey® Iy

Hom(E,F) = E*® F (g;;')' ® hj Hom(E, F), = Hom(E,, F,)
AFE AFg,; (A*E), = A*(E,)

Observe that for the trivial bundle X x R¥ it holds F ® (X x R¥) = E®*¥ 'and that A°(F) = X xR .

Let V be an (n + 1)-dimensional R-vector space, and denote V* :=V \ {0} . We equip V' with its
natural topology and differentiable structure (see Chapter 2).

Definition 6.1.12 The n-dimensional (real) projective space associated to V' is the quotient

X
P(V) =V /o
where the equivalence relation ~ in V> is defined by
r~y &= FJAeER 1z=X-y.

Equivalently, we can view P(V') as the set of lines through the origin in V.
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We denote by pr: V> — P(V) the natural projection, and equip P(V) with the quotient topology.

Now assume that V' is equipped with an inner product with associated norm ||.||. Just as in the case
of V =R"! one shows (using e.g. coordinates) that

SV)={veV]|vl=1}
is an n-dimensional submanifold of V', and thus is an n-dimensional manifold.

We state without proof

Theorem 6.1.13 1. The topology in P(V') is second countable and Hausdorff.

2. P(V') has a unique n-dimensional differentiable structure such that pr|gwy: S(V) — P, s a
local diffeomorphism. This implies that pr is a surjective submersion.

Consider the product bundle P(V') x V' with bundle projection m; : P(V) x V.— P(V') the projection
onto the first factor.* Now define

Oy(-1):={(p,v) eP(V)xV |v=0 or pr(v)=p};

then
7 (p) N Oy(—1) = {p} x L ,

where L C V' is the line through the origin corresponding to p. In fact, one can show that

Proposition 6.1.14 Oy (—1) has a unique structure of a vector bundle of rank 1 such that the inclu-
sion a:O(=1) — P(V) xV into the product bundle is an injective bundle map.

The last item of this course is to explain in an informal way the following basic fact in algebraic
geometry.

Theorem 6.1.15 There is an exact sequence of vector bundles
0— Op(—1)% P(V)x V25 Ov(-1) @ TP(V) — 0,

called the Euler sequence.

Here by "exact sequence” we mean that a and 3 are bundle maps, « is injective, (3 is surjective, and
im(a) = ker(5) .

To explain the symbol ”®”, called tensor, we consider a 1-dimensional vector space L and an n-
dimensional vector space W. Let b be a basis vector of L; then as a set we define

LoyW:={bpw|weW }.

4That this is indeed a vector bundle follows after choice of coordinates in V as in the case of the trivial bundle.
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With addition defined by
bRy w+ by w :=by (w-I—wl) )

and scalar multiplication defined by
A (b@pw) :=b®p (A w)

this becomes a vector space. If V' is another basis vector of L, then there exists a unique A # 0 such
that & = X -b . This implies that we can identify L ®, W and L ®, W in a natural way via

Loy Wab@yuw=M\beyw:=bx, \-w) € L, W .

Using this identification, we get a vector space (unique up to natural isomorphy etc.) L® W consisting
of vectors I @ w, [l € L ,w € W | with in particular the following two properties.

1. If b is a basis vector of L and by, ...,b, is a basis of W, then b®bq,...,b®b, is a basis of LR W.
2. Forall AeR,le L, weW it holds
Alew)=ND)ow=I (A w).

Now we go back to our manifold X. If F is a vector bundle over X of rank r and L a vector bundle over
X of rank 1 (a line bundle), then there is a vector bundle L ® E over X with the following properties.

1. For every p € X , (L ® E), is naturally isomorphic to L, ® E,.
2. If E resp. L is defined by the cocycle {g;;} resp {h;;}, then L ® E is defined by the cocycle
{hij - gij}-
To define the map 3 in the Euler sequence we first observe that we have the natural map
v:V*— 0(-1), v(z) = (pr(z),z) e P(V) x V.
Second, we define the map
pry VXV — TP, , pr(z,v) = [Yow] € Tpr(z)Pn ,

where the curve v, , through pr(z) is given by ~;,(t) =pr(z+t-v) on a suitably small interval
around zero.

It is an easy exercise to show that

A£0 = pr*()\-x,v):§-pr*(ﬂf,v)- (1)

Now we define for p € P(V)

Bp:{p} xV — O(=1), @TP(V), , Bp(p,v) = v(z)Q pri(z,v) ,

with & € V* such that pr(z) =p . It follows from () that this is indeed independent of the choice
of z in pr=1(p).

Finally one shows:
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LB:PV)xV — OF1)@TP(V) , Blypxy = Bp is a surjective bundle map. This follows
in particular from the fact that pr is a surjective surjection.

2. im(a) C ker(8) . This follows because pri(a(p,v)) is the class of the constant curve in p, i.e.
the zero in T),P,,.

3. im(a) = ker(8) . This follows because from dimensional reasons: [3, is surjective and hence has
rank n, so ker(3,) has dimension 1, which equals the dimension of im(«),.

6.2 Connections in vector bundles
Let X be an n-dimensional differentiable manifold, and =« : EF — X a differentiable vector bundle
of rank r. For U C X open we define E|y := 7 '(U) C E , then

™ ’ E|U ) ’U e U

is a vector bundle on U. We denote by A°(U, E) the vector space of sections of E|y, and set
AYE) = A%X,E) .

We further use the following notations:
AYU) == AYU,NITX*) = QU
AYU,E) = AU, E® NMiTX*) = A°(U, E) ® 4017y A1(U)
AYE) .= AY(X,E)

Observe that all these spaces are modules over C*(U,R) = A°(U) .
The elements of A°(U, TX) are called vector fields on U, and we have a bilineair pairing
AU, TX) x ANU) — A°(U) , (v,a) — a(v)
where «a(v)(p) = a(p)(v(p)) for all p € X . Similarly, we have a bilinear pairing
AU, TX) x ANU,E) — A°(U,E) , (v,s®a) +— a(v)-s .

Therefore the elements of A(U, E) are called 1-forms with values in E. Finally we have a bilinear
map

AP(U, B) x AYU) — APYU(U,E) | (s, B) — 50 (A f)
The image of 0 ®@ 3 € AP(U, F) ® AY(U) in AP*4(U, E) under the induced linear map we denote by
aAp.
Definition 6.2.1 A connection in E is an R-linear map
D : A(E) — AY(E)
satisfying
D(f-s)=s®df + f-D(s)
for all fe A%X), se A%(E) . A section s € AY(E) is called parallel if D(s) =0 .
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An analogous definition holds for any open subset U C X .
Excercise 6.2.2 Let D be a connection in E and U C X open.

1. For s A°(E) show that s|y =0 implies D(s) =0 .

2. Show that there is a unique connection D|y in E|y such that for all s € A°(E) it holds
D(s)ly = Dlu(sly)
(This is not completely obvious because not every section of E over U is the restriction to U of
a global section.)

We define R-linear maps, also denoted D,
D : AP(E) — APTY(E)

as R-bilinear extensions of
D(s®@a):=D(s) N\a+s®da
for all s € A°%(E), a € AP(X) .

Excercise 6.2.3 Show that for o € AP(E) , a € AY(X) it holds

D(cNa)=D(o) Na+ (—1)Poc Ada .

Definition 6.2.4 The curvature of D is the R-linear map
Fp=DoD:A(E) — A*E) .

D s called flat if Fp =0 .
Lemma 6.2.5 For all f € A°(X), s€ A°(E) it holds Fp(f-s)=f-Fp(s).

Proof:

Fp(f-s)=D(s®df + f-D(s)) = D(s) ANdf +s@d>f — D(s) Adf + f-D*(s) = f - Fp(s) .

Excercise 6.2.6 Show that the above Lemma implies that Fp € A?>(End(E)) = A2(E* @ E) .

Example 6.2.7 Consider the trivial bundle Ey= X x R" . Then we have

AN E)) ={ (fi,.- ., ) IV1<i<r : fie A%X)}.
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This is a free A°(X)-module with basis ey, ..., e, , where e; is the constant section e; = (0,...,1,...,0)
with the 1 in the tth place:

AO(E()) 28 = (fla"')f?“):Zfi'ei .
=1

We define D : A°(Ey) — AY(Eg) by

D <Zfi-ei> 2226i®dfi ;
i—1 i—1

this is obviously R-linear, and an easy calculation shows that D is indeed a connection in Ey. It is
obvious that each e; is parallel with respect to this connection, hence it holds for all sections of Ey

Fp (ifi"%) =D (i€i®df1> = i€i®d2fi =0,
=1 i=1

=1

this means that D 1is flat. It is called the canonical flat connection in the trivial bundle.
Let w: F — X a vector bundle of rank » and U C X open.

Definition 6.2.8 A (local) frame for E over U is a set si,...,s. € AY(U, E) that si(p),...,s.(p)
is a basis of E(p) for all pe U .

Excercise 6.2.9 Show that the existence of a global frame s1,s2,...,s. € A(E) s equivalence to
FE being isomorphic to the trivial bundle.

Since every point p € X has an open neighborhood U such that E|y is isomorphic to the trivial
bundle over U by a bundle chart, there always exists a local frame defined in an open neighborhood
of p.

Theorem 6.2.10 For a connection D in E are equivalent:

1. D is flat.

2. For every p € X exists an open neighborhood U of p and a local frame of E over U consisting
of parallel sections.

Remark 6.2.11 1. Not every bundle admits a flat connection.

2. The existence of a flat connection in E does not imply that E is isomorphic to the trivial bundle.

Proposition 6.2.12 Let D be a connection in E. Then for every p € X and every e € E, there
exists an open neighborhood U of p and a section s € A°(U, E) such that s(p) =e and D(s)(p) =0 .
If §' is another local section with s'(p) =e and D(s')(p) =0 , then

im(D(s)(p)) = im(D(s")(p)) € TeE ,
where D(s)(p)) : T,X — T.E denotes the tangent map of s at p.

87



Therefore, D determines at e the well defined horizontal subspace T'E :=im(D(s)(p)) C T.E . As
vertical subspace at e we define the tangent space of the fibre, i.e. T'E = T.E. C T.E . Observe that
mos=idy implies D(m)(e) o D(s(p) =idg,x . In particular it holds that Dw(e)\im(f)(s)(p)) is injective
and that Dx(e) > n , hence dimker Drr(e) < r . On the other hand, since 7 maps every curve through
e in E, to the constant curve p in X, and since F, has dimension r it holds ker D7(e) = T"E . We

conclude that
T.E=T'E®T'E .

Proposition 6.2.13 Let v :[a,b] — X be a differentiable curve and e € E,, . Then there exists
a unique horizontal lift of v starting at e, i.e. a differentiable curve 7. : [a,b] — E  such that
Fela) =€, moA. =~ and 7,(t) € T&}Z(t)E for all t € [a,b] , where 4,(t) denotes the class of the
curve s+ e(t + s)
This defines a map

Era) = Bywy » €= Fe(b)

which is a linear isomorphism and independent of the parametrization of ~.

Let be p € X , C(p) the set of closed continuous and piecewise differentiable curves ~:[0,1] — X
with start- and endpoint p, and C%(p) the subset of C(p) consisting of curves homotopic to the constant
curve. The proposition above implies that there is a well defined map

H:C(p) — GL(Ep) , v~ (e (1))
Theorem 6.2.14 Let X be connected.

1. ®(p) := H(C(p) is a Lie subgroup of GL(E,), called the holonomy group of D at p. For all
p,q € X , the subgroups ®(p) and ®(q)are conjugated in and hence isomorphic.

2. ®0(p) := H(C(p) is a connected normal subgroup of ®(p) such that q)(p)/tbo(p) is countable. In
particular, ®o(p) is the identity component of ®(p).

A connection D in F induces a connection D* in the dual bundle E* as follows. First observe that
s € AYE), s* € AY(E*) define s*(s) € A°(E) , and that there are unique well defined bilinear maps

AYE*) x A°%E) — AY(E) , A°(E*) x AYE) — AY(E)
satisfying
(s*@a,8) = 5%(s)-a=:(s*®@a)(s), (s s@a)— s(s)-a=:s5(s@a)
for all s € AY(E) , s* € A%(F*), a € AY(X) . Now D* is uniquely determined by
d(s*(s)) = D*(s%) + s*(D(s))

for all s € A°(E), s* € AY(E¥) .
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Let Dg resp. Dpg be a connection in the vector bundle E resp. E’ over X. Then we define the
induced connection Dggp in E® E' by

Dpop(s®s') :=Dg(s) @5 +5s®@ Dg(s') forall se A%E), s’ € A%F') ;
here we use the convention

(500)®s =(s@s)Qa=50 (s ®a) forall sc A%E), s’ € A°E') a e AF(X) .

Excercise 6.2.15 Show that for the curvatures F, F' and F® associated to Dy, D and Dggp in
E. E' and E® E' it holds

FOs@s):=F(s)®@s +s®F'(s) forall sc A"(E), s ¢ A°%FE') .

Now let V' be an n-dimensional real vector space, and Bil(V') the vector space of bilinear maps
VxV—R.

Excercise 6.2.16 Show that there is a well defined linear isomorphism
b:V*@V* — Bil(V)
satisfying
b(v* @ u*)(v,u) =v*(v) - u*(u) forall v*,u*eV* vueV.

From now on we identify the two spaces by this isomorphism.
Let bq,...,b, be a basis of V, and b7,..., b}, the dual basis of V*. Using Exercise 6.2.16 it is easy to

see that we can write every h € Bil(V) as h= 3  h(b;,b;)-b; ®b] .
ij=1

Definition 6.2.17 A metric in a vector bundle E over X is a section h € A°(E* ® E*) such that
for every p € X the bilinear form h(p) € E; ® E; is symmetric and positive definite. The pair
(E, h) is then called a metric bundle.

Excercise 6.2.18 Show, using a partition of unity, that every vector bundle admits a metric.

Definition 6.2.19 An h-connection in a metric bundle (E,h) is a connection D in E such that h is
parallel with respect to the connection in E* ® E* induced by D.

Excercise 6.2.20 Show that a connection D in E is an h-connection if and only if
d(h(s,t) = h(D(s),t) + h(s, D(t)) for all s,t € A°(E),
where we use the convention

h(s ® a,t) := h(s,t) @ a =: h(s,t @ a) for all s,t € A°(E), ac AF(X) .
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A derivation on X is a linear map & : A%(X) — A%(X) satisfying 6(f-g) =0(f)-g+ f-(g) all
f,g € A°(X) . The space Der(X) of derivations obviously is a linear subspace of Hom(A%(X), A%(X)).
Let v € A°(TX) be a vector field, then it is easy to see that

dy + A%(X) — A%X) , () (p) = v(p)([f, X]) = df () (v(p))

is a derivation on X.
Proposition 6.2.21 The linear map A°(TX) — Der(X) , v+ 6, , is an isomorphism.
For a derivation § € Der(X) we denote by vs the inverse image of § under this map.

Excercise 6.2.22 1. For 61,02 € Der(X) show that 010 dy — b2 001 € Der(x) .

2. Give an example of X and 61,09 € Der(X) where §; 009 € Der(X) .

By the above proposition and exercise, for v,w € A°(TX) we can define the Lie-bracket
[v,w] == V(84081 —8w0ds) -
Now let D be a connection in T'X, and define a R-bilinear map
ANTX) x ANTX) — A"(TX) , (v,w)+— Dyw:= D(w)(v),

where we use the convention (u® «a)(v):=a(v)-u for all v,u € AY(TX), a € AYX) . Dyw is
called the D-covariant derivative of w in the direction of v. Observe that

Diyw=f-Dyw , Dy(f -w)=df(v) -w+ f Dyw forall vywe ANTX), fe A(X),

i.e. that Dyw is A%(X)-linear in v but not in w.

The torsion of D is the map

T:A%TX) x ANTX) — AYTX) , T(v,w):= Dyw— Dyv — [v,w] .

Excercise 6.2.23 Show that

T(f-v,w) = f-T(v,w) =T(v, f-w) for all v,we ATX), fec A" X).

A Riemannian metric in X is a metric h in T'X, the pair (X, h) is the called a Riemannian manifold.
Using a partition of unity one can show that every manifold admits a Hermitian metric.

Theorem 6.2.24 On a Riemannian manifold (X, h) exists a unique metric connection with vanishing
torsion, this is called the Levi-Civita connection.
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Let m#: E — X be a vector bundle and D a connection in E.

Lemma 6.2.25 For all p€ X and e € E, exists a section s € A°(E) such that s(p) =e and
D(s)(p) =0 . If ' is another section with s'(p) =e and D(s')(p) =0, then it holds

im ((]js(p)) = im ((Ds’(p)) CT.E ,
where Ds(p) :T,X — T.E denotes the tangent map associated to s.

Observe that mos=idyx implies Dm(e)o Ds(p) = idr, x , so Ds(p) and Dw(e)]im((bs(p)) are in-
jective, and Dﬂ(e)‘im((Ds(p)) :im ((Ds(p)) — T, X is an isomorphism by reason of dimensions. In
particular, it holds dimim ((ﬁs(p)) =n. We call T'E :=im ((ﬁs(p)) the (with respect to D)
horizontal tangent space of E at e.

On the other hand, we call TYE :=T,E, the (with respect to D) vertical tangent space of E
at e. Since m is constant on E,, we have T E C ker Dr(e) , and hence TYENT!ME = {0} . Be-
cause of dimTYFE =r it follows, again by reason of dimensions, that TYE =ker Dr(e) and
T.E=T'E®T'E .

Now let «:[a,b] — X a differentiable curve and e € E, ) .

Definition 6.2.26 A (with respect to D) horizontal lift of v to E with starting point e is a differen-
tiable curve e : [a,b] — E with A.(a) =e and

Vielad] s m(t) = (1) , Flt) €Th B

where 7,(t) is the equivalence class of the curve s+ Fo(t +s) .

From now on we will be sketchy without references. The interested reader can find the details in
the standard literature on differential geometry, e.g. the "Foundations of Differential Geometry” by
Kobayashi and Nomizu.

By the theory of differential equations, a horizontal lift as above always uniquely exists,and we get a
map
Py By — Eyp) s €= (D)

p~ is called the parallel transport (with respect to D) along .

We define v~ !:[a,b] — X , t — y(a+b—1t), and for a differentiable curve 7 :[b,c] — X with

v(b) = 7(b) we define 77 :[a,d — X, tH{ T(t) ifb<t<e

Proposition 6.2.27 p, is a linear isomorphism which is independent of the parametrization of . It
holds p;l =py-1, and for T as above it holds prvy = propy .
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We denote by C(p) the set of piecewise differentiable loops at p, i.e. of continuous curves ~ : [0,1] — X
with the following properties: 4(0) = (1) = p , and there exists k € N and 0 <t; <ty < ... <t <1
such that [y, ¢, ) is differentiable for all 1 <i<k—1. By C%p) c C(p) we denote the subset of
simply connected curves.

For ~,7 € C(p) we define

-1 A - -1 — _ . e ’7(2t) if ¢ < 1/27
then y~! 7.4 € C(p) . Observe that 7 -~ is a reparametrization of 7 * v defined above.

Parallel transport p, along v & C(p) is defined as follows: Let be 0 <t <tp<...<tp<1 as
above, then p,:=p,, ,0...0p,, .

From the proposition above it follows

Proposition 6.2.28 The map H : C(p) — GL(E(p) , v+ py is well defined, and ®°(p) :== H(C")
and ®(p) := H(C(p) are subgroups of GL(Ep).

®(p) is called the holonomy group, and ®°(p) the restricted holonomy group (with respect to D) of
FE at p.

Theorem 6.2.29 If X is connected, then ®(p) is a Lie subgroup of GL(E,), and ®°(p) is a connected
normal Lie subgroup of ®(p) such that @(p)/(bo(p) is countable. In particular, ®°(p) is the identity

component of ®(p).
For all p,qe X , ®(p) and ®(q) are conjugated in GL(E,) and hence isomorphic.
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