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Abstract

While many articles have been published about characterizing extragalactic double systems of white
dwarfs as source of noise for observations with LISA, it would also be of interest to actually observe
these targets. We will set up the theory of Gravitational Waves from scratch, to provide a more
mathematically accurate insight behind the theory of curvature and the Riemann tensor than is
provided in general reading material for physicists. This also allows for a more concise handling of
the calculations we perform for binary systems. We find the maximal distance at which we can still
observe a binary system with the properties of J065133.34 + 284423.4 (shortened to J06), and show
its dependence on location. By restricting our search to the nearby galaxy Andromeda, we predict
characteristics of visible double white dwarfs in that galaxy. This resulted in a prediction of 4 visible
double white dwarfs in the Andromeda after observing for 4 years, which grows to 30 after 10 years.
In the future, predictions could also be made for populations in other galaxies or for individual double
white dwarfs in the Local Group.
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Introduction

After Henri Poincaré proposed, and Albert Einstein predicted Gravitational Waves (GWs) on basis of
the general theory of relativity, many scientists have been considering a possible way to detect this
gravitational radiation. By studying the exact effect theoretical GWs would have on the surrounding
space, one way of observing these waves was found to be laser interferometry. This has been used in
building the many GW observatories across the globe (for example LIGO or VIRGO). In september of
2015, the first GW (due to a Black Hole merger) was detected with LIGO [1], and using the availability
of more observatories, even more events have been recorded since then [6].
Since 1980, studies for designs for a GW detector in space were performed. LISA was first proposed to
ESA in 1990, and was pushed forward since then. In 2013, ESA announced that the theme ’the Gravi-
ataional Universe’ would be selected for a 2034 launch. A mission proposal for LISA was submitted
january 2017[2].
More than 2000 papers have been written describing the theory about detections with LISA. Many of
these (for example [7], [19] and [15]) focus on the primary scientific objectives named in the proposal
[2], and thus consider extragalactic binary systems as source of noise. This thesis will explore the
possibility of actually detecting GWs emitted by binary systems of White Dwarfs (double white dwarfs
(DWD)) in satellite galaxies of the Milky Way (like the Small and Large Magellanic Clouds), or even
the nearby galaxy Andromeda (M31).
Being able to observe GWs from sources in the Andromeda galaxy would provide more information
about a possible star formation history of the galaxy. We would also be able to determine the distance
to the parts of Andromeda where the systems are situated more precisely. By also observing and
mapping intergalactic DWDs, we can gain a better understanding of the formation and history of the
structures in our Local Group.
To theoretically determine the observation limit, we have to explore the mathematics behind the
curvature of spacetime due to GWs and use that theory to predict the signal received from extragalactic
DWD systems.

The LISA-mission will detect GWs with an interferometric measurement of a difference in optical
pathlength (due to geodesic deviation (see chapter 1)) along three sides of a triangular configuration
defined by three free-falling test masses, contained inside co-orbiting drag-free spacecrafts. The
variations caused by GWs are of orders of pico- or nanometers, while variations due to solar system
celestial dynamics are of the order of tens of thousands of kilometers. Still the GWs can be distinguished
because GWs have periods at mHz frequencies, while the latter variations have periods of months,
so they are quiet at mHz frequencies [2]. All three components will send out laser beams to their
neighbours, such that they send a signal back (phase-locked with the incoming signal) along with a
fixed offset frequency. This set-up allows LISA to be viewed as two independent virtual Michelson
interferometers (making it possible to view both polarizations of GWs), along with a third ’Sagnac’
configuration to characterize instrumental noise background. This adds up to six active laser links.
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Due to the rotation of the constellation about itself and the sun, the location of a source observed for
several weeks can be reconstructed.
Per spacecraft, two test masses (TMs) are used, each one belonging to one interferometric arm. To
limit the relative accelerations of these TMs and the spacecrafts, the spacecrafts will be endowed with
thrusters to follow the TM along the interferometry arm, without forces applied to the TM along
these axes.
Due to instrumental noise and other sources, the strain sensitivity in the frequency domain where we
want LISA to observe GWs (10−5Hz≤ f ≤ 1Hz) is seen in figure 1. The dots in this figure represent
the signal from J06, the double white dwarf we will use as an example througout. In figure 2 of [2]
we see the various theoretical frequencies with their strain sensitivity of possible objects we want to
study with LISA, including LIGO-type black holes, Galactic Binaries and the stochastic background,
both Cosmological and Astrophysical. As seen, due to the ability of characterizing the noise from
foregrounds, the strain due to astrophysical sources will decay while time advances.
To now find the orbital average, we need to multiply with

√
3/20. This will be used to find the SNR

for an observation of a binary system.
In the proposal it can be read that it is proposed to reach a nominal mission lifetime of 4 years. It is
predicted that it is also possible that LISA will observe for 10 years or longer. These time-scales will
thus be considered mainly throughout this thesis.

Double White Dwarfs (DWD) are systems where two white dwarfs orbit each other. Because these
are both compact objects, and the configuration is asymmetric, they produce Gravitational Waves
during this process. Because these systems are very common (about 2.6 · 107 expected in the Milky
Way alone [14],[13]), they make for great targets to verify Einstein’s theory of Gravitation and to
verify the feasibility of LISA when launched. Furthermore, we can easily predict physical effects in
DWD-systems because the system remains predictable for most of its life. Only when the inspiral
phase has progressed such that tidal effects have an impact on the system and the orbital speed is not
negligible to the speed of light anymore, the predicted theories do not hold. These events are thus
very interesting to try to observe, for new information could be found. Several assumptions have to be
made before we simplified the theory enough to use it. These involve the slow motion approximation
and the weak field approximation, as well as the assumption that the orbit is circular and the masses
can be viewed as point masses.
These assumptions will not hold during the inspiral phase, so constraints on parameters can be found
to limit our search. When for example the orbital separation is too short, tidal forces will play a
role, so the point-mass approximation does not hold anymore. For heavier white dwarfs, the radius is
smaller, thus the orbital period can become much shorter. More massive objects with a shorter period
send out signal with bigger amplitudes, so they become more easily visible.
It should be noted that white dwarfs can not have a mass higher than 1.4M� (M� is the solar mass),
known as the Chandrasekhar limit[4].

The first chapter of this thesis will focus on the mathematics of manifolds and curvature. By
defining what we mean with a spacetime and using tensor fields, we define the Riemann tensor, which
is the main characterization of curvature of manifolds.
In the second chapter, it will be shown how the Riemann tensor of our spacetime is connected to the
presence of matter and energy in the universe by exploring the principles of General Relativity.
The third chapter will then limit the theory to Gravitational Waves (GWs) as solution of Einstein
equations in vacuum. The quadrupole formalism will be explored to derive the form of GWs emitted
by binary systems. Finally, a discussion of the theory of signals and systems will be performed to
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analyse the technique of matched filtering to determine the optimal signal to noise ratio (SNR) of a
detection of a GW.
The theory will be used to analyse the maximal distance for observing binary systems of white dwarfs
in chapter 4. The same techniques will be applied to a simulated population of binary white dwarfs in
the Milky Way, moved computationally to M31, to analyse the expected properties of visible systems
in M31.
A conclusion with possible follow-up research will be presented at the end.
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Chapter 1

Curvature of Manifolds

Before we can start our discussion on Gravitational Waves, we need to rigorously describe the relevant
elements of the theory of General Relativity. This we will do by studying the mathematical definition
of curvature, where the Riemann tensor will appear to be the most important quantity. To do this, let
us first start by describing what we mean by a manifold.

1.1 Manifolds

The definition of a manifold used throughout will be a generalisation of the notion of a submanifold of
Rn, dependent on an atlas for a topological space X:

Definition 1.1.1. An n-dimensional topological atlas A for X is a set A = {(Ui, hi, Vi)|i ∈ I}
with I an index set, such that for each i ∈ I the following statements hold: Ui is open in X and
X =

⋃
i∈I Ui, Vi is open in Rn and hi : Ui → Vi is a homeomorphism.

This atlas is differentiable if for all i, j ∈ I the map

hj ◦ h−1
i : hi(Ui ∩ Uj)→ hj(Ui ∩ Uj) (1.1)

is differentiable1 as function from Rn to Rn.
It is maximal if for any other atlas B for which A ∪ B is another atlas it holds that B ⊆ A.

Now the definition we will use for a manifold is as follows:

Definition 1.1.2. An n-dimensional differentiable manifold is a pair (X,M) where X is such
that every open can be written as union of a selection of opens in a countable collection of open sets
and such that every two points admit disjoint open neighbourhoods (Hausdorff). M needs to be a
maximal n-dimensional differentiable atlas for X.

The Hausdorff condition is made such that we can always represent the manifold locally by finding
a mapping to a Euclidean space Rn.

Example 1.1.1.

1With ”differentiable” we mean that it is an element of C∞(Rn), where C∞(X) denotes the set of functions on X
that are n times differentiable for all n ∈ N.
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- The Euclidean space Rn combined with the atlas
M = {(U, h, V ) : U, V ⊂ Rn open and h : U → V a homeomorphism} is an n-dimensional differen-
tiable manifold.

- The 2-dimensional sphere
S2 = {(x1, x2, x3) ∈ R3 : x2

1 + x2
2 + x2

3 = 1} ⊂ R3 is another example of a 2-dimensional manifold.
This is seen by letting (U±i , h

±
i , Vi) be the charts given with U∓i = {(x1, x2, x3) ∈ S2 : xi ≶ 0},

Vi = {(x1, x2) ∈ R2 : x2
1 + x2

2 < 1} and h±i = (x1, ..., x̂i, ..., x3), meaning projection on the i-th
coordinate (the element with the hat is omitted). The inverse of h±i are:

(h±i )−1(x1, x2) =

x1, ..., xi−1,±

√√√√1−
n∑
j=1

x2
j , xi, ..., x3

 . (1.2)

The functions h±j ◦ (h±i )−1 are given as:

h±j ◦ (h±i )−1(x1, ..., x3) =

x1, ..., x̂j , ..., xi−1,±

√√√√1−
n∑
k=1

x2
k, xi, ..., x3

 , (1.3)

when j < i. Of course a similar formula holds for i > j, and when i = j the map is just idVi , the
identity mapping on Vi. These are all differentiable components, so the atlas consisting of these
charts is differentiable. �

1.2 Tensors

We aim to define the notion of a tensor field for our manifold. Because of the way a tensor field is
defined, it will be independent of chosen coordinates, and thus we can describe the curvature of a
manifold in terms of a tensor field, called the Riemann tensor (where we refer to the tensor field
with the term ’tensor’). This will make for an intrinsic definition of curvature, which we need for
General Relativity, for we can not collect extrinsic data about spacetime, because we can not make
observations from an embedding space of higher dimension. We need to introduce some concepts
before we can talk about tensor fields, but let us start with the definition of a tensor. The concepts
named in that definition will be explored in this chapter.
The definition that we will use for a tensor is:

Definition 1.2.1. A tensor of type (k, l) on a manifold M in a point p ∈ M is a multilinear map
T : TpM

∗ × ...× TpM∗ × TpM × ...× TpM → R (the first is k times, the second l times). Here TpM is
the tangent space at one point p ∈M and TpM

∗ its dual space.

This means that a tensor takes as arguments k one-forms and l vectors. We will now introduce these
concepts more clearly.

An important notation that will be used is the Einstein summation convention. This means
that an index that is present in an equation both as upper and as lower index implies a sum, for
example for two vectors in Rn, ~V = (V 1, V 2, ..., V n) and ~W = (W1,W2, ...,Wn), their standard inner
product can be written as:

〈~V , ~W 〉 = V µWµ =
∑
µ

V µWµ, (1.4)
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where 〈−,−〉 denotes the standard inner product on an n-dimensional Euclidean space.

1.2.1 Tangent Space

For a general manifold M , we can define the tangent space to that manifold in a point p ∈M . The
most intuitive way is dependent on parametrised curves in the manifold. We will follow the lines of
[17].

Definition 1.2.2. For M an n-dimensional differentiable manifold a differentiable curve in M
through p is a mapping γ : I := (−ε, ε)→M for ε > 0 with γ(0) = p. The set of all these curves is
called Kp.

Let (U, h, V ) be a chart for M around p. For γ ∈ Kp and suitable 0 < δ ≤ ε we obtain a differentiable
curve h ◦ γ : (δ, δ)→ V and define:

γ̇(0)h :=
d

dt
(h ◦ γ)(0) ∈ Rn. (1.5)

Definition 1.2.3. Two curves γ1, γ2 ∈ Kp are equivalent (γ1 ∼ γ2) if γ̇1(0)h = γ̇2(0)h.

This equivalence is proven to be well-defined in [17] (Lemma 2.3.1). Now we can define:

Definition 1.2.4. The tangent space to a manifold M at a point p ∈M is the quotient2:

TpM = Kp/ ∼ .

The equivalence class of γ ∈ Kp is denoted as [γ] ∈ TpM , and is called a tangent vector to M at p.

As we know from Linear Algebra, the tangent space in every point of the manifold Rn is homeomorphic
to Rn again. The tangent space to a point p ∈ S2 can be identified as the subspace of R3 that is
orthogonal to the radial unit vector through p with respect to the normal Euclidean inner product.
The tangent space has a natural structure of an n-dimensional vector space, as can be seen by the
fact that the map Φh : Rn → TpM is bijective and that the structure on TpM is independent of the
chosen chart. This is shown in [17] (Theorem 2.3.3). We define Φh for v ∈ Rn to be:

Φh(v) := [γv] ∈ TpM, (1.6)

where γv : (−ε, ε)→M is defined as γv(t) := h−1(h(p) + t · v), for t ∈ (−ε, ε). Such an ε always exists
because V is open, so indeed h(p) + t · v ∈ V for all t ∈ (−ε, ε).
We now define:

Definition 1.2.5. For the unit basis (ei)i=1,...,n
3 of Rn the partial derivative is defined as:

∂i :=
∂

∂xi
(p) := Φh(ei), (1.7)

where Φh is as in (1.6).

2The elements of the set Kp/ ∼ are the equivalence classes of curves. These equivalence classes contain all curves
that are equivalent to each other, and the equivalence class of γ is denoted by [γ]. If γ is equivalent to τ , we can also
denote the class by [τ ], so all elements of a class can be a representative of the class.

3From here on forth, the indices for a basis are implied by the dimensionality, so we do not write them explicitly.
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The notation we will use is thus that a vector can be written as:

~V := V α∂α (1.8)

where (∂α) is the natural basis associated with a chosen basis (xα). Here the V α are the components
of ~V w.r.t. the chosen basis. These components can be found by finding the derivative of the respective
coordinates of a curve of which ~V is the tangent vector in t = 0 after mapping it to an appropriate
coordinate system. With use of these vectors, we can introduce the concept of a partial derivative of a
mapping:

Definition 1.2.6. The partial derivative in p ∈M of a map f : M → N between manifolds is:

∂f

∂xµ
:=

∂

∂xµ
(ψ ◦ f ◦ φ−1), (1.9)

where φ is a chart on M containing p, and ψ a chart on N containing f(p).

It is of course of more general importance to observe mappings between manifolds. Let us define:

Definition 1.2.7. The differential f∗ of a map f : M → N , where M is an n-dimensional differ-
entiable manifold and N an m-dimensional one, is the linear transformation f∗ : TpM → TF (p)N
defined as follows. For x ∈ TpM let γ = γ(t) be a curve on M with γ(0) = p and γ̇(0) = x. Then
f∗[γ] = [f ◦ γ].

Note that this is independent of the chosen curve, as long as it satisfies the given constraints. For
more details on differentials and intuition behind vectors and their components, see [9]. The matrix of
this linear transformation in terms of the bases (∂xα) at p and (∂yα) at f(p) is exactly the Jacobian

matrix (f∗)
j
i =

∂f j

∂xi
(p) =

∂yj

∂xi
(p) known from analysis.

In order now to define the dual space, we first define the elements of such a vector space:

Definition 1.2.8. A one-form in a point p ∈ M is a mapping ω : TpM → R that is linear, so
ω(λv + u) = λω(v) + ω(u) for u, v ∈ TpM and λ ∈ R.
The collection of all one-forms is the dual or cotangent space to TpM , denoted by TpM

∗, with
operations (for α, β ∈ TpM∗, c ∈ R and v ∈ TpM):

(α+ β)(v) := α(v) + β(v); (cα)(v) = cα(v). (1.10)

If a basis ∂1, ..., ∂n for TpM is given, the basis dx1, ...,dxn of TpM
∗ is called the dual base if

dxi(∂j) = δij
4.

Remark.

- The dual basis exists and is unique. (Proposition 6.3 from [18]).

- The dxi act on a vector v ∈ TpM by giving the i-th component. This is seen by writing:

dxi(∂jv
j) = dxi(∂j)v

j = δijv
j = vi. (1.11)

4This is the Kronecker-delta, for which it holds that:

δij =

{
1 if i = j

0 ifi 6= j

12



- We can write for any linear form that ω = ωαdxα. This then means that ω(v) = ωαv
α for ω ∈ TpM∗

and v ∈ TpM . N

Now remember the definition of tensors given at the start of this section. The integer k + l is called
the rank of a tensor. A few examples are a vector, which is a type (1, 0) tensor, a one-form, which is
a tensor of type (0, 1) and a bilinear form, a tensor of type (0, 2). A bilinear form maps couples of
vectors to real numbers in a linear way for each vector. One example of a bilinear form is the common
inner product in Rn.
Note that the space of all (k, l) tensors defined for a p ∈M is a vector-space connected to that p, with
addition and scalar multiplication component-wise, comparable to vector spaces of matrices.

Definition 1.2.9. A smooth k-dimensional vector bundle of a manifold M is a pair of smooth
manifolds E and M , along with a surjective mapping π : E →M , for which the following conditions
hold:

(i) For every p ∈M , the set Ep = π−1(p) (the fiber of E over p) has the structure of a vector space.

(ii) For every p ∈M , there exists an open set p ∈ U and a diffeomorphism φ : π−1(U)→ U × Rk, a
local trivialization, such that for the projection on the first coordinate π1 : U × Rk → U it
holds that π1 ◦ φ = π.

(iii) The restriction of φ to each fiber should be a linear isomorphism.

Example 1.2.1.

- The so-called tangent bundle TM of a manifold M (the disjoint union of the tangent space TpM
for all p ∈M) and the cotangent bundle T ∗M , the disjoint union of all cotangent spaces TpM

∗

for all p ∈M are vector bundles.

- By taking the union for all p ∈M of
(
T kl
)
p
M , the type (k, l) tensor space, is another example of

a vector bundle, denoted by T kl M . �

There is a natural way to define the product between two tensors such that the resulting object
is a tensor again, but with other dimensions. For two tensors F ∈ T kl M and G ∈ T pqM the tensor

T ⊗G ∈ T k+p
l+q M is defined such that for one-forms ωi and vectors vi:

F ⊗G(ω1, ..., ωl+q, v1, ..., vk+p) = F (ω1, ..., ωl, v1, ..., vk)G(ωl+1, ..., ωl+q, vk+1, ..., vk+p). (1.12)

Given a basis (∂α) of TpM with its dual basis (dxα) of TpM
∗ we can construct a basis for the vector

space of (k, l)-tensors in the point p by using this tensor product defined as the type (k, l)-tensor for
which the image of (ω1, ..., ωk, v1, ..., vl) is equal to:

(∂α1 ⊗ ...⊗ ∂αk ⊗ dxβ1 ⊗ ...⊗ dxβl)(ω1, ..., ωk, v1, ..., vl) =
k∏
i=1

l∏
j=1

ωi(∂αi) · dxβj (vj). (1.13)

This means that we can write for a tensor T of type (k, l):

T = Tα1...αk
β1...βl

∂α1 ⊗ ...⊗ ∂αk ⊗ dxβ1 ⊗ ...⊗ dxβl . (1.14)

Here the Tα1...αk
β1...βl

are the components of the tensor T w.r.t. the basis (∂α). These are unique
and fully characterize the tensor, which is just a generalization of the fact that all vectors can uniquely
be represented w.r.t. a basis of the vector space they are an element of.
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Remark. Tensors transform under a very specific law when performing coordinate transformations in

the form of ∂′l =

(
∂xs

∂x′l

)
∂s and dx′i =

(
∂x′i

∂xc

)
dxc. Here we denote all objects defined w.r.t. the new

coordinates primed.
This transformation law follows from the multilinearity of the tensor, so if:

W i...j
k...l = W (dxi, ...,dxj , ∂k, ..., ∂l), (1.15)

then:

W ′i...jk...l = W (dx′i, ...,dx′j , ∂′k, ..., ∂
′
l)

=

(
∂x′i

∂xc

)
...

(
∂x′j

∂xd

)(
∂xr

∂x′k

)
...

(
∂xs

∂x′l

)
W c...d
r...s .

(1.16)

Note that thus, tensors are by construction invariants with respect to coordinates, which is one of the
main reasons Einstein developed his theory of relativity using tensor analysis, see chapter 2. N

1.2.2 Tensor fields and the Metric tensor

We can describe a general inner product on a vector space V with a symmetric and non-degenerate
type (0,2) tensor, by writing 〈v, w〉 for the inner product between v, w ∈ V , we see with a basis (ei):

〈v, w〉 = 〈
∑
i

eiv
i,
∑
j

ejw
j〉 =

∑
i

∑
j

vi〈ei, ej〉wj :=
∑
i,j

vigijw
j := vGw. (1.17)

Here G = (gij)i,j=1,...,n is a matrix, also called the metric tensor.

We can now describe the inner product on a manifold with a so-called metric tensor field, which
generalizes the notion above. Before we talk about a tensor field, we need to define a section:

Definition 1.2.10. If π : E → M is a vector bundle over M , a smooth section of E is a smooth
map σ : M → E (smooth as map between manifolds) such that π ◦ σ = idM , thus σ(p) ∈ Ep for all p.

Remark. If we define a smooth section along a smooth curve γ : I →M , with I an open interval,
we need that π(σ(t)) = γ(t) for all t ∈ I holds as well. N

Notation: The space of all smooth sections of a vector bundle E will be denoted by E(M). Because it
is so common, the space of all smooth sections of the tensor bundle T kl M is denoted by T kl (M).

Definition 1.2.11. A tensor field of type (k, l) on a manifold M is a map that assigns a tensor to
each point p ∈M in a differentiable manner, meaning that as functions from Rn → R, the components
are differentiable.
In other words, it is a smooth section of a type (k, l) tensor bundle T kl M , or an element of T kl (M).

Note that vector fields can be described the same way as these tensor fields, because vectors are type
(1, 0) tensors.
For vector fields we can define the commutator of two vector fields by how it acts on a smooth
function between manifolds f : M → N :

[X,Y ](f) = X(Y (f))− Y (X(f)). (1.18)

How then the commutator acts on other objects is defined component-wise.
Now we can introduce the notion of the metric tensor:

14



Definition 1.2.12. A pseudo-Riemannian metric tensor is a tensor field of type (0, 2) such that
for p ∈M and v, u ∈ TpM it is symmetric, so g(u, v) = g(v, u), and non-degenerate, so g(u, v) = 0 for
all v iff5 u is the null vector.

A pseudo-Riemannian manifold is now a couple (M, g) where M is a differentiable manifold and
g is a pseudo-Riemannian metric tensor on M .

Example 1.2.2. The Minkowski metric on R4 is the metric defined by the metric tensor:

η = (ηij) =


−c2 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

 =: diag(−c2, 1, 1, 1). (1.19)

Here c is the speed of light, but often units of c = 1 are used. This example will be explored in later
chapters. �

The Minkowski metric is an example of a Lorentzian metric, so (R4, η) is one example of a
Lorentzian manifold, which is a metric g with signature sign(g) = (−,+,+,+). The signature
is well-defined, for if there are s negative components for the metric in one base of TpM where it is
diagonal, there are necessarily also s negative components in all other bases where g is diagonal. This
is a result of Sylvester’s law of inertia (paragraph 2.3.2 from [12]).

Example 1.2.3. The standard inner product on Rn has s = 0, and is an example of a Riemannian
metric. If s = 0, the metric g is also called positive definite, meaning that g(v, v) ≥ 0, with equality
iff v = 0. �

Definition 1.2.13. A vector v in the tangent space TpM of a Lorentzian manifold (M, g) is called
timelike if g(v, v) < 0, null if g(v, v) = 0 and spacelike if g(v, v) > 0. The subset of TpM consisting
of all null vectors is called the timecone of g at p.
A basis (∂α) for the tangent space TpM is an orthonormal basis if g(∂0, ∂0) = −1 and g(∂i, ∂i) = 1
for i = 1, 2, 3 and g(∂i, ∂j) = 0 for i 6= j.

The line element ds2 := g(dl, dl) = gαβdx
αdxβ is the square of an infinitesimal displacement vector

from p = (xα) to q = (xα + dxα) where p, q ∈M , dl = dxα∂α ([12]). This line element is used in most
texts to describe the metric.

Example 1.2.4. The de Sitter space of dimension n > 1 is the subset Σn ⊂ (Mn+1, gMn+1), where
Mn+1 is the Minkowski space of dimension n+ 1 with the Minkowski metric gMn+1 belonging to
that space. This subset is characterized by the constraint that, for every element of Σn, it should hold
that, for H ∈ R \ {0}, −(X0)2 +

∑n
i=1(Xi)2 = H−2. Here the Xi are coordinates in Mn+1 for which

the metric can be represented as g =diag(−c2, 1, ..., 1). We can find one possible metric on this space
by introducing hyperspherical coordinates (we do this because simpler coordinates do not cover the

5if and only if
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entire space). Introduce coordinates t, τ1, ..., τn−1 such that:

X0(t, τ1, ..., τn−1) =
sinh(Ht)

H
;

X1(t, τ1, ..., τn−1) =
cosh(Ht)

H
cos(τ1);

X2(t, τ1, ..., τn−1) =
cosh(Ht)

H
sin(τ1) cos(τ2);

...

Xn−1(t, τ1, ..., τn−1) =
cosh(Ht)

H
sin(τ1) sin(τ2)... sin(τn−2) cos(τn−1);

Xn(t, τ1, ..., τn−1) =
cosh(Ht)

H
sin(τ1) sin(τ2)... sin(τn−2) sin(τn−1).

(1.20)

Here τi ∈ (−π/2, π/2) for i = 1, ..., n − 1 and τn ∈ (−π, π). Thus we have a map φ : Rn → Mn+1

given by:

φ(t, τ1, ..., τn−1) =

(
sinh(Ht)

H
,
cosh(Ht)

H
cos(τ1), ..., Xn(t, τ1, ..., τn−1)

)
. (1.21)

Now we can find the induced metric of the de Sitter space by finding:

gΣn,ij(p) = gMn+1

(
∂φ

∂xi
(p),

∂φ

∂xj
(p)

)
. (1.22)

This way we find that the line-element in the de Sitter space is given as:

ds2 = −c2dt2 +
cosh2(Ht)

H2

n−1∑
j=1

(
j−1∏
i=1

sin2 τi

)
dτ2
j . (1.23)

Here the sum over j arises from the line element of a n− 1 dimensional sphere when using spherical
coordinates and the induced metric.
We can thus write the metric tensor gΣn w.r.t. the introduced coordinates as:

diag

(
−c2,

cosh2(Ht)

H2
,
cosh2(Ht)

H2
sin(τ1), ...,

cosh2(Ht)

H2

(
n−2∏
i=1

sin2 τi

))
� (1.24)

1.3 Curvature

Having the definition of a tensor, we can search for a way to express the curvature of a manifold in
terms of such a tensor. To do this, we need to look at how we define derivatives in manifolds, because
if we compare, curvature of a curve as known from analysis is a property linked to second derivatives.
Furthermore, we need a way to link tangent spaces to different points in a manifold to each other, so
we can objectively compare two tangent vectors to a manifold, while they are defined with respect to
different base-points. This means that the notion of a manifold itself is not enough to define the concept
of curvature. We need to define additional structures. One of these is the ’connection’. The other
structure, which will be proven to be linked to the connection in special cases, is the metric defined in
the last section. Second derivatives of this metric are present in the definition of the curvature tensor
we will use throughout the rest of this thesis.
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1.3.1 Covariant Derivative

Firstly, because we want to talk about curvature and linking vectors, we observe the partial derivative
of a vector ~V = V α∂α:

∂~V

∂xβ
=
∂V α

∂xβ
∂α + V α ∂∂α

∂xβ
. (1.25)

The first term here is a vector again. The second term, however, involves a derivative of a basisvector
along another one. This is a quantity that involves two objects in different tangent spaces, so we need
to define the way to connect these tangent spaces by a thus so-called ’connection’.
One important example is the flat spacetime, where we can impose the connection to be the one where
one basis vector in p is the basis vector pointing in the same direction in every other point p′ ∈M .

This then means that
∂∂a
∂xβ

:= 0.

We see that, to add the two parts above together, we need the
∂∂α
∂xβ

to be vectors, so we need to

express them in terms of the basis-vectors. This we will do later on, because we will first need some
more definitions, based on [16].

Definition 1.3.1. For a vector bundle π : E →M over a manifold M , a connection in E is a map
∇ : T (M) × E(M) → E(M), sending a pair (X,Y ) to ∇XY , where T (M) is the space of smooth
sections of TM . The map has to satisfy the following properties:

(i). ∇XY is linear over C∞(M) in X, thus for f, g ∈ C∞(M) and X1, X2 ∈ T (M) it holds that:

∇fX1+gX2Y = f∇X1Y + g∇X2Y. (1.26)

(ii). ∇XY is linear over R in Y , so for a, b ∈ R and Y1, Y2 ∈ E(M) it holds that:

∇X(aY1 + bY2) = a∇XY1 + b∇XY2. (1.27)

(iii). ∇ satisfies the Leibniz rule, which states for f ∈ C∞(M) it holds that:

∇X(fY ) = f∇XY + (X(f))Y (1.28)

∇XY is also called the covariant derivative of Y in the direction of X.
A connection in TM is called a linear connection.

Now we can indeed find a way to express the partial derivative of a basis vector as seen above. This is
done by defining:

Definition 1.3.2. The connection coefficients of a linear connection ∇, Γijk with respect to the
frame (∂α) are defined such that:

∂∂k
∂xj

:= ∇∂j∂k := Γijk∂i. (1.29)

Remark. Given a coordinate basis, the connection coefficients form a smooth function from the
coordinate chart around a point to R. N

Lemma 1.3.1. Let ∇ be a linear connection on M , then there exists a unique connection in each
tensor bundle T kl M , denoted with ∇, such that the following conditions hold:
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(i). On TM , ∇ and the given connection agree.

(ii). On T 0M , the space of smooth real-valued functions on M , ∇ is given as ∇Xf = X(f).

(iii). The following product rule holds for tensor products of tensors F and G (with types such that
the tensor product is defined):

∇X(F ⊗G) = (∇XF )⊗G+ F ⊗ (∇XG). (1.30)

Furthermore, this connection satisfies the properties:

(a) For a tensor field of type (1, 0) ω and a vector field Y , it holds that:

∇X(ω(Y )) = (∇Xω)(Y ) + ω(∇XY ). (1.31)

(b) For any F ∈ T kl (M), vector fields Yi and 1-forms ωj it holds that:

(∇XF )(ω1, ..., ωl, Y1, ..., Yk) = X(F (ω1, ..., ωl, Y1, ..., Yk)) (1.32)

−
l∑

j=1

F (ω1, ...,∇Xωj , ..., ωl, Y1, ..., Yk) (1.33)

−
k∑
i=1

F (ω1, ..., ωl, Y1, ...,∇XYi, ..., Yk). (1.34)

Remark.

- We call a function from R to R smooth if it is C∞. Functions of more components such as vector
fields are smooth if their components are.

- While the partial derivative of a type (k, l) tensor is generally not a tensor again, the covariant
derivative projects the partial derivative onto the appropriate vector space containing all tensors of
type (k, l + 1) defined for a point infinitesimally close to p.

- The connection coefficients, as shown in eq.(1.29), give the components of the vector you get when
parallel transporting (see ’Parallel Transport and geodesics’ later on in this chapter) the k-th basis
vector along the coordinate curve with constant j-th coordinate. N

Since we will only study coordinate frames, meaning that our basisvectors are always described as
partial derivatives along coordinate curves, as the ∂α are, we do not introduce the notation of ωijk for
the connection coefficients as in [9] or [20].

Due to the product rule for derivatives concerning not only products but also tensor products, we
see that the form for the general covariant derivative of a tensor Tα1...αk

β1...βl
of type (k, l) is given with

respect to a chosen system of coordinates as:

∇ρTα1...αk
β1...βl

= ∂ρT
α1...αk
β1...βl

+
k∑
i=1

ΓαiσρT
α1...αi−1σαi+1...αk
β1...βl

−
l∑

j=1

ΓσβjρT
α1...αk
β1...βj−1σβj+1...βl

. (1.35)

This is a tensor of type (k, l + 1), as follows from the Lemma above.
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Note that the connection coefficients have to transform under coordinate transformations in a
specific way for the covariant derivative of a tensor to indeed be a tensor again as stated in the
remark above. If the new coordinates are indicated by Greek letters and the old ones by Latin, the
transformation law needs to be:

Γνµλ =
∂xm

∂xµ
∂xν

∂xn
∂xl

∂xλ
Γnml −

∂xm

∂xµ
∂xl

∂xλ
∂2xν

∂xm∂xl
. (1.36)

This follows from writing for an arbitrary vector that the transformation of its covariant derivative
needs to be:

∇µV ν =
∂xm

∂xµ
∂xν

∂xn
∇mV n. (1.37)

The left hand side can be expanded with the chain rule and known coordinate transformations as:

∇µV ν = ∂µV
ν + ΓνµλV

λ =
∂xm

∂xµ
∂xν

∂xn
∂mV

n +
∂xm

∂xµ
V n ∂

∂xm
∂xν

∂xn
+ Γνµλ

∂xλ

∂xl
V l. (1.38)

The right hand side can be expanded as:

∂xm

∂xµ
∂xν

∂xn
∂mV

n +
∂xm

∂xµ
∂xν

∂xn
ΓnmlV

l. (1.39)

Because these expressions need to be equal for any vector ~V we can eliminate the vector on both sides,

and by multiplying with
∂xl

∂xλ
on both sides we find the expression used above.

This transformation law implies that the connection coefficients are not components of a tensor.
The most important example of a connection is explored in the next subsection.

1.3.2 The Levi-Civita Connection

There is one connection that is of special interest in our discussion of Lorentzian manifolds. This is
the so-called Levi-Civita connection, also called the Riemann connection or the Christoffel
connection. This is the connection defined by the following theorem:

Theorem 1.3.2. On an n-dimensional manifold with a metric gµν , there exists a unique symmetric
connection that is compatible with the metric, meaning that ∇ρgµν = 0.

The proof of this Theorem rests on the equality:

∂ρgµν − ∂µgνρ − ∂νgρµ + 2Γλµνgλρ = 0

⇒ Γλµν =
1

2
gλρ(gνρ,µ + gρµ,ν − gµν,ρ),

(1.40)

which holds after introducing a coordinate system. The complete proof is in the appendix. We will
only use the Levi-Civita connection from now on. The connection coefficients of this connection are
called the Christoffel symbols and are given by eq.(1.40) for a given coordinate system.

Remark. The symmetry follows from the fact that we deal with coordinate frames, where [∂i, ∂j ] = 0.
Otherwise the connection found by switching the lower two indices is another metric compatible one,
and it would not be unique anymore.
The metric compatibility means that two vectors having a certain inner product at one point p in
the manifold conserve this inner product when parallel transporting them to another point in the
manifold. The notion of parallel transport is explored in the next section. N

19



In the remaining part of this thesis, we will mainly focus on subsets of a spacetime, which is
defined as follows:

Definition 1.3.3. A spacetime (M, g,∇) is a connected four-dimensional Lorentzian manifold
(M, g), paired with the unique Levi-Civita connection ∇ compatible with a Lorentzian metric tensor g
on M .

Example 1.3.1.

- The four-dimensional Minkowski-space M4 with metric gM,µν =diag(−c2, 1, 1, 1) has no non-zero
Christoffel symbols, because the metric is constant. It is one example of a spacetime, and the
covariant derivative here coincides with the partial derivative.

- The n-dimensional sphere Sn is not a spacetime because it has a Riemannian metric. We can however
compute the Christoffel symbols for the sphere, because the notion of the uniqueness and existence
of the Levi-Civita connection also holds for Riemannian metrics, and the same expression can be
derived.
The non-zero Christoffel symbols that come from the induced metric on the sphere when using
spherical coordinates τ ∈ (0, π) and φ ∈ (0, 2π) are:

Γτφφ = − cos(τ) sin(τ); Γφτφ = cos(τ)/ sin(τ). (1.41)

The induced metric is given by:

gS2,ij =

(
1 0
0 sin2(τ)

)
. (1.42)

We will show that the sphere is the object with constant positive curvature, for which thus the de
Sitter space is the analogue for the Minkowskian metric with respect to the standard Riemannian
metric on Rn.

- The 4-dimensional de Sitter space Σ4 defined above is another example of a spacetime. Due to
the squares of the coefficients it indeed has the needed signature. The non-zero Christoffel symbols
for the given coordinates above are found to be6:

Γtτ1τ1 =
cosh(Ht) sinh(Ht)

H
; Γtτ2τ2 =

cosh(Ht) sinh(Ht) sin2(τ1)

H
;

Γtτ3τ3 =
cosh(Ht) sinh(Ht) sin2(τ1) sin2(τ2)

H
; Γτ1tτ1 = H tanh(Ht);

Γτ1τ2τ2 = − cos(τ1) sin(τ1); Γτ1τ2,τ2 = − cos(τ1) sin(τ1) sin2(τ2);

Γτ2tτ2 = H tanh(Ht); Γτ2τ1τ2 = cos(τ1)/ sin(τ1); Γτ2τ3τ3 = − cos(τ2) sin(τ2);

Γτ3tτ3 = H tanh(Ht) Γτ3τ1τ2 = cos(τ1)/ sin(τ1); Γτ3τ2τ3 = cos(τ2)/ sin(τ2).�

(1.43)

1.3.3 Parallel Transport and Geodesics

As mentioned before, we need a way to actually express the effect of curvature on functions or
objects defined on the manifold, for we need to perform physics on the Lorentzian manifold describing
the spacetime in order to discuss gravitational waves. Therefore we need to find a way to ”move
a vector from one point to another while keeping it invariant”. Naturally, we will need to use the

6I used SageMath[22] with the built-in package SageManifolds[11] to calculate these.
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covariant derivative for this, for parallel transport can intuitively be described by stating that for each
infinitesimal displacement, the displaced vector must be parallel to the original one, and must have
the same length.
Note that in flat space, this is independent of path, for the connection coefficients of the Levi-Civita
connection vanish, because the metric is constant in every basis, so its first derivatives are all zero in
eq.(1.29). On a sphere, however, the parallel transport of a vector from the north pole to the equator,
along the equator around a part of the equator and back to the north pole again is dependent on the
length of the part of the path that is along the equator, and will only be equal to the starting vector
again if the path goes along the whole equator.
This means that on a curved manifold it is generally impossible to define a globally parallel vector
field to a vector. The parallel transport is dependent on the path along which it is performed.
Let γ : I →M be a (piecewise) smooth curve and let σ be a section of the tangent bundle of M along
γ. This section is called parallel iff ∇γ̇(t)σ = 0 for all t ∈ I.

Let V be an element of Tγ(0)M and let γ̇(t) be the tangent vector to the curve. We define the
parallel transport of V along the curve as the parallel section V along γ of the tangent bundle such
that V(0) = V .
This V is unique due to the Theorem stating unicity of solutions for Ordinary Differential Equations
given boundary conditions.([3], Section 1.10).

Following paragraph 1.8 from [8] we can choose coordinates in every point along the curve such
that the components of the parallel transport of V are the same as those of the original in every point
of the curve7. Let (ei) be the coordinates in such a frame, and xµ(t) the coordinates of the curve, such
that γ̇µ = dxµ/dt.
If we now consider a so-called autoparallel curve, for which the tangent vector γ̇ is transported
parallel, so ∇γ̇ γ̇ = 0. Introducing the coordinates, we see:

γ̇ν(∂ν γ̇
µ + Γµρν γ̇

ρ) = 0. (1.44)

When we use that γ̇µ = dxµ/dt, we find that:

dxν

dt

[
∂

∂xν
dxµ

dt
+ Γµρν

dxρ

dt

]
= 0⇒ d2xµ

dt2
+ Γµνρ

dxν

dt

dxρ

dt
= 0. (1.45)

This expression is also called the geodesic equation, and autoparallel curves are called geodesics.
A clearer explanation of geodesics can also be found in [23]. Geodesics are of special interest, for they
are the curves along which particles move through spacetime, as seen from a physical perspective.

Example 1.3.2.

- In Euclidean spaces, all straight lines are geodesics. In the n-dimensional sphere, all circles with
constant distance to the center of the sphere are geodesics.

- In Minkowski space, the Christoffel symbols are all zero, so the geodesic equation becomes: d2xµ/dt2 =
0, so again all straight lines are geodesics.

- In the sphere S2 ⊂ R3, the geodesics are exactly curves that are part of a great circle, which is
given as γ(t) = cos(at)ε1 + sin(at)ε2, where ε1 and ε2 are a pair of orthogonal unit vectors of R3.�
7If the connection coefficients vanish in those frames as well, it is called a Local Inertial Frame (LIF), which thus is a

coordinate frame moving along a geodesic such that the tangent space is homeomorphic to four-dimensional Minkowski
space, thus the metric in these coordinates is the Minkowski-metric.
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1.3.4 Riemann curvature tensor

We are now able to define the Riemann tensor field of type (1, 3):

Definition 1.3.4. Let xp, yp and vp be vectors at a point p ∈M where M is a Lorentzian manifold
and let X, Y and V be smooth vector fields defined in a neighbourhood of p such that they attain the
values xp and yp in the point p.
The tensor field, expressed in terms of a coordinate basis (∂i):

R(X,Y )V := ∇X(∇Y V )−∇Y (∇XV )−∇[X,Y ]V = (RijklX
kY kV j)∂i, (1.46)

where the Riemann tensor R(X,Y ) has components:

Rijkl := ∂kΓ
i
lj − ∂lΓikj + ΓikrΓ

r
lj − ΓilrΓ

r
kj , (1.47)

This is dependent on the connection, which is in turn again dependent on the metric of the
manifold.
This is essentially a type (1, 3) tensor field. It is antisymmetric with respect to its last two indices and
satisfies the identity:

Rklmn = gkrR
r
lmn =

1

2
(∂l∂ngkm − ∂l∂mgkn + ∂k∂mgln − ∂k∂nglm). (1.48)

This follows from the expression of the Christoffel symbols in eq. 1.40.
This leads to more properties:

Rklmn = −Rlkmn;

Rklmn = Rmnkl;

3Rk[lmn] := Rklmn +Rkmnl +Rknlm = 0.

(1.49)

Remark. The Riemann tensor is also interpretable as the commutator of covariant derivatives. This is
seen as follows:

∇a∇bV m = ∂a∇bV m + Γmsa∇bV s − Γsba∇sV m. (1.50)

In a local inertial frame (LIF) (which we can always find along a geodesic through the point as stated
in paragraph 1.8 from [8]), where the connection coefficients vanish, this becomes:

∇a∇bV m = ∂b∂aV
m + ∂aΓ

m
nbV

n; (1.51)

and
∇b∇aV m = ∂a∂bV

m + ∂bΓ
m
naV

n, (1.52)

so:
[∇a,∇b]V m = (∂aΓ

m
nb − ∂bΓmna)V n. (1.53)

But in a LIF Rmnab = ∂aΓ
m
nb − ∂bΓmna, so because it is a tensorial equation it holds in every frame that

RmnabV
n = [∇a,∇b]V m. N

In a four-dimensional Lorentzian manifold, the antisymmetry in the last two indices implies that
there are only 6 independent combinations of the components, which is also true for the first couple of
indices.
Then the second condition above implies that RAB = RBA if A is the first pair and B the second, so
we have a 6× 6 symmetric matrix, which has 21 independent components, so of the 44 components of
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Rijkl in relativistic spacetime of four dimensions, only 20 independent components are left, for the last
identity above implies one extra constraint.
Intuitively, the Riemann tensor gives the components i of the vector resulting from parallel transporting
(see above) a vector vjp along an infinitesimal curve spanned in the directions of vectors xkp and ylp.

Now define the Ricci tensor as a contraction of the Riemann tensor, Rij = Rkikj = −Rkijk (so it is

symmetric). This is the only contraction of interest, for Rkkij = 0 = grkRijrk due to the symmetries of
the Riemann tensor.
It represents a type (0, 2) tensor field, and we note that the Ricci tensor can thus be written as:

Rµν = ∂αΓαµν − ∂νΓαµα + ΓασαΓσµν − ΓασνΓσµα. (1.54)

The Ricci tensor is a symmetric tensor, so it has 10 independent components.
We can take the trace of the Ricci tensor to find: R = Rii, the Ricci scalar or scalar curvature, a
smooth function (type (0, 0) tensor field).

Example 1.3.3.

- In the Minkowski space, all Christoffel symbols were equal to zero, so the components of the Riemann
tensor are zero as well, meaning the Ricci tensor and curvature are both also trivial.

- To show that the n-dimensional de Sitter space Σn is the analogue of the n-dimensional sphere
Sn we show that, characteristically, they are the objects with constant positive curvature due to
their respective embeddings in Rn+1 with the Minkowskian and standard Riemannian metric. The
non-zero components of the Riemann tensor for spherical coordinates on the S2 are:

Rτφτφ = sin2(τ); Rτφφτ = − sin2(τ);

Rφττφ =
cos2(τ)− 1

sin2(τ)
; Rφτφτ = 1.

(1.55)

This has as a consequence that the Ricci tensor becomes equal to the metric tensor in the two-
dimensional case. The Ricci scalar thus is constant and equal to 2.
When altering the radius to be r instead of 1, the scalar curvature becomes 2/r2.

- The four-dimensional de Sitter space has Christoffel symbols found in equation (1.43), for which the
non-zero Riemann tensor components are equal to:

Rtτ1tτ1 = cosh2(Ht);

Rtτ2tτ2 = Rτ1τ2τ1τ2 = −Rτ3τ2τ2τ3 = cosh2(Ht) sin2(τ1)

Rtτ3tτ3 = Rτ1τ3τ1τ3 = Rτ2τ3,τ2,τ3 = cosh2(Ht) sin2(τ1) sin2(τ2);

Rτ1ttτ1 = Rτ2ttτ2 = Rτ3ttτ3 = H2;

Rτ2τ1τ1τ2 = Rτ3τ1τ1τ3 = −sinh2(Ht) sin2(τ1)− cos2(τ1) + 1

sin2(τ1)
.

(1.56)

The Ricci tensor then becomes:

Rµν = diag
[
−3H2, 3 cosh2(Ht), 3 cosh2(Ht) sin2(τ1), 3 cosh2(Ht) sin2(τ1) sin2(τ2)

]
. (1.57)

This has as a consequence that the Ricci scalar is equal to R = 12H2, because the inverse metric

gµν
Σ4 is just defined by gµµ

Σ4 :=
1

gΣ4,µµ
, and the off-diagonal elements are zero.
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- In the general n-dimensional de Sitter space, the Riemann tensor is given by that of a maximally
symmetric space (see [25] for details):

Rijkl = H2(gikgjl − gilgjk). (1.58)

This implies that, for the Ricci tensor:

Rij = (n− 1)H2gij . (1.59)

And thus the Ricci scalar becomes:
R = n(n− 1)H2. (1.60)

This is, when r = 1/H, exactly the expression for the Ricci scalar of the n-sphere with radius r.
Thus indeed we can speak about the de Sitter space as the analogue of the n-sphere in Minkowskian
space. �

Lemma 1.3.3. (The Bianchi Identities): It holds that, for the type (0, 5) tensors given (where we
lowered the index of the type (1, 3) tensor with the metric):

∇λRαβµν +∇νRαβλµ +∇µRαβνλ = 0. (1.61)

Proof: Taking the partial derivative of the Riemann tensor we see that:

∂lRabmn =
1

2
(∂b∂m∂lgan − ∂b∂n∂lgam + ∂a∂n∂lgbm − ∂a∂m∂lgbn). (1.62)

And due to the fact that gab is symmetric we see then that:

∂lRabmn + ∂nRablm + ∂mRabnl = 0. (1.63)

But in a local inertial frame this also holds for covariant derivatives, and because it is a tensorial
equation, the Bianchi identities indeed hold. �

Using the Bianchi identities, we see that:

0 = gνσgµλ(∇λRρσµν +∇ρRσλµν +∇σRλρµν) = ∇µRρµ −∇ρR+∇νRρν

⇒ ∇µRρµ =
1

2
∇ρR. (1.64)

Defining the Einstein tensor (type (0,2) tensor field) as Gµν = Rµν−
1

2
Rgµν , we see that ∇µGµν = 0.

This is the property that had to be satisfied by a tensor describing the curvature of spacetime to
relate it to the Stress-Energy tensor (describing the matter and energy in the space) to be defined in
the next chapter.

Interpretations

To give a more intuitive understanding of the Ricci tensor and scalar, we have indicated that this
essentially represents the difference in volume between a sphere of radius ε in Euclidean space with
respect to the embedding of a sphere defined as the surface with geodesic distance ε (arclength along
a geodesic) to a point in the manifold (the origin of the local coordinates) everywhere. Intuitively it
represents the change of volume of a test element when moving it along a geodesic (see above). This
idea is worked out in more detail in [21]. One can gain more insight in the effect of the change of the
metric by looking at the Geodesic Deviation induced by the curvature of the space.
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1.3.5 Geodesic Deviation

One of the ways curvature is manifested is by the geodesic deviation, describing the relative acceleration
of neighbouring geodesics. This is of importance when observing the effect of curvature, especially a
change in curvature, on particles at certain coordinates in spacetime.
To define the geodesic deviation, we will consider a one-parameter family of geodesics xµ(v), where v

labels the geodesic and t is the affine parameter for a given geodesic. Let Uµ =
∂xµ

∂t
∂t be the tangent

vector. Connecting two points on neighbouring geodesics by an infinitesimal displacement vector

ηµ :=
∂xµ

∂v
∂v, where ∂v is the vector in the direction of the geodesic labelled by v + δv, where δv � 1.

This implies that:

(∇Uη)µ = ∇νηµUν =

[
∂ηµ

∂xν
+ Γµρνη

ρ

]
∂xν

∂t

=
∂ηµ

∂t
+ Γµρν

∂xρ

∂v

∂xν

∂t
∂v

= ∂v

[
∂2xµ

∂t∂v
+ Γµρν

∂xρ

∂v

∂xν

∂t

]
= ∂v

[
∂2xµ

∂t∂v
+ Γµρν

∂xρ

∂t

∂xν

∂v

]
=

[
∂Uµ

∂t
+ Γµρν

∂xρ

∂t

∂xν

∂v

]
∂v

=

[
∂Uµ

∂xν
+ ΓµρνU

ρ

]
∂xν

∂v
∂v = (∇νUµ)ην = (∇ηU)µ.

(1.65)

The relative acceleration is now given by ∇U (∇Uη), but the geodesic equation implies ∇UU = 0 so
∇η∇UU = 0, thus ∇U∇ηU + [∇η,∇U ]U = 0.
This means that:

∇U∇Uη = −[∇η,∇U ]U = [∇U ,∇η]U. (1.66)

But the commutator of these covariant derivatives is the Riemann curvature tensor, so we may define
the geodesic deviation:

D2ησ

dt2
= RσµλκU

µUληκ. (1.67)

Here we see the Riemann tensor again. We can also apply this theory to surface instead, leading to an
expression with the Ricci tensor, or with volumes, leading to an expression with the Ricci scalar.

1.4 Summary

In this chapter we defined a manifold, additional structures on a manifold like a metric and a connection
and we derived the intrinsic property of curvature of a manifold. This way, we have set up the basic
mathematical concepts needed to describe curvature in spacetime. In the next chapter, we will use
this to define the law relating curvature to presence of matter. This will be necessary to describe
Gravitational Waves in chapter 3.
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Chapter 2

Principles of General Relativity

To describe Gravitational Waves (GW) mathematically, we need to discuss some of the principles
of General Relativity (GR), which came forth from Einstein’s Special Relativity (SR). GR is the
physical theory of gravity formulated by Einstein in 1915. Two principles are of central importance in
Einstein’s formulation, the Equivalence Principle of Gravitation and Inertia (EP), and the Principle of
General Covariance (PGC). But why do we need a generalisation of the Newtonian theory of gravity?
Why do we need differential geometry to formulate the laws? What is the role of these equivalence
principles? In this introductory chapter we will explore the origin of the Einstein equations:

Gµν =
8πG

c4
Tµν , (2.1)

where G is the gravitational constant, c the speed of light, Gµν the Einstein tensor introduced in the
previous chapter and Tµν the stress-energy tensor. Both Gµν and Tµν are elements of T 0

2 M , smooth
sections of the vector bundle with type (0, 2)-tensors.

2.1 Principles

Before we can start our discussion of the various components present in Einstein equations, we need
to introduce the fundamental principles of the theory of General Relativity, because these impose
rules that do not directly follow from the mathematical theory.
Newton published his theory of gravity in 1685 stated in two laws. The first is Newton’s law: F = mIa,
where F is the force on a particle, mI the inertial mass of a particle, and a its acceleration. The second
is Newton’s law of gravitation: FG = mGg, where mG is the gravitational mass, FG the gravitational
force on a particle and g the gravitational acceleration, dependent on the position of the particle with
respect to other particles with mass. It is given as:

g = −
G
∑

iMGi(r − ri)
|r − ri|3

. (2.2)

Here MGi are the masses of other particles and ri their positions, while r is the position of the particle
with mass mG. Observing a particle freely falling in a gravitational field, experiencing a force F = mGg,
so accelerating with a = F/mI = gmG/mI . Experiments have shown to a high level of accuracy that
mG/mI is the same for all materials, by scaling the Gravitational Constant G present in the expression
for g above such that mI = mG we impose that the EP states that mI = mG, so an experimenter
releasing objects and timing their fall will not be able to tell whether he is in a gravitational field or
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being accelerated through empty space.
This generalizes to the strong Principle of Equivalence:
”In an arbitrary gravitational field, at any given spacetime point, we can choose a locally inertial1

reference frame (LIF) such that, in a sufficiently small region surrounding that point, all physical laws
reduce to the form they would take in the absence of gravity, the form prescribed by SR.”

The Principle of General Covariance states: ”A physical law is ”true” if it preserves its form un-
der arbitrary coordinate transformations, meaning that it has to be expressible as a tensorial equation”.

This principle is the reason we want to express the laws of GR in a tensorial form with the tensors
defined on a curved manifold with the concept of distance defined in terms of the metric of this
manifold.
We want this to hold because we already know from Newton’s formulation that laws are invariant under
rotations of the reference frame and from SR that they are invariant under Lorentz transformations.
In addition now, the strong Equivalence Principle states that an observer can not feel the difference
between acceleration in free space or a gravitational field. Because the coordinate transformation
for an acceleration is non-linear, we indeed want our principle to extend to arbitrary coordinate
transformations to account for other degrees of symmetry.

2.1.1 Special Relativity

Einstein proposed the laws of Special Relativity (SR) and Minkowski showed that the effects of
time dilation and length contraction can be explained by a four-dimensional spacetime with the
Minkowskian line element2 ds2 = −c2dt2 +

∑
i=1,2,3(dxi)2 [5]. This was generalized by Einstein to a

form where, in any local coordinates x0 = t, x1, x2, x3, the line element of the metric takes the form:

ds2 = g00(t, ~x)dt2 + 2g0β(t, ~x)dtdxβ + gαβ(t, ~x)dxαdxβ. (2.3)

Here g00 has to be negative for it to be a generalisation of Minkowski’s flat spacetime.

Assuming that the universe is stationary so we can choose the local coordinates such that the
coefficients are independent of coordinate time t and that the mixed temporal-spatial terms vanish
(because a rotating body might produce a stationary metric), we find a static metric:

ds2 = g00(~x)dt2 + gαβ(~x)dxαdxβ. (2.4)

We can now try to find expressions for these metric-components that rely on the distribution of energy
and matter through the universe. The g00-component can be calculated when knowing the Newtonian
gravitational potential Φ, as is shown in a later section.
In flat spacetime, the Christoffel symbols are zero, so we get Gµν = 0. This is the simplest case for
Einstein’s equations.

1Locally Inertial means that the tangent space is locally homeomorphic to four-dimensional Minkowski-space, thus we
can find a basis for the tangent space such that the metric is the Minkowski-metric.

2Note that many other books using special or general relativity use the convention that the Minkowski metric is
given as η =diag(c2,−1,−1,−1). This convention implies in particle physics that p2 = m2 instead of p2 = −m2, when m
is the mass, and p the four-momentum of a particle. Because we will be mostly concerned with distances, we will use
the first convention, because then a positive length in ’normal’ three-dimensional Euclidean space is still positive in
spacetime, while the other sign would mean that it becomes negative.
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To precisely calculate all quantities needed we need to introduce the concept of a proper time along
the world line (the geodesic along which the particle moves through space-time) of a particle, which
is just the time measured by a clock moving along the geodesic with the particle. This proper time is
denoted by dτ2, and is generally used in calculations throughout SR.
Important quantities describing energy and matter are collected in the momentum four-vector,
the four-vector (E/c,mγv), where v = dx/dt and γ = dt/dτ , creating a smooth section of the tangent
bundle along the geodesic of a particle.

2.2 Einstein equations

As stated in the last section, Φ and g00 are related, but what can we say about the other metric
coefficients?
First compare Einstein’s gravitation with 10 independent metric components with Electromagnetism,
governed by a 4-vector potential A, and Newtonian gravitation, governed by a single potential Φ.
Newtonian gravitation is a scalar theory and electromagnetism is a vector theory. Extending this, we
need Einstein’s gravitation to be a symmetric covariant second-rank tensor theory to connect the
metric with curvature and the presence of matter and energy. The components gij can be interpreted
as ’metric potentials’. But which are the field equations satisfied by the gij?
In this section we will define a tensorial way to describe matter and fields. Then we will search for the
appropriate tensor describing curvature that can be related to the other quantity.

2.2.1 Stress-Energy tensor

The tensor we will use to describe matter and fields in GR is the
Stress-Energy tensor. It is defined as a type (0, 2) tensor field where the components T ij describe
the flux of the i-th component of the four-momentum through the surface orthogonal to the j-th
coordinate:

1. T 00 is the flux of p0 = E/c through the surface orthogonal to the coordinate time, so it is the
energy density.

2. T 0i/c = T i0/c for i 6= 0 is in the same sense the momentum density.

3. T ij for i 6= 0 and j 6= 0 is the current of the momentum, meaning that the components T ii

are the i-th components of the pressure and the off-diagonal elements represent the shearing
terms.

This dimensionality comparison means we can express the components of the stress-energy tensor as:

Tαβ = c
∑
n

∫
pαn
dxβn
dτn

δ4(~x− ~xn(τn))dτn =
∑
n

pαn
dxβn(t)

dt
δ3(x− xn(t)), (2.5)

where we consider a system of n non-interacting particles at points xn(t) with energy-momentum
four-vector pαn and proper time τn, the δ represents the Dirac δ-function and the boldfaced vectors
represent spatial parts.
If now v � c, we have p0

n ∼ mnc and T 00 ∼
∑
n
mnc

2δ3(x − xn(t)), which reduces to the density of

matter ρc2. This same dimensionality check can be performed for the other components.
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Remark. Note that these expressions are only defined for discrete distributions of particles. We can
extend this definition to a continuous distribution, characterized by densities. Also note that the delta
functions are not smooth, but we can replace these by narrow Gaussians to again ensure that Tµν is
a tensor. A more general definition, in terms of the Lagrangian density of the fields and matter L,
depending on all potentials Φ(i) and their covariant derivatives ∇αΦ(i), is described in the appendix.
It results in:

Tµν = −2c

[
∂L
∂gµν

− 1

2
Lgµν

]
. (2.6)

This expression contains a derivative to a metric component, which we can calculate using the
chain-rule for partial derivatives. N

Example 2.2.1. To illustrate the connection between the two definitions, we will study the case of
free particles through space-time the action of such a particle is given by:

S = −mc
∫ √

−gµν
dxµ

dt

dxν

dt
dt. (2.7)

If we transform to proper time τ , this becomes S = −mc2
∫
dτ , because τ is an affine parameter thus

the quantity within the square root is actually constant. Expanding dτ in the low-velocity limit, we

recover L =
1

2
mv2.

The energy-momentum tensor density T µν =
√
−gTµν (g is the determinant of the metric tensor) can

be found from:
1

2

√
−gTµν = − ∂L

∂gµν
⇒ T µν = −2

∂L
∂gµν

. (2.8)

Here we define:

L = −
∫
mc

√
−gµν

dxµ

dt

dxν

dt
δ4(xµ − xµ(t))dt. (2.9)

so we find that the tensor density is equal to:

T µν =

∫ mc
dxµ

dt

dxν

dt√
−gµν

dxµ

dt

dxν

dt

δ(τ − τ(t))δ3(x− x(τ)) (2.10)

= m
dxµ

dt

dxν

dt

dt

dτ
δ3(x− x(t(τ))), (2.11)

where we transformed the integral over t to one over τ and back again. Also we used the invariance of
the quantity in the root when describing this with an affine parameter.
In the rest frame of the particle, the energy-momentum tensor density has only the term T 00 = mc2.
Note that dt/dτ =

√
1− v2/c2, and that now:

T 0j = mc
dτ

dt

dxj

dt

dt

dτ
=

mcv√
1− v2/c2

. (2.12)

This results in T 0µ = cpµ, where p is the four-momentum again[10]. �

Example 2.2.2. Consider an isotropic (without directional preference) fluid, viewed from the rest
frame of that fluid. Let ρ be the rest mass-energy density of the fluid, p the pressure in each direction
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and u the velocity of the particles. The operator gij + uiuj projects a four-vector orthogonally into the
three-space orthogonal to u.
The stress-energy tensor can now be expressed as:

T ij = ρuiuj + p(gij + uiuj) = (ρ+ p)uiuj + pgij . (2.13)

This can also be seen by letting Λ(v) represent a Lorentz transformation into a frame with velocity v,
then [24]:

Λ(v) =

(
0 0

0 δij −
vivj
v2

)
+ γ

(
1 −vj
−vi

vivj
v2

)
. (2.14)

Then:
Tµν(v) = Λαµ(v)Tαβ(0)Λ̄βν (v) = pgµν + (ρ+ p)uµuν . (2.15)

Here Λ̄ is the inverse of Λ. �

Now we will be able to derive the tensor that has to be on the left-hand side of Einstein’s equations.
We will first do this in a physically intuitive way and derive the same equations using the variational
principle in the appendix, giving a more mathematically rigorous explanation.

2.2.2 Einstein tensor

We need a connection between curvature of spacetime and presence of matter. To give some insight in
this proposition consider an idealized fluid without pressure, meaning the individual particles are freely
falling under gravitational influence. Each thus moves along a geodesic. Let γ be the geodesic describing
the world-line of one particular particle, and δxt = (δx0, ..., δx3) the variation vector between this
particle and another at time t. In [9] paragraph 4.1b it is stated that δ and d/dt commute, so we find
with Newtons law:

d2

dt2
(δxα) = δ

d2xα

dt2
= −δ ∂Φ

∂xα
= − ∂2Φ

∂xα∂xβ
δxβ. (2.16)

But the geodesic deviation states in the Newtonian limit with a weak field that also:

D2δxα

dτ2
= RαβµνU

βUµδxν ⇒ d2δxα

dt2
∼ Rα0β0δx

β. (2.17)

Since Rjk00 = 0 we obtain:

∇2Φ =
∑

α=1,2,3

∂2Φ

∂xα∂xα
∼ −

∑
α=1,2,3

Rα0α0 ∼ −R00. (2.18)

Here indeed the curvature is connected to the matter density ρ for ∇2Φ = 4πGρ (Poissons’ law).

To give a connection between the stress-energy tensor and the curvature, we need to find another
tensor describing the curvature, which we call Ḡµν for now. In order for this connection to take the
form Ḡµν = KTµν , the following properties need to be satisfied:

1. Ḡµν = KTµν has to hold for a constant K that we will have to determine.

2. Therefore Ḡµν has to be symmetric and it has to satisfy the law that ∇νḠµν = 0, because Tµν
has these properties as well.
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3. In the weak field it has to reduce to Ḡ00 ∼ −∇2g00.

4. It has to be linear in second derivatives of gµν and contain products of first derivatives of gµν .
This is a reasonable assumption for if it would contain terms with higher or lower orders of
derivatives, we would need to multiply with a constant having dimensions of a suitable power of
a length, making the equations scale-dependent, which is unacceptable in view of the PGC.

The need for it to be a tensor and the two properties 2. and 4. are met if we define:

Ḡµν = C1Rµν + C2gµνR, (2.19)

where C1 and C2 are constants such that C2/C1 = −1/2. This is because we know that the Ricci tensor
and the scalar curvature are the two general objects containing the necessary derivatives of gµν , and a
linear combination of this kind is automatically another tensor. The ratio is constrained by compar-
ing this expression with the expression of the Einstein tensor, for which it indeed holds that ∇νGµν = 0.

When we let Latin indices indicate spatial parts and Greek indices all four components, we see
that in the weak field and Newtonian limit |Tij | � |T00|, which should consequently also hold for Ḡij
and Ḡ00. Therefore we see that:

|C1(Rij −
1

2
gijR)| � |Ḡ00|. (2.20)

Hence Rij ' 1
2gijR and since gij ' δij we see that Rkk ' 1

2R. Consequently:

R = gµνRµν ' ηµνRµν = −R00 +
∑
k

Rkk = −R00 +
3

2
R. (2.21)

From this it is found that R ' 2R00, so because Ḡµν = C1(Rµν − 1
2gµνR) it holds that Ḡ00 ' C12R00.

Computing R00 in the weak field limit we find that the non linear part is second order and retaining
only the first order terms and imposing stationarity we get:

R00 ' −
1

2
ηij

∂2g00

∂xi∂xj
= −1

2
∇2g00. (2.22)

This then implies that:
G00 ' −C1∇2g00 ⇒ C1 = 1. (2.23)

This implication uses assumption 3. above. In conclusion, Ḡµν = Gµν , the Einstein tensor already
introduced.

Newtonian limit of GR

The constant K follows from comparing dimensionality in the weak field, non-relativistic limit.
Assuming the gravitational field is very weak3, so the metric can be written as gµν = ηµν + hµν where
|hµν | � 1 is an arbitrary 4× 4 matrix and ηµν is the Minkowski metric. We call the path a particle
follows through spacetime its world line. Assuming it travels with a speed very small compared with

3This is a realistic assumption because we want to study GWs due to binary dwarf systems. These are far away and,
as seen in chapter 3, emit really weak GW-signals.
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the speed of light (v � c) and introducing the proper time again as the time kept by a clock moving
with the particle, its unit velocity four vector is:

u :=
dx

dτ
∼ cdt

dτ
. (2.24)

Because world lines are geodesics, the geodesic equations state that:

d2xµ

dτ2
+ Γµ00

(
cdt

dτ

)2

= 0⇒ d2xµ

dτ2
=

1

2
ηµα

∂h00

∂xα

(
cdt

dτ

)2

⇒ d2x

dτ2
=

1

2
∇h00

(
cdt

dτ

)2

.

(2.25)

Here the first implication follows after only retaining terms of first order in hµν , such that, following
from the expression in eq. 1.40:

Γµ00 ∼ −
1

2
ηµσ

∂h00

∂xσ
. (2.26)

The second implication results from only using the spatial terms. The temporal part is zero assuming

the field is stationary
∂h00

∂t
= 0. We can rescale the time coordinate such that cdt/dτ = 1 to see:

d2x

dτ2
=

1

2
∇h00. (2.27)

But because τ = ct and in Newtonian gravity it holds that d2x/dt2 = −∇Φ where Φ is the Newtonian
gravitational potential such that ∇2Φ = 4πGρ with ρ the matter density.
The PGC now states that these two expressions have to be equal, so h00 = −2Φ/c2 + C, where C is a
constant. Assuming the potential vanishes ’at infinity’, we have that C = 0 and we find:

g00 = −1− 2
Φ

c2
. (2.28)

Thus it is shown that a test body freely falling with non-relativistic speeds in a weak gravitational
field moves along a geodesic, for which g00 then represents the Newtonian gravitational potential.

Now using this result along with constraint 3., we wanted G00 ∼ −∇2g00 = 2∇2Φ/c2 = 8πGρ/c2.
We also know that T00 = ρc2, so to get G00 = KT00 we need K = 8πG/c4, finishing the derivation of
(2.1):

Gµν =
8πG

c4
Tµν . (2.29)

2.2.3 Gauge Freedom

Note that, since Gµν is symmetric and has two indices ranging over four dimensions, it has 10
independent components. This means that Einstein’s equations introduce 10 equations for the 10
independent components of gµν . These are however not independent, because the law that ∇νGµν = 0
provides four other conditions the Einstein tensor must satisfy. This means that we have six equations
and 10 unknown functions. We can choose four constraints to apply to the solutions, making the
freedom disappear from the solution.
When observing the derivation of Einstein equations in the appendix, we see that these degrees
of freedom do also exist because of the symmetries in the Lagrangian defined for the matter and
fields. These symmetries exist because LH ∝

√
−gR, and both

√
−g and R are independent of chosen

coordinates.

32



Harmonic Gauge

One example of an interesting condition to impose is given by:

Γλ = gµνΓλµν = 0. (2.30)

A coordinate system where this is satisfied is called the Harmonic Gauge. The harmonic gauge is of
interest in our case because it allows all waves to be described in a comprehensible way, namely as
harmonic functions. A function f is harmonic if �f = 0, where � is the D’Alembertian operator
defined as � = gλκ∇λ∇κ4. This can be written as:

gλκ∇λ∇κf = gλκ
(
∂∇λf
∂xκ

− Γαλκ∇αf
)

= gλκ
[

∂2f

∂xκ∂xλ
− Γαλκ

∂f

∂xα

]
= gλκ

∂2f

∂xκ∂xλ
− Γα

∂f

∂xα
.

(2.31)

It should be noted that it is always possible to choose this gauge. This is seen by indicating the
indices of the new coordinate system with Greek indices, and those of the old one with Latin indices,
we note by relabelling and then contracting eq.(1.36) with gµν :

Γλ =
∂xλ

∂xr
Γr + gµν

∂xλ

∂xs
∂2xs

∂xµ∂xν
⇒ Γλ =

∂xλ

∂xr
Γr − grs ∂2xλ

∂xr∂xs
. (2.32)

The implication above follows from the fact that:

gµν
∂xλ

∂xs
∂2xs

∂xµ∂xν
= gµν

{
∂

∂xµ
∂xλ

∂xs
∂xs

∂xν
− ∂xs

∂xν
∂2xλ

∂xµ∂xs

}
= gµν

{
∂

∂xµ
δλν −

∂xs

∂xν
∂xr

∂xµ
∂2xλ

∂xr∂xs

}
.

(2.33)

Therefore, if Γρ is non-zero, we can find a system where Γλ
′

is zero and as such reduce to the harmonic
gauge.

Example 2.2.3. As an example, note that the function given by the coordinate f = xµ satisfies,
when Γλ = 0 in eq.(2.31):

�xµ = gλκ
∂2xµ

∂xκ∂xλ
= gλκ∂κδ

µ
λ = 0. (2.34)

Thus it behaves as a wave in the harmonic gauge. �

2.3 Summary

In this chapter we derived Einstein’s equations dependent on physical intuition, following along the
lines of physicists that perceived this theory. A derivation using more mathematical insight is given in
the appendix. These equations will be the tool needed to describe Gravitational Waves in the next
chapter.

4In coordinates, this can be written (for flat space) as the known: �F = − ∂2

∂t2
+

∑
i=1,2,3

∂2

∂x2i
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Chapter 3

Gravitational Waves

The theory of General Relativity predicts the existence of Gravitational Waves (GWs). These waves
can be studied by two different approaches: one based on perturbative methods and a second one,
based on an exact solution of the Einstein equations. The second method has so far not led to solutions.
This is due to the complexity and non-linearity of the Einstein equations, which makes finding an
exact solution almost impossible. The first method will be explored here, and imposing symmetries on
the solutions to Einstein’s equations makes it easier to solve the equations.
Due to the fact that the metric tensor can also be interpreted as the equivalent of the gravitational
potential as described in the previous chapter, GWs can be seen as metric waves. As opposed to
electromagnetic waves, which constitute radiation through spacetime, GWs are thus deformations of
said spacetime, behaving as waves. This means that when they propagate the geometry of spacetime
changes, thus the proper distance between points in spacetime changes with time. In this chapter, we
will mostly follow [8].

3.1 Perturbative solution

Let g0
µν be a known solution to the Einstein equations and write gµν = g0

µν + hµν
1 where |hµν | � |g0

µν |.
We have to find the inverse of gµν to contract some identities, to which end we try gµν = g0µν − hµν ,
where hµν = g0µαg0νβhαβ. We then see that:

(g0µν − hµν)(g0
να + hνα) = g0µνg0

να +O(h2) + g0µνhνα − g0µαg0νβhαβg
0
να (3.1)

= δµα +O(h2) + g0µνhνα − δµν g0νβhαβ = δµα +O(h2). (3.2)

After contracting the Einstein equations (eq.(2.1)) by gµν and noting that gµνgµν = 4 we see that
(when T = gµνTµν):

R− 2R =
8πG

c4
T ⇒ R = −8πG

c4
T ⇒ Rµν =

8πG

c4
(Tµν −

1

2
gµνT ). (3.3)

We write from now on Tµν for the complete stress-energy tensor that is associated to gµν . We can
solve Einstein equations for T 0

µν , finding g0
µν as solution. Then we solve the equations for known gµν

and find Tµν . This means that the quantity δTµν := Tµν − T 0
µν can be associated to hµν .

1We implicitly write hµν := h · pµν , where pµν is a symmetric 4× 4 matrix describing the perturbation and h ∈ R
small, such that the components of hµν are small when compared with g0µν . It thus holds that gµν = g0µν + hpµν +O(h2)
when we expand the metric around the background metric g0.
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Remembering the expressions for the Ricci tensor (eq.(1.54)) and the Christoffel symbols (eq.(1.40)),
we may write for the Christoffel symbols of the perturbed metric:

Γγβµ(gµν) =
1

2
[g0αγ − hαγ ][(∂µg

0
αβ + ∂βg

0
αµ − ∂αg0

βµ) + (∂µhαβ + ∂βhαµ − ∂αhβµ)]

= Γγβµ(g0) + δΓγβµ(h) +O(h2);

δΓγβµ(h) =
1

2
g0αγ [∂µhαβ + ∂βhαµ − ∂αhβµ]− 1

2
hαγ [∂µg

0
αβ + ∂βg

0
αµ − ∂αg0

βµ].

(3.4)

This results in the Ricci tensor becoming:

Rµν(gµν) = R0
µν(g0) + δRµν(h) +O(h2).

δRµν(h) =
∂

∂xα
δΓαµν(h)− ∂

∂xν
δΓαµα(h) + Γασα(g0)δΓσµν(h)

+ δΓασα(h)Γσµν(g0)− Γασν(g0)δΓσµα(h)− δΓασν(h)Γσµα(g0).

(3.5)

Working out the right hand side of eq.(3.3) we find that:

T = gµνTµν = g0µνT 0
µν − hµνT 0

µν − g0µνδTµν +O(h2) ≡ T 0 + δT +O(h2). (3.6)

Consequently:

Tµν −
1

2
gµνT = T 0

µν −
1

2
g0
µνT

0 + δTµν −
1

2
(g0
µνδT + hµνT

0) +O(h2). (3.7)

Now combining eq.(3.5) and eq.(3.7) and remembering that the exact solution satisfies Rµν(g
0) =

8πG
c4

(T 0
µν − 1

2g
0
µνT

0), the Einstein equations for the perturbation reduce to:

δRµν(h) =
8πG

c4

[
δTµν −

1

2
(g0
µνδT + hµνT

0)

]
+O(h2). (3.8)

3.1.1 Flat spacetime

Because we are working under the assumption that gravitational waves are very weak2 compared to
the gravitational fields generated by the Earth and the Sun, we can approximate the regions where we
observe gravitational waves to be flat with a small perturbation. Therefore consider gµν = ηµν + hµν
where h is an arbitrary 4× 4 matrix with components |hµν | � 1 and ηµν is the Minkowski metric.
Because in flat spacetime the connection coefficients vanish, we find that:

Γλµν =
1

2
ηλρ [∂µhρν + ∂νhρµ − ∂ρhµν ] +O(h2), (3.9)

and the equations in eq.(3.8) reduce to:

∂αΓαµν(h)− ∂νΓαµα(h) +O(h2)

=
1

2

{
−�Fhµν +

[
∂λ∂µh

λ
ν + ∂λ∂νh

λ
µ − ∂µ∂νhλλ

]}
+O(h2).

(3.10)

2It will be seen later on that the signal of GWs is proportional to 1/r, and the nearest sources of GWs are at such
distances that we can consider the amplitude to be small w.r.t. the background metric.
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The operator �F is the D’Alembertian for flat spacetime, defined as:

�F = ηαβ∂α∂β = − ∂2

∂t2c2
+∇2. (3.11)

Because for flat spacetime also T 0 = 0, we find that the Einstein equations for the perturbation hµν
become:

�Fhµν −
[
∂λ∂µh

λ
ν + ∂λ∂νh

λ
µ − ∂µ∂νhλλ

]
= −16πG

c4

(
δTµν −

1

2
ηµνδT

)
. (3.12)

As discussed before, there is a gauge freedom in the Einstein equations dependent on invariance of the
solution under coordinate transformations. If we make an arbitrary coordinate transformation, the
transformed metric tensor is still a solution. But since we assume that |hµν | � 1, we have to assume
that |h′µν | � 1 as well, if h′µν is the transformed perturbation. This means that we need to perform a
coordinate transformation such that the new coordinates are x′µ = xµ+ εµ(x), where εµ is an arbitrary
vector such that ∂νε

µ is of the same order as hµν . For the new perturbation it then holds that:

h′µν = hµν − ∂νεµ − ∂µεν . (3.13)

As mentioned before, the harmonic gauge simplifies the equation in eq.(3.12). The following theorem
states that it is always possible to transform to this gauge:

Theorem 3.1.1. If the harmonic gauge condition (eq.(2.30)) is not satisfied in a reference frame, it
is always possible to perform an infinitesimal coordinate transformation x′λ = xλ + ελ such that in the
new frame the condition is satisfied. This is only possible provided:

�F ερ = ∂βh
β
ρ −

1

2
∂ρh

β
β. (3.14)

Proof: The object Γλ transforms according to eq.(2.32) where, as seen from the form of the transfor-
mation:

∂ρx
′λ = δλρ + ∂ρε

λ. (3.15)

We see that:

Γλ = gµνΓλµν =
1

2
ηµνηλκ [∂νhκµ + ∂µhκν − ∂κhµν ]

=
1

2
ηλκ[∂νh

ν
κ + ∂µh

µ
κ − ∂κhνν ] = ηρκ

[
∂µh

µ
κ −

1

2
∂κh

ν
ν

]
.

(3.16)

Additionally, we see that:

gρσ∂ρ∂σx
′λ = gρσ∂ρ

(
∂σx

λ + ∂σε
λ
)

' ηρσ∂ρ∂σελ = �F ε
λ.

(3.17)

The ' arises from the fact that gµν = ηµν + hµν and we leave out terms of order h2 and higher.
Consequently the gauge condition in the new coordinate system becomes:

0 = Γ′λ =
[
δλρ + ∂ρε

λ
]
ηρκ

[
∂µh

µ
κ −

1

2
∂κh

ν
ν

]
−�F ελ

' ηλκ
[
∂µh

µ
κ −

1

2
∂κh

ν
ν

]
−�F ελ

⇒ �F εα = ∂µh
µ
α −

1

2
∂αh

ν
ν .

(3.18)
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The ' again is where we leave out terms of order h2 or higher. The implication follows after contracting
with ηλα. �

Up to first order terms in hµν , the harmonic gauge condition implies that in eq.(3.12):

∂µh
µ
ν =

1

2
∂νh

µ
µ.⇒ �Fhµν = −16πG

c4

(
δTµν −

1

2
ηµνδT

)
. (3.19)

Introducing the tensor h̄µν = hµν −
1

2
ηµνh, where h = ηµνhµν , this becomes:�F h̄µν = −16πG

c4
δTµν

∂µh̄
µ
ν = 0

(3.20)

This is a typical form of a wave-equation, meaning a perturbation in a flat metric indeed propagates
as a wave.

Example 3.1.1. The simplest solution of the wave equation in vacuum (δTµν = 0 in eq.(3.20)) is a
so-called monochromatic plane wave of the form:

h̄µν = <
{
Aµνe

ikαxα
}
, (3.21)

where Aµν is the polarization tensor (comparable with the wave amplitude) and ~k the wave vector,
indicating the direction the wave is travelling. Direct substitution of eq.(3.21) in the first equation of
eq.(3.20) yields:

�F h̄µν = ηαβ∂α∂βe
ikγxγ = −ηαβkαkβeikγx

γ ⇒ ηαβkαkβ = 0. (3.22)

Thus ~k should be a null-vector, meaning the waves travel at light-speed. The harmonic gauge condition
implies furthermore that:

∂µh̄
µ
ν = 0⇒ ηµα∂µh̄αν = 0⇒ ηµαAανkµ = 0⇒ kµA

µ
ν = 0. (3.23)

Consequently, the polarization tensor and the wave vector should be orthogonal, which is analogous
to the way electromagnetic waves propagate in ordinary space. �

3.2 TT-gauge

To understand how many of the 10 components of hµν have a physical meaning, we need to find
the degrees of freedom for a gravitational plane wave. Thus in the following we consider a wave
propagating in flat spacetime along the x1 = x-direction.
Since hµν is independent of y and z in this case, eq.(3.20) becomes:

(
− ∂2

∂t2c2
+

∂2

∂x2

)
h̄µν = 0

∂µh̄
µ
ν = 0

, (3.24)

where we raised and lowered indices with ηµν . It is clear now that h̄µν is an arbitrary function of
χ = t± x/c. This implies that:

∂µh̄
µ
ν =

1

c

∂h̄tν
∂t

+
∂h̄xν
∂x

=
1

c

∂

∂χ
(h̄tν − h̄xν) = 0. (3.25)
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By integrating eq.(3.25) and by choosing the integration constants to be equal to zero (because we
only have interest in the time-dependent part of the solution), we find that h̄tµ = h̄xµ for µ = t, x, y, z,
meaning that we are left with six independent components.

We will now show that there exist another four degrees of freedom by making an infinitesimal
coordinate transformation x′µ = xµ+εµ such that�F εµ = 0. From this we find that, for a solution h̄µν of
the wave equation in eq.(3.20) for δTµν = 0, the perturbations in the new gauge (h′µν = hµν−∂µεν−∂νεµ)
satisfy:

h̄′µν = h̄µν − ∂µεν − ∂νεµ + ηµν∂
αεα. (3.26)

This implies that �F h̄′µν , thus that h̄′µν also satisfies the wave equation.
Now, using these four degrees of freedom to set the four quantities h̄ti = 0 (i = x, y, z) and h̄yy + h̄zz = 0,
it follows that the remaining non-vanishing components are h̄zy and h̄yy − h̄zz. We have used all of our
gauge freedom, and reduced the independent components of h̄µν to the two functions h̄zy = h̄yz and
h̄yy = −h̄zz.
From the fact that we chose the four components above to be zero we see that:

h̄xi = h̄tt = 0; i = x, y, z, (3.27)

implying that:
h̄µµ = 0. (3.28)

Since h̄µµ = hµµ − 2hµµ = −hµµ it follows that hµµ = 0, thus in the gauge we transformed to in eq.(3.26)
hµν and h̄µν coincide and are traceless.
In conclusion, a gravitational wave in vacuum only has two physical degrees of freedom which cor-
respond to two possible polarization states. The gauge in which this is clearly manifested in the
way derived above is called the ”transverse and traceless” gauge, or TT-gauge. In the TT-gauge the
components of hµν are only different from zero on the plane orthogonal to the direction of propagation
and that hµν is traceless. We can always transform to the TT-gauge by the manner of using the
projection operators (see below). This operation is equivalent to finding an infinitesimal coordinate
transformation εα such that x′α = xα + εα and �F εα = 0 and to imposing that in the new frame,
h̄′αβn

β = 0 and h̄′αβδ
αβ = 0, to ensure transverseness and tracelessness, when nβ is the vector along

which the wave propagates.

We now define the orthogonal projector Pjk = δjk − njnk that projects a vector onto the plane
orthogonal to the direction of n = (nx, ny, nz). Properties of this operator include symmetry and the

facts that PjkV
knj = 0, njPjk = 0 and P jkP

k
l V

l = P jl V
l.

Now define the transverse-traceless projector Pjkmn = PjmPkn− 1
2PjkPmn. It satisfies the following

identities:

1. Pjklm = Plmjk.

2. Pjklm = Pkjml.

3. PjkmnPmnrs = Pjkrs.

4. Transverseness: njPjkmn = nkPjkmn = nmPjkmn = nnPjkmn = 0.

5. Tracelessness: δjkPjkmn = δmnPjkmn = 0.
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Since hmn and h̄mn are different only in the sense that their traces are different, the metric perturbation
in the TT-gauge is found by applying the transverse-traceless operator to either one of them:

hTTjk = Pjkmnhmn = Pjkmnh̄mn. (3.29)

3.3 Effect on test masses

To detect GWs, we need to know what the effect of GWs is on test particles. First, we will consider one
particle, with a locally inertial frame attached to it and with the x-axis coincident with the direction
of propagation of an incoming GW, observed from the TT-gauge3. The geodesic equation tells us that:

d2xα

dτ2
+ Γαµν

dxµ

dτ

dxν

dτ
= 0. (3.30)

Assuming that the particle is at rest at t = 0, its acceleration due to the GW is:

d2xα

dτ2

∣∣∣
t=0

= −Γα00 = −1

2
ηαβ[∂0hβ0 + ∂0h0β − ∂βh00] = 0. (3.31)

This follows from the form of hµν in the TT-gauge.

Thus we conclude that GWs can not be studied by observing the motion of a single particle.
Therefore, we study the relative motion of two test particles induced by a GW. To do this, consider
two infinitesimally close particles A and B at coordinates xµA and xµB, initially at rest with coordinate
separation δxµ = xµB − x

µ
A. The wave reaches the particles at t = 0, propagating along the x-axis in

the TT-gauge. Since g00 = η00 = −1 both particles have the same proper time τ = ct. Note that the
coordinate distance remains constant, but that the proper distance changes. For example, assuming
the particles both on the z-axis, we see:

∆l =

∫
ds =

zB∫
zA

|gzz|1/2dz =

zB∫
zA

|1 + hzz(t− x/c)|1/2dz. (3.32)

Changing coordinates to a LIF centred on the geodesic of particle A, we obtain a metric different
from the Minkowski metric only in terms of order |δx|2 (note that we can always choose such a frame

as mentioned in previous chapters). In this frame tA = τ/c, (dxµ/dτ)A = (1, 0, 0, 0), gµν

∣∣∣
A

= ηµν and

Γαµν

∣∣∣
A

. xiB = δxi for i = 1, 2, 3 (space components only) are the coordinates of B.

The separation vector satisfies the geodesic deviation from eq.(1.67). Evaluating those equations along
the geodesic of particle A we find:

1

c2

d2δxi

dt2
= Ri00jδx

j . (3.33)

3In the following, we will do all calculations in the TT-gauge, thus we will not use the notation hTTµν and just write
hµν .
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The Riemann tensor for gµν = ηµν + hµν satisfies:

Rακλµ =
1

2
(∂κ∂λgαµ + ∂α∂µgκλ − ∂κ∂µgαλ − ∂α∂λgκµ)

+ gνσ(ΓνκλΓσαµ − ΓνκµΓσαλ)

⇒ Rακλµ =
1

2

(
∂2hαµ
∂xκ∂xλ

+
∂2hκκ
∂xα∂xµ

− ∂2hαλ
∂xκ∂xµ

− ∂2hκµ
∂xα∂xλ

)
+O(h2)

⇒ Ri00m =
1

2
∂0∂0him.

(3.34)

The first implication arises after neglecting terms of order h2 and higher. The second implication
follows from the fact that in the TT-gauge, hi0 = h00 = 0. Note that i and m can only assume the
values 2 and 3, yielding the geodesic deviation as:

d2

dt2
δxλ =

1

2
ηλi

∂2him
∂t2

δxm. (3.35)

For t ≤ 0 the particles are still at rest with respect to each other, but for t > 0 we describe the change
in relative position with δxj1(t), a small perturbation with respect to the initial position δxj0. This
assumption is valid because |hµν | � 1.
Substituting this in the equation for geodesic deviation and neglecting terms of order h2 and higher,
we find:

d2

dt2
δxj1 =

1

2
ηji

∂2hik
∂t2

δxk0 ⇒ δxj = δxj0 +
1

2
ηjihikδx

k
0. (3.36)

In order to study the effect of the GW on test particles we start by assuming the non-vanishing
components equal to:

hyy = −hzz = 2<
{
A+e

iω(t−x/c)
}

hyz = hzy = 2<
{
A×e

iω(t−x/c)
} (3.37)

We consider the effects of the A+ and A× separately. Assume only A+ 6= 0 with only real components
and consider two particles, 1) at (0, y0, 0) and 2) at (0, 0, z0). The form of the displacements then
equals:

1)z = 0; y = y0 +
1

2
hyyy0 = y0[1 +A+ cos(ω(t− x/c))];

2)y = 0; z = z0 +
1

2
hzzz0 = z0[1−A+ cos(ω(t− x/c))].

(3.38)

Now for A+ = 0 and A× 6= 0 and real, we see that the equations for an arbitrary particle at (0, y0, z0)
become:

y = y0 +
1

2
hyzz0 = y0 + z0A× cos(ω(t− x/c));

z = z0 +
1

2
hzyy0 = z0 + y0A× cos(ω(t− x/c)).

(3.39)

These expressions for the effect of the ”+”- and the ”×”-polarization are displayed in figure 3.1 for
the instances where t = 0, t = P/4, t = P/2 and t = 3P/4.
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(a) Effect of a plus-polarized (h× = 0, h+ 6= 0) GW on a ring of
test masses.

(b) Effect of a cross-polarized (h+ = 0, h× 6= 0) GW on a ring of
test masses.

Figure 3.1: The effect of both polarizations of GWs on a ring of test masses. The propagation direction
is taken to be x, such that the effect is limited to the y-z-plane. The pictures shown are for t = 0,
t = P/4, t = P/2 and t = 3P/4. These effects have been calculated in chapter 3. The exact expressions
for the positions of the particles can be found in section 13.6 of [8].
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3.4 Quadrupole Formalism

To study the form of GWs generated by binary systems we need to explore the so-called Quadrupole
Formalism. The gravitational energy and waveforms emitted by an evolving binary system will depend
on the stress-energy tensor of the system.
We shall solve eq.(3.20) under the assumption that the source is confined in a region much smaller than
the wavelength of the emitted radiation. This is also called the slow-motion approximation because it
implies that the typical velocities in the physical system are much smaller than the speed of light.
These assumptions significantly simplify the solution of the Einstein equations. More importantly,
these assumptions are physically viable because in most binary systems not close to coalescing the
orbital speed is much slower than the speed of light. Furthermore, this approximation is valid for
most observed binary systems of white dwarfs. For example, the two white dwarfs in the system
J065133.34 + 284423.4 (J06)4 have Keplerian velocities of aωK/c = 3.18 · 10−3 � 1, where a is the
orbital separation of the stars, and ωK the Kepler angular velocity, equal to 2π/P , where P is the
orbital period.

One important result to be used later on is the Tensor Virial Theorem:

Theorem 3.4.1. (Tensor Virial Theorem): For k, n = 1, 2, 3 it holds that:

1

c2

∂2

∂t2

∫
V
T 00xkxnd3x = 2

∫
V
T knd3x, (3.40)

when assuming Tµν vanishes at the boundary of the source, which is contained in the volume V .

Proof: A full proof can be found in paragraph 14.1 in [8]. In short it reads:
Using the conservation law for T and only considering the spatial components, we see that:

∂Tn0

∂x0
= −∂T

ni

∂xi
⇒ 1

c

∂

∂t

∫
V
Tn0xkd3x =

∫
V
Tnkd3x. (3.41)

The implication holds after multiplying by xk and integrating over the source volume. The equality
holds after using the product rule, using Gauss’ Theorem and using that T = 0 at the boundary of
the source. Because Tµν is symmetric this can be written as:

1

2c

∂

∂t

∫
V

(Tn0xk + T k0xn)d3x =

∫
V
Tnkd3x. (3.42)

Now multiplying the 0-component of the conservation law by xkxn and integrating over the volume as
we did with the spatial part before:

1

c

∂T 00

∂t
= −∂T

0i

∂xi
⇒ 1

c

∂

∂t

∫
V
T 00xkxnd3x =

∫
V

(T 0kxn + T 0nxk)d3x. (3.43)

Now using the result from above after differentiating w.r.t. x0 we find (for n, k = 1, ..., 3):

1

c2

∂2

∂t2

∫
V
T 00xkxnd3x = 2

∫
V
T knd3x. (3.44)

This proves the theorem. �

4We consider binary parameters as listed in [14], table B1.
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We will use this result to simplify the equations for GWs, which will be derived later. First we
will transform the expressions for h̄µν and Tµν ≡ δTµν (we will omit the δ in this analysis) into the
Fourier domain, which results in the following form of eq.(3.20):

[∇2 + ω2/c2]h̄µν(ω, xi) = −KTµν(ω, xi); i = 1, 2, 3, (3.45)

where K = 16πG/c4 and ω is such that λGW = 2πc/ω.

Outside the source, where Tµν = 0 we see that the simplest solution of this equation is a spherical
wave. We are only interested in emitted waves, so only consider the outgoing part. This is all represented
in a form such as:

h̄µν(ω, r) =
Aµν(ω)

r
eirω/c, (3.46)

independent of the spherical coordinates θ and φ. The exact expression for Aµν depends on the solution
of the Einstein equations inside the source, which we will now explore.

3.4.1 Interior solution

Integrating over the source volume (which is assumed to be contained within a sphere of radius
ε� 2πc/ω for the slow-motion approximation) gives:∫

V

[
∇2 +

ω2

c2

]
h̄µν(ω, xi)d3x = −K

∫
V
Tµν(ω, xi)d3x. (3.47)

The first term in eq.(3.47) is equal to:∫
V

div[∇h̄µν ]d3x =

∫
S

(
∇h̄µν

)k
dSk, (3.48)

due to Gauss’ theorem. This is approximately equal to (when only retaining terms of order ε and
noting that eirω/c ∼ 1 because λGW >> ε):

4πε2
(
d

dr

Aµν
r
eiωr/c

)
r=ε

= 4πε2
[
−Aµν
r2

eiωr/c +
Aµν
r

(iω/c)eiωr/c
]
r=ε

≈ −4πAµν(ω).

(3.49)

The second term in eq.(3.47) satisfies:∫
V

ω2

c2
h̄µνd

3x < |h̄µν |max
ω2

c2

4

3
πε3 ≈ 0. (3.50)

Here, |h̄µν |max is the maximum reached bij h̄µν on the volume V 5.This gives the final expression for
Aµν :

Aµν(ω) =
4G

c4

∫
V
Tµν(ω, xi)d3x. (3.51)

This implies that after performing the inverse Fourier transform we obtain:

h̄µν(t, r) =
4G

c4

1

r

∫
V
Tµν(t− r/c, xi)d3x. (3.52)

5This volume is closed and bounded, the functions hµν are continuous, so indeed, this maximum exists due to the
Extreme Value Theorem.
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We will simplify this by introducing the quadrupole moment tensor. Firstly, note that, to extract the
physical components we still need to project h̄µν onto the TT-gauge. Secondly, we should keep in
mind that this solution is derived on two assumptions. These are the weak field approximation and
the slow-motion approximation. Lastly note that the solution above satisfies both conditions from
eq.(3.20), while we only used the first one to derive it. This can be checked as done at the beginning of
chapter 14 of [8]. Essentially, this is due to the fact that Tµν satisfies the conservation law and vanishes
at the boundary, and to the fact that the source is contained in a very small volume compared to the
typical wavelength of the GW.

3.4.2 The quadrupole moment

To simplify the expression in eq.(3.52) we use the conservation law that Tµν satisfies:

1

c
∂tT

µ0 = −∂kTµk; µ = 0, 1, 2, 3; k = 1, 2, 3. (3.53)

Integrating these expressions over the source volume V and using Gauss’ Theorem on the right hand
side we see that: ∫

V
Tµ0d3x = constant⇒ h̄µ0 = constant = 0. (3.54)

The implication here follows from eq.(3.52), and we can choose the constant to be zero because we are
only interested in the time-dependent part of the field.

Now we define the quadrupole moment tensor of the system:

qkn(t) =
1

c2

∫
V
T 00(t, xi)xkxnd3x; k, n = 1, 2, 3. (3.55)

This means that: h̄
µ0 = 0, µ = 0, 1, 2, 3

h̄ik(t, r) =
2G

c4r

[
d2

dt2
qik(t− r/c)

]
. (3.56)

This we can project on the TT-gauge by applying the operator Pjkmn on qmn, defining QTTjk =
Pjkmnqmn, the transverse-traceless part of the quadrupole moment.
Sometimes it is useful to use the reduced quadrupole moment Qjk = qjk = 1

3δjkq
m
m, whose trace

is zero by definition.

3.4.3 Energy and Flux of GWs

Gravitational waves contain energy, meaning that systems emitting them will evolve over time due to
losing energy. To describe this effect, we need to know how to express the energy and flux of GWs.

Energy

To describe the energy radiated in GWs by evolving systems we need a tensor describing the energy
content of the gravitational field. In a LIF we want to find a tensor satisfying the law ∂νT

µν = 0, that
means finding a quantity antisymmetric in µ and ν, ηµνα such that Tµν = ∂αη

µνα, this expression can
be found by using the Einstein equations in the form:

Tµν =
c4

8πG

(
Rµν −

1

2
gµνR

)
. (3.57)
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By using the fact that we evaluate these in a LIF, we find:

Tµν = ∂α

{
c4

16πG

1

(−g)

∂

∂xβ
[(−g)(gµνgαβ − gµαgνβ)]

}
=: ∂αη

µνα. (3.58)

Introducing the quantity ζµνα = (−g)ηµνα, we see that, in a LIF: ∂αζ
µνα = (−g)Tµν . In any other

frame this is not generally true, so we define the quantity tµν as:

(−g)tµν = ∂αζ
µνα − (−g)Tµν . (3.59)

Because ζµνα is antisymmetric in µ and α, the following law holds:
∂

∂xµ
[(−g)(tµν + Tµν)] = 0.

Since tµν when added to Tµν satisfies a conservation law (the law above has the form of a vanishing
ordinary divergence) and since it vanishes in a LIF, we interpret tµν as the quantity containing the
information about energy and momentum of the gravitational field. It should be noted that tµν is not
a tensor, but it behaves as a tensor under linear coordinate transformations.

Flux

Consider an emitting system and the associated 3-dimensional coordinate frame O. Let an observer
be situated at an arbitrary point, in the direction of a vector n. Consider the frame O′ with origin
coincident with that of O and x′-axis aligned with n. If we want to measure the flux across the surface
orthogonal to x′, t0x

′
, we need to compute the Christoffel symbols, which we find by finding the

derivatives of hTTµ′ν′ . As derived in eq.(3.56) the metric perturbation, even after applying Pjkmn, has

the form of hTT (t, x′) =
constant

x′
f(t−x′/c). The only derivatives which matter are those with respect

to t and x′, and we see that those, after neglecting terms of order 1/x′2 and higher, are equal to:

∂th
TT =

constant

x′
∂tf ; ∂x′h

TT ∼ −1

c

constant

x′
∂tf = −1

c
∂th

TT . (3.60)

This means that, in the case of linear polarization with only one polarization unequal to zero, where:

gµ′ν′ =


−1 0 0 0
0 1 0 0
0 0 1 + hTT 0
0 0 0 1− hTT

 , (3.61)

the Christoffel symbols that do not vanish are:

Γ0
y′y′ = −Γ0

z′z′ =
1

2
∂th

TT ; Γy
′

0y′ = −Γz
′

0z′ =
1

2
∂th

TT ;

Γx
′
y′y′ = −Γx

′
z′z′ =

1

2c
∂th

TT ; Γy
′

y′x′ = −Γz
′
z′x′ = − 1

2c
∂th

TT .

(3.62)

By substituting these in tµν we find:

ct0x
′

=
dEGW
dtdS

=
c3

16πG

(
dhTT (t, x′)

dt

)2

. (3.63)
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Where EGW is the gravitational wave energy. In the case of both polarizations non-zero this result
generalizes to:

ct0x
′

=
c3

16πG

[(
dhTT+ (t, x′)

dt

)2

+

(
dhTT× (t, x′)

dt

)2
]

=
c3

32πG

3∑
j,k=1

(
dhTTjk (t, x′)

dt

)2

.

(3.64)

In GR the energy of the field can not be defined locally, so we need to average over several periods to
find the GW-flux, meaning that for an arbitrary direction r = rn (an observer located at another
position finds the same expression but with a different projection operator, therefore we can just
consider an arbitrary direction):

dEGW
dtdS

=
〈
ct0r

〉
=

G

8πc5r2

〈∑
jk

(...
Q
TT
jk (t− r/c)

)2
〉
. (3.65)

To now find the gravitational wave luminosity LGW we need to integrate over the complete solid
angle as seen from the source. Using the properties of Pjkmn and the simple integrals 1

4π

∫
nmnrdΩ =

1
3δmr and 1

4π

∫
nmnnnrnsdΩ = 1

15(δmnδrs + δmrδns + δmsδnr) this integral is equal to:

LGW =
G

8πc5

∫ 〈 3∑
j,k=1

(
Pjkmn

...
Qmn

)2〉
dΩ

=
G

5c5

〈
3∑

j,k=1

...
Qkn(t− r/c)

...
Qkn(t− r/c)

〉
.

(3.66)

The exact details of this calculation can be found in [8]. Next we will apply the results above to binary
systems.

3.5 Binary Systems (Part 1)

In this section we will use the results stated in the last section to estimate the gravitational signal
emitted by binary systems of two stars (masses m1 and m2) moving on a circular orbit around their
common center of mass. We consider both masses as point masses for simplicity.
Let a be the orbital separation, the total mass M = m1 +m2, the reduced mass µ = m1m2/M . With
Kepler’s law we determine that the binary orbital frequency is equal to ωK =

√
GM/a3. Let the

center of mass be the origin of a coordinate system in the orbital plane. We find that the coordinates
(x1, y1) and (x2, y2) follow:

x1 =
m2

M
a cos(ωKt); x2 = −m1

M
a cos(ωKt);

y1 =
m2

M
a sin(ωKt); y2 = −m1

M
a sin(ωKt).

(3.67)

The 00-component of the stress-energy tensor is given by:

T 00 = c2
2∑

n=1

mnδ(x− xn)δ(y − yn)δ(z). (3.68)
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This implies that the non-vanishing components of the quadrupole moment are:

qxx = m1

∫
V
x2δ(x− x1)δ(y − y1)δ(z)dxdydz

+m2

∫
V
x2δ(x− x2)δ(y − y2)δ(z)dxdydz

= m1x
2
1 +m2x

2
2 = µa2 cos2(ωKt) =

µ

2
a2 cos(2ωKt) + C

qyy = −µ
2
a2 cos(2ωKt) +D

qxy =
µ

2
a2 sin(2ωKt)

qkk = qxx + qyy = constant,

(3.69)

Note that the time-varying part of qij and Qij = Pijklqkl are equal here. The constants C and D arise
from the rule of goniometry that cos2 x = 1

2 + 1
2 cos(2x).

Defining the matrix Aij as:

Aij(t) =

cos 2ωKt sin 2ωKt 0
sin 2ωKt − cos 2ωKt 0

0 0 0

 , (3.70)

we may write qij = µ
2a

2Aij + constant. Projecting the wave along a generic direction n onto the
TT-gauge we find:

hTTij = −4µMG2

rac4
PijklAkl(t− r/c) ≡ −h0A

TT
ij (t− r/c). (3.71)

Here, h0 =
4µMG2

rac4
.

Example 3.5.1.

- If n = z, we see that Pij =diag(1, 1, 0), so ATTij = Aij and:

hTTxx = −hTTyy = −h0 cos (2ωK [t− z/c]) ;

hTTxy = hTTyx = −h0 sin (2ωK [t− z/c]) ,
(3.72)

meaning that the wave is circularly polarized.

- If n = x, Pij =diag(0, 1, 1), so:

ATTij =

0 0 0
0 −1

2 cos 2ωKt 0
0 0 1

2 cos 2ωKt

⇒ hTTyy =
1

2
h0 cos (2ωK [t− z/c]) , (3.73)

implying a linear polarization. �

We now find that:
3∑

k,n=1

...
Qkn

...
Qkn = 32µ2a4ω6

K = 32µ2G3M3a−5

⇒ LGW =
32G4µ2M3

5c5a5
.

(3.74)
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Making the adiabatic approximation, which assumes that orbital parameters do not change significantly
over the time interval the average is taken over, the energy lost by GW emission is compensated by a
change in orbital energy, dEorb/dt = LGW , where Eorb = EK + U , where EK is the kinetic energy,
and U the potential energy. These can be found to be equal to:

EK =
1

2

GµM

a
; U = −GµM

a
; Eorb = −1

2

GµM

a
. (3.75)

Expressing the time derivative of Eorb in terms of the orbital period by expressing da/dt in terms of
dωK/dt and using ωK = 2πP−1 and by using dEorb/dt = −LGW , we find:

dP

dt
=

3

2

P

Eorb
LGW . (3.76)

Using this expression and assuming a(t = 0) = ain, we find that:

a(t) = ain
[
1− t

tcoal

]1/4

; tcoal =
5

256

c5

G3

(ain)4

µM2
. (3.77)

Here we see that when t = tcoal, a(tcoal) = 0. Note that the bodies are actually not point-like, so they
start merging before t = tcoal is reached in reality.

Example 3.5.2. The binary system J06 introduced in the beginning of the last section has two stars,
of masses 0.55M� and 0.25M� (M� is the solar mass), and an orbital period of P = 765.4s. This
leads to a = 1.16 · 108m, M = 0.8M� and µ = 0.172M�. It is at a distance of 1000pc, meaning that
h0 = 3.34 · 10−22 � 1, so we can indeed use the linearised theory for this system and its analogues. It
holds that LGW = 1.174 · 1034erg/s, and as such tcoal = 3.34 · 1013s or 1.1 Megayears. �

In the adiabatic regime we find the change of ωK in time, as:

ωK(t) =

√
GM

a(t)3
= ωinK

[
1− t

tcoal

]−3/8

, (3.78)

where ωinK = ωK(ain) = ωK(0). The amplitude h0 now also changes over time, by introducing
νGW (t) = ωK(t)/π and M = µ3/5M2/5 (the chirp mass) we find that:

h0(t) =
2π2/3G5/3M5/3

c4r
ν

2/3
GW (t). (3.79)

Since ωK now changes in time, the phase appearing in Akl in eq.(3.70) has to be substituted by an
integrated phase:

Φ(t) =

t∫
0

2ωK(t)dt =

t∫
0

2πνGW (t)dt+ Φ(t = 0). (3.80)

We have that:

νint
3/8
coal = 53/8 1

8π

(
c3

GM

)5/8

⇒ νGW (t) =
1

8π

(
c3

GM

)5/8 [
5

tcoal − t

]3/8

, (3.81)

which, when substituted in the previous expression, gives:

Φ(t) = −2

[
c3(tcoal − t)

5GM

]5/8

+ Φ(t = 0). (3.82)
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Hence,

hTTij = −4π2/3G5/3M5/3

c4r
ν

2/3
GW (t) [PijklAkl(t− r/c)] , (3.83)

where

Aij(t) =

cos Φ(t) sin Φ(t) 0
sin Φ(t) − cos Φ(t) 0

0 0 0

 . (3.84)

This is the polarization tensor we expect to find with LISA for binary white dwarfs.

3.6 Signal Processing

In the previous sections, we explored the details of the mathematics and physics of Gravitational
Waves. The most important result is the waveform we derived in equation eq.(3.71). This equation
can now be used to find the theoretical signal we would expect to see from a GW source. The aim of
this chapter is to find the optimal signal-to-noise ratio (SNR) of such observations. This can be done
with so-called ”matched filtering”.
To optimise the SNR, which determines the significance of our measurement, we need to apply the
theory of signals and systems. To do this, we assume that the output signal, with noise n(t), is given
as s(t) = h(t) + n(t), where h(t) = Dijhij , for i, j = 1, 2, 3, where hij is the tensor describing the
GW and Dij , the detector tensor, is a quantity that determines the response of the detector. If, for
example, it only reacts on the (x, x)-component of hij , we have D11 = 1 and the other components
are zero.
When h(t) would be of the order of n(t) or bigger, we would not have any problems determining the
signal. Typically however, one expects |h(t)| � |n(t)|, meaning we need more advanced methods to
filter through the noise.

If we multiply s(t) = h(t)+n(t) with the theoretical form for h(t) and integrate over the observation
time T and divide by it, we find that:

1

T

T∫
0

s(t)h(t)dt =
1

T

T∫
0

h2(t)dt+
1

T

∫ T

0
n(t)h(t)dt. (3.85)

If h(t) and n(t) are uncorrelated oscillating functions, we find that the first integral on the right
hand side grows as T for large T and its value averaged over time is of order one in T , meaning we
can approximate it as h2

0, where h0 is the characteristic amplitude of h(t). Due to the product of
n(t) and h(t) in the second integral, it will grow as T 1/2 for large T , so that we approximate it by
(τ0/T )1/2n0h0, where τ0 is a typical characteristic time (i.e. the period of h0) and n0 the characteristic
amplitude of n(t). This means that we could detect a signal when h0 > (τ0/T )1/2n0.

Example 3.6.1. For our example in the last chapter, J06, with a period of about 12 minutes, it
holds that, if we observe for T = 1yr, (τ0/T )1/2 ∼ 0.0048, so we can detect a signal that is about 3-4
orders of magnitude lower than the noise. �

This idea can be made more precise by using a so-called filter-function K(t), which we will
choose to maximize the SNR when we know the form of h(t). As this procedure is called matched
filtering, we choose a filter that matches the theoretically expected signal. To do this we define:

ŝ(t) =

∞∫
−∞

s(t)K(t)dt. (3.86)
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The SNR is now defined as SNR := S/N where S is the expected value of ŝ when a signal is present,
and N the root mean squared value of ŝ without a signal present. We recall the definition of the
ensemble average of a random process:

Definition 3.6.1. Given an ensemble of N realizations x(i) : [0, T ]→ [0, 1] for 1 ≤ i ≤ N of a random
process over a time interval of length T , the ensemble average at time t1, 〈x(t1)〉 : [0, T ]→ [0, 1] is
defined as:

〈x(t1)〉 = lim
N→∞

1

N

N∑
i=1

x(i)(t1) (3.87)

Remark.

- Note that the given limit converges because x(i)(t1) ∈ [0, 1] for every t1 ∈ [0, T ], which means that
taking a sum of N ones and dividing by N again gives an element of [0, 1]. It can be shown that
this is a Cauchy-row

- When defining x1 = x(t1), we see that the probability density function p1(x1, t1) gives that
p1(x1, t1)dx1 is the probability of finding x in the range x1, x1 + dx1 at a time t1. This means

that we can write 〈x(t1)〉 =
∞∫
−∞

x1p1(x1, t1)dx1.

- We can now also define the ensemble average of a product as:

〈x(t1)x(t2)〉 = lim
N→∞

1

N

N∑
i=1

x(i)(t1)x(i)(t2) =

∞∫
∞

∞∫
∞

x1x2p2(x1, x2, t1, t2)dx1dx2 (3.88)

Here p2 is the second-order joint probability density function, such that p2(x1, x2, t1, t2)dx1dx2 is
the probability of finding x between x1 and x1 + dx1 at t1 as well as finding x between x2 and
x2 + dx2 at t2.

- Physically, we can not take an ensemble average, so we define the ensembles by measuring the signal
over a given time interval of length T and considering this one ”realization” (using this procedure
assumes the system to be ergodic6). Repeating this and separating the measured intervals such
that the intervals can be assumed to be uncorrelated (also assuming the noise to be completely
random and Gaussian, giving that 〈n(t)〉 = 0 without loss of generality for the results about the
signal), we can average over all these ”independent” realisations. Mathematically, you could define
this ensemble average taken over one signal by defining sample x(i)(t) as the signal limited to the
interval [iT + (i− 1)S, (i+ 1)T + (i− 1)S], where T is the length of a sample, and S is the length
we take between samples, to allow for uncorrelated samples.
We should now still note that we can not define infinitely many samples, for we observe for a finite
amount of time, but for theoretic purposes, we assume we can select many samples, such that our
approximations hold. N
6A system is ergodic when:

〈x(t)〉 = lim
T→∞

1

T

T/2∫
−T/2

x(t)dt.

For our periodic signal and the completely random noise we can assume ergodicity.

50



As stated before, we assume 〈n(t)〉 = 0. Now we find that the ensemble average of our GW-signal
〈h(t)〉 equals h(t) again, for it can be assumed to be of the same form during our observation.

We denote the Fourier transform of a function F (t) with F̃ (f) such that:

F (t) =

∞∫
−∞

F̃ (f)e−2πiftdf ;

F̃ (f) =

∞∫
−∞

F (t)e2πiftdt.

(3.89)

This way, we see that the convolution of two functions h and K is given as:

(h ∗K)(τ) =

∞∫
−∞

h(t)K(t− τ)dt =

∞∫
−∞

h(t)

∞∫
−∞

K̃(f)e−2πif(t−τ)dfdt

=

∞∫
−∞

K̃∗(f)

∞∫
−∞

h(t)e2πiftdte−2πifτdf =

∞∫
−∞

K̃∗(f)h̃(f)e−2πifτdf.

(3.90)

Here, the second line is found after changing the integral from f → −f , such that df → −df and we
still integrate from −∞ to ∞. Also, it is implicitly assumed K(t) is real, such that K̃(−f) = K̃∗(f)7.
Using this result, we finally find that:

S = 〈ŝ〉 =

∞∫
−∞

〈s(t)〉K(t)dt =

∞∫
−∞

h(t)K(t)dt

= (h ∗K)(τ = 0) =

∞∫
−∞

h̃(f)K̃∗(f)df.

(3.91)

Using the same method while assuming n(t) to be real as well and defining the noise spectral
density8 Sn(f) by 〈ñ∗(f)ñ(f)〉 = 1

2δ(f − f
′)Sn(f), we find that9:

N2 =

∞∫
−∞

1

2
Sn(f)|K̃(f)|2df. (3.92)

A proof of this fact is given in the appendix.
This has as a consequence that:

SNR :=
S

N
=

∞∫
−∞

h̃(f)K̃∗(f)df[
∞∫
−∞

1

2
Sn(f)|K̃(f)|2df

]1/2
. (3.93)

7The asterisk as superscript denotes the complex conjugate of a function.
8The noise spectral density can be interpreted as a function that gives the amplitude of each component of the signal,

as function of the frequency of that component.
9It should be noted that this definition is only rigorous when n(t) has a well defined Fourier transform. We assume

ñ(f) exists in the following.
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To now find the filter K(t) maximizing S/N , we define the scalar product between two real
functions A(t) and B(t) as:

(A|B) = <


∞∫
−∞

Ã∗(f)B̃(f)
1
2w(f)

df

 = 4<


∞∫

0

Ã∗(f)B̃(f)

w(f)

 . (3.94)

The second equality holds because A(t) and B(t) are real. Also, w(f) is a real-valued weighting
function. In our case, this will be Sn(f). This means that we can write for eq.(3.93):

S

N
=

(u|h)

(u|u)1/2
, (3.95)

Where u is a function whose Fourier transform is:

ũ(f) =
1

2
Sn(f)K̃(f). (3.96)

Since Sn(f) > 0, the scalar product is positive definite, so it can be seen as ”inner product” on a
”vector space” and we are thus searching for the ”vector” u/(u|u)1/2 such that its scalar product with
h is maximum, meaning we want h and u/(u|u)1/2 to be parallel, so:

K̃(f) = C
h̃(f)

Sn(f)
, (3.97)

where C is a constant, which we can leave out of our calculations because rescaling ŝ does not change
the SNR. Using this filter, we get that:

S

N
= (h|h)1/2 ⇒

(
S

N

)2

= 4

∫ ∞
0

|h̃(f)|2

Sn(f)
df. (3.98)

This is an arbitrary result, and will be applied to binary systems in the next section.

3.7 Binary Systems (Part 2)

In the last part, we derived the waveform for binary systems. We will now apply the signals and
systems theory above to these waveforms we expect to find due to binary systems. To do this, we can
define the detector pattern functions:

FA(n̂) = DijeAij(n̂), (3.99)

which depend on the direction of propagation of the wave. If û and v̂ are unit vectors orthogonal to
each other and to n̂, we have that:

e+
ij(n̂) = ûiûj − v̂iv̂j ; e×ij(n̂) = ûiv̂j + v̂iûj . (3.100)

This means that we can write our wave-signal as:

h(t) = h+(t)F+(τ, φ) + h×F×(τ, φ). (3.101)

It should be noted that here we will have to use an orbital average if we observe for a substantial
amount of time. This longer time of observation is needed to accurately determine the location of
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the object on the sky, so we will assume observation times generally longer than one year (of course
divided into smaller runs).
Now assuming a monochromatic wave with frequency f0 and amplitudes h0,+ and h0,× of the respective
polarizations:

h+(t) = h0,+ cos(2πf0t);

h×(t) = h0,× cos(2πf0t+ α);

h(t) = F+h0,+ cos(2πf0t) + F×h0,× cos(2πf0t+ α)

= <{(F+h0,+ + F×h0,×e
iα)e2πif0t}

= |F+h0,+ + F×h0,×e
iα| cos(2πf0t).

(3.102)

where α is a relative phase between the two polarizations. This results in the Fourier transform being
equal to:

h̃(f) =

∞∫
−∞

h(t)e−2πiftdt = |F+h0,+ + F×h0,×e
iα|

∞∫
−∞

cos(2πf0t)e
−2πiftdt

= |F+h0,+ + F×h0,×e
iα|

∞∫
−∞

(
e2πf0t + e−2πif0t

2

)
e−2πiftdt

= |F+h0,+ + F×h0,×e
iα|1

2

 ∞∫
−∞

e2πi(f0−f)tdt+

∞∫
−∞

e2πi(−f0−f)tdt


= |F+h0,+ + F×h0,×e

iα|1
2

(δ(f − f0) + δ(f + f0))

= |F+h0,+ + F×h0,×e
iα|1

2
δ(f − f0).

(3.103)

The last equality holds because we take f > 0, for we observe physical systems, so δ(f + f0) = 0
always. Note that we used the Fourier-definition of the δ-function:

δ(f) =

∞∫
−∞

e2πiftdt. (3.104)

If we measure for a limited time T , we have to alter this definition to:

δ(f) =

T/2∫
−T/2

e2πiftdt⇒ δ(0) = T. (3.105)

Using this result, we find the optimal SNR for a binary system to be:(
S

N

)2

= 4

∞∫
0

|h̃(f)|2

Sn(f)
df = 4

∞∫
0

1

4
|F+h0,+ + F×h0,×e

iα|2 δ(f − f0)2

Sn(f)
df

= |F+h0,+ + F×h0,×e
iα|2

∞∫
0

δ(f − f0)

Sn(f)
δ(f − f0)df

= |F+h0,+ + F×h0,×e
iα|2 δ(0)

Sn(f0)
= |F+h0,+ + F×h0,×e

iα|2 T

Sn(f0)
.

(3.106)
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When we thus observe, for example a binary system along the optimal orientation, F+ = 1 and F× = 0,
and:

h+ =
4µMG2

rac4
=

4

r

(
GM
c2

)5/3(πf0

c

)2/3

. (3.107)

That way, we see that:

S

N
=

√
T√

Sn(f0)

(
4

r

(
GM
c2

)5/3(πf0

c

)2/3
)
. (3.108)

Thus, given an orientation and parameters, we can find the optimal SNR for a binary system.

Example 3.7.1. In the case of our example J06, the GW amplitude has been given in previous
examples. When we perform an orbital average (over the orbit of the detector around the sun), we
expect a SNR of 19.67. Without performing the orbital average, the SNR would be 33.48, but not
performing the average is not realistic, for we have to observe for a longer time to establish the location
of the source completely.
For this calculation, we have used Sn(f) from [2], which is shown in 1. We integrated for an observation
time of one year. The SNR increases for longer observation times, for 4 years it is 103.75 and for 10
years it is 176.69. �

3.8 Summary

In this chapter we defined the theoretical background to describe Gravitational Waves as propagating
perturbations of the metric of spacetime. To determine physical properties of these GWs the gauge-
invariance of Einstein’s equations is used. The quadrupole formalism for finding the wave-form emitted
by binary systems is described, to be used in analysis of detected signals by GW observatories like
LISA. The results are used for an analysis to determine the optimal SNR for binary systems when
detecting them with LISA. In the next chapter, these results will be used for calculations.
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Chapter 4

Results

In the previous chapters we set up the theoretical tools to describe and detect GWs. We used the
example of GWs emitted by binary systems as red line through the third chapter, because we will now
limit our discussion to binary systems of White Dwarfs (DWDs). These systems are very common
in the Milky Way, more then 25 · 105 are expected to be detected with LISA[14],[13]. We will first
determine the maximal distance at which DWDs can be observed, given a certain parameter space.
Using this, we can determine the properties of visible systems in nearby galaxies like the Small and
Large Magellanic Clouds (SMC and LMC) and the Andromeda galaxy (M31). These are some of the
nearest galaxies to the Milky Way.

4.1 Maximal Distance

To determine the maximal distance at which binary star systems of double white dwarfs (DWD) can
be observed with LISA we observe the known object J06, as used in our previous examples. In [14]
(Table B1) this source is the only DWD for which the SNR is higher than the nominal threshold of 7,
which is taken as a limit for LISA. We investigate the ability to observe DWDs in the Small and Large
Magellanic Clouds (SMC and LMC) or in M31. After varying the distance and chirp mass of J06-like
systems, we found the SNR for these parameters for four and ten years of observation in figure 4.1.
The chirp mass is constrained from 0.1 to 1.1M�, because all stars from the simulation have a chirp
mass between these limits. We also constrain that both m1 and m2 can not be bigger than 1.4M�,
the Chandresekhar Limit, which is the maximal allowed mass for a White Dwarf[4]. This implies that
m1 +m2 lies between 0.01 and 2.8 solar masses.
The mass-ratio q = m2/m1, where m2 is the smaller mass, is of impact on the chirp Mass. In the
case of J06, m2 = 0.25M� and m1 = 0.55M�, so q = 0.45 and Mchirp ≈ 0.3M�. It emits at a GW
frequency that is equal to twice the inverse of the period, as seen in chapter 3 (eq.(3.70)). In the case
of J06, it is 2.61mHz.
It can be seen in figures 4.1a and 4.1b that after four years of observation, DWDs with the same
orbital period and galactic coordinates as J06 can not be observed at the distance of M31, but systems
that are massive enough (chirp mass higher than about 0.65M�) can be found in the SMC and LMC.
Even longer observations lower this limit to about 0.5M�.
When halving the orbital period, we have to assume the components of the binary become more
massive, otherwise we can not use the point-mass approximation anymore. This means that smaller
orbital periods induce heavier masses and thus stronger signals, thus we should be able to push the
distance of visible binaries with those parameters further again.
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Figure 4.1: The SNR for J06-like DWD after four and ten years of observation for different distances
and chirp masses. The green horizontal line signifies the distance of the Large Magellanic Cloud
(LMC), the red line that of the Small Magellanic Cloud (SMC) and the blue line that of M31. The
blue dot shows the parameters of J06. All combinations of parameters below the curve labelled by ”7”
are observable with SNR > 7.
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It should be noted that the exact limiting distance is also dependent on the galactic coordinates of
the structure, because of the orientation of LISA during its orbit around the sun. This dependence is
shown in figure 4.2.
In this figure we see that M31 is at a favourable position on the sky for observations with LISA, so we
will still consider the Andromeda as structure with possibilities of observable DWDs.
There are many different DWDs that could be visible in the LMC and SMC, which is not surprising,
for these are a lot less distant (a GW signal decays with 1/r).
We have done this study for one point in the Galactic coordinate-system, but by looking at the colour
scale in figure 4.2, we conclude these results will all be comparable for other coordinates, and the
galaxies we studied are at coordinates where the visibility of GW signals by LISA is intermediate
after one year of observing. The singularities in this figure are due to the configuration LISA has with
respect to the Galactic coordinate system.
In conclusion, structures like SMC, LMC and Andromeda are the most likely places to find DWDs
that are still observable with LISA, so we will further analyse the visibility of these DWDs in these
structures in the next section. Of course intergalactic DWDs could also exist, so for these we now
conclude that the maximum distance at which they are observable depends strongly on their galactic
coordinates and properties, but the distance of the Andromeda is a viable estimate of a maximal
distance for most DWDs.

4.2 Nearby Structures

Because we saw in the last section that the distance limit of detectable DWD targets does not reach
far beyond the Andromeda galaxy, we limit ourselves to the nearby galaxies named before. We can
determine the parameters of visible DWDs in these structures using a parameter space and analysing
the SNR belonging to all combinations, just as we did when creating the plots in the last section.
The parameter space we use is constrained by the chirp mass of the system being between 0.1M� and
1.1M�, and the orbital separation being between 3R∗ and 30R∗, where R∗ is the mean radius of a
white dwarf, (meaning that the orbital period ranges between 81 and 8500 seconds), because when
the orbital separation is smaller than three times the mean radius of a white dwarf (about 0.014R�),
the approximation we made of point sources for the masses is not viable anymore. When the orbital
separation becomes too big, the system will not be of interest, for the amplitude of GWs emitted is
too small, or the system will not be gravitationally bound anymore.
The galactic coordinates of the named structures are used to find the results for an inclination of 45◦1,
shown in figure 4.3. When the orbital separation is small, a whole range of chirp masses can produce
visible DWD systems, because of the high GW frequencies. There is a decay, following a power law, in
possible masses as the orbital separation grows, due to the dependence of h0 on these properties. We
are hopeful for observable binaries in the SMC and LMC because all the combinations of parameters
above the curves are visible with SNR > 7. Also we here find that there is still hope for M31, because
still a substantial part of the parameter space produces visible DWDs at that distance as seen.
These curve tend to heavily depend in the inclination. For example for inclinations nearing 90◦ these
curves shift to the upper left.
Before actually finding results, we can produce an expectation of which types of DWDs we could find
in these nearby structures, which will be done in the next section.

1We take this inclination because then both polarizations are present in the signal, and they both are at their mean
values when changing the inclination i over the range of sin(i).
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Populations

By analysing a synthetic population of DWDs for nearby structures, we can produce an expectation
of the types of visible DWDs, to limit our search to those types when actually observing. We can of
course not assume these to be completely correct, for there are assumptions involved in creating these
synthetic populations. They do however create a viable categorization of possibilities of visible DWDs.
When actually observing corresponding populations, we could tell more about the actual population
of nearby structures with statistical arguments. Knowing where DWDs are situated in these nearby
structures will provide better information to be used in simulations to learn more about the formation
history of the galaxies, and thus about the history of our Local Group.
Unfortunately, no theoretical populations of DWDs have been constructed for the SMC and LMC,
so we will restrict our discussion to M31. We can now produce a contour plot as in fig.4.3, but for
different thresholds for the SNR. Additionally, we make use of the properties we know of Andromeda.
The mass of this galaxy is estimated to be approximately the same as that of the Milky Way, both
around 0.8–1.5 · 1012M�. This leads to the assumption that the stellar formation histories of the two
galaxies are roughly equal. This would mean that we expect comparable populations of DWDs in
both galaxies. Based on the star formation history and observations of the Milky Way, a population of
about 26.4 · 106 DWDs has been constructed in [14] and references therein. We will simulate these
DWDs to be at the distance and galactic coordinates of Andromeda and determine the expected SNR
for each target. This way we can determine the amount of stars visible above a certain threshold for
the SNR. These results are found in figures 4.4 and 4.5. The contours are plotted for an inclination of
45◦.
It can be seen that there are more and more possible combinations of parameters visible while we
lower our threshold, as would be expected. The levels are indicated at the top of the figure in the
curve.
We can further characterize the visibility of stars in the synthetic population by looking at figures 4.4
and 4.5, where we also plotted the stars from the population in our parameter space constrained by the
chirp mass being between 0.1M� and 1.1M� (in [14] it is found that all DWDs from the population
lie within this range) and the orbital period between one and twenty minutes (shorter would mean
an orbital separation that is too small and longer would not give a sufficient amplitude). The value
of the SNR given to all stars is the most common SNR when assigning a sample from a random
distribution of inclinations to each star.
We left out all members of the population for which SNR < 1, because these are not of any interest
for LISA and only crowd the figure.
The amount of stars from the population visible above a certain threshold is displayed at the left of
the figure. We should note here that those numbers do not exactly correspond to the actual data
points, for we took away the randomness of the inclination of the DWDs and used the standard 45◦

for the model.
In conclusion, with a threshold of SNR = 7 we expect to find about 4 DWDs in M31 if we observe for
4 years, and 30 if we observe for 10 years. Actually observing these systems would imply that the Star
Formation History of M31 and the Milky Way are comparable.
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SNR

Figure 4.4: The DWDs from the generated population for which SNR > 1 when observed in M31
for 4 and 10 years. The ratio’s were calculated by using finding the most common SNR per star for
various inclinations. The contours are given by the theoretical division of the parameter space into
areas where the SNR = 1, 2, 3, 4, 5, 6, 7 (as specified by the numbers at the upper side of the graph),
for an inclination of 45◦. Added to the contours on the left side are are the number of stars from the
synthetic population visible with a SNR higher than the given value of that contour.
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Figure 4.5: The same as in figure 4.4 but then for an observation time of 10 years.
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4.3 Prospects

As illustrated in the previous sections, there is a substantial probability to observe extragalactic DWDs
with LISA. This would be the first time these types of objects would be resolved as a single source,
because they are not visible by only using optical instruments, for their resolution would not be high
enough. Even DWDs in globular clusters in the Milky Way have never been observed before due to
crowding.
Using LISA to also search for extragalactic DWDs (within a radius of about 103kpc) thus will increase
our knowledge of the specific population of DWDs in our Local Group and that in nearby galaxies.
When we gain information about the distribution of these systems, we can gain information about
the history of our Local Group and the structures within, because it would give specific constraints
when we compare with cosmological simulations to validate cosmological models. Of course, this
would all involve a lot of statistical analysis because of the low number of predicted detections, but
knowing part of the outcome simplifies this computationally. Using DWDs for this seems less than
ideal because of their weak GW-signal, but they are really numerous as described before, and we
should be able to observe many Extragalactic DWDs within the range of satellites of the Milky Way.
Mapping the DWDs between galaxies would give a better insight in for example the past collisions
between structures in our neighbourhood.

If the SNR for certain measurements is high enough, observing the GW-signals will also increase
the accuracy of distance measurements within the Local Group, because of the simple dependence of
the amplitude on distance.

By constructing a synthetic population of DWDs expected for the SMC and LMC, a comparable
analysis and categorization of visible objects can be produced, enabling us to actively search for
the specific associated parameters. Because we expect more types of DWDs to be visible due to the
distance, we can even better analyse the history of those galaxies using the distribution of DWDs
than we could for M31.
Another possible angle is to reproduce the analysis done in [13] for Andromeda, the SMC and the LMC.

In the near future after the launch of LISA, not many future space-based GW-observatories are
planned, and ground-based observatories can presently not reach the range of frequencies needed to
observe GWs from DWDs, so LISA is the only option available in short time to perform measurements
of Extragalactic DWDs in this way.

4.4 Summary

We presented the maximal distance at which DWDs like J06 can be observed, dependent on the
calculations derived in the previous chapters. We apply the same theory to a synthetic population of
DWDs of the Milky Way, transposed in simulation to be at the location of the Andromeda galaxy. We
characterized the properties of the systems we expect to see with a certain threshold in SNR.
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Conclusion

By setting up the mathematical environment needed to describe Gravitational Waves from scratch, we
determined the optimal signal-to-noise ratio for a theoretical waveform signal received by LISA from a
Double White Dwarf system. Using this, the maximal distance for observing DWDs with LISA seemed
to heavily depend on the characteristics of the system, including the masses, inclination, galactic
coordinates and orbital period.
When trying to observe DWDs in the Andromeda galaxy, we expect to find (with a signal-to-noise
ratio higher than 7) 4 with 4 years of observation time, and 30 if we can observe for 10 years.
If we indeed observe these, we can use them to better analyse the history and structure of Andromeda.
Future research may involve characterizing and predicting populations of DWDs for other galaxies or
intergalactic DWDs in the Local Group.
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Appendix A

Proofs and Additional Derivations

In this appendix, the extensive proofs or derivations left out of the main text are given.

A.1 Chapter 1

A.1.1 Proof of Theorem 1.3.2

We need to prove uniqueness and existence:

- Uniqueness: Due to the assumption of metric compatibility, we have that the following equations
hold:

0 = ∇ρgµν = ∂ρgµν − Γλρµgλν − Γλρνgµλ;

0 = ∇µgνρ = ∂µgνρ − Γλµνgλρ − Γλµρgνλ;

0 = ∇νgρµ = ∂νgρµ − Γλνρgλµ − Γλνµgρλ.

(A.1)

Subtracting the second and third from the first and using the symmetry of the connection we see:

∂ρgµν − ∂µgνρ − ∂νgρµ + 2Γλµνgλρ = 0

⇒ Γλµν =
1

2
gλρ(gνρ,µ + gρµ,ν − gµν,ρ).

(A.2)

The last implication follows after multiplication by gλρ. This means that a symmetric and metric-
compatible connection is always expressed as given in terms of the metric, so it is unique.

- Existence: The connection coefficients given above in eq.(1.40) are indeed coefficients of a well-defined
connection on M , which we show by looking at how the right hand side transforms under a coordinate
change. This is of importance, because connection coefficients have to transform in a specific way
for the covariant derivative to be a tensor again, as stated above.
First we should know the way the metric tensor transforms and how then gij,k transforms. If the
new coordinates are denoted by Latin indices and the old by Greek:

gab =
∂xa

∂xα
∂xb

∂xβ
gαβ;

∂agbc = ∂a

(
∂xβ

∂xb
∂xγ

∂xc
gβγ

)
=
∂xβ

∂xb
∂xγ

∂xc
∂xα

∂xa
∂αgβγ + gβγ

(
∂2xβ

∂xb∂xa
∂xγ

∂xc
+

∂2xγ

∂xc∂xa
∂xβ

∂xb

) (A.3)
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This means we can write:

Γnml =
1

2
gan(gam,l + gal,m − gml,a)

=
1

2

∂xa

∂xα
∂xn

∂xν
gαν

[
∂xα

∂xa
∂xµ

∂xm
∂xλ

∂xl
(gαµ,λ + gαλ,µ − gµλ,α) + 2gαµ

∂xα

∂xa
∂2xµ

∂xl∂xm

]
=
∂xn

∂xν
∂xµ

∂xm
∂xλ

∂xl
Γνµλ +

∂xa

∂xα
∂xn

∂xν
gανgαµ

∂xα

∂xa
∂2xµ

∂xl∂xm

=
∂xn

∂xν
∂xµ

∂xm
∂xλ

∂xl
Γνµλ +

∂xn

∂xµ
∂2xµ

∂xlxm
=
∂xn

∂xν
∂xµ

∂xm
∂xλ

∂xl
Γνµλ −

∂xµ

∂xm
∂xλ

∂xl
∂2xn

∂xµ∂xλ
.

(A.4)

The second equality follows from the fact that the metric tensor is symmetric and by relabelling
indices:

gαµ

(
∂2xα

∂xn∂xa
∂xµ

∂xm
+

∂2xµ

∂xm∂xn
∂xα

∂xa

)
+ gαν

(
∂2xα

∂xm∂xa
∂xν

∂xn
+

∂2xν

∂xn∂xm
∂xα

∂xa

)
− gνµ

(
∂2xµ

∂xn∂xa
∂xν

∂xn
+

∂2xν

∂xn∂xa
∂xµ

∂xm

)
= gαν

(
∂2xα

∂xn∂xa
∂xν

∂xm
+

∂2xν

∂xm∂xn
∂xα

∂xa

)
+ gαν

(
∂2xα

∂xm∂xa
∂xν

∂xn
+

∂2xν

∂xn∂xm
∂xα

∂xa

)
− gνα

(
∂2xα

∂xn∂xa
∂xν

∂xn
+

∂2xν

∂xn∂xa
∂xα

∂xm

)
= 2gαν

∂2xν

∂xm∂xn
∂xα

∂xa
. (A.5)

The last equality follows from the fact that:

∂xµ

∂xm
∂xλ

∂xl
∂2xn

∂xµ∂xλ
=
∂xµ

∂xm

(
∂xλ

∂xl
∂

∂xλ

)
∂xn

∂xµ
=
∂xµ

∂xm

(
∂

∂xl
∂xn

∂xµ

)
=

∂

∂xl

(
∂xµ

∂xm
∂xn

∂xµ

)
− ∂xn

∂xµ

(
∂

∂xl
∂xµ

∂xm

)
=

∂

∂xl

(
∂xn

∂xm

)
− ∂xn

∂xµ

(
∂

∂xl
∂xµ

∂xm

)
=

∂

∂xl
(δnm)− ∂xn

∂xµ

(
∂

∂xl
∂xµ

∂xm

)
= −∂x

n

∂xµ
∂2xµ

∂xl∂xm
.

(A.6)

This proves Theorem 1.3.2. The other properties a connection should have follow from the fact that
we defined the coefficients of the connection independently. �

A.2 Chapter 2

A.2.1 Deriving Einsteins Equations using the Variational Principle

Firstly, we introduce the arclength between points x and x+dx as integral of the line element defined

in chapter 1: s =
x+dx∫
x

√
gµν(x)dxµdxν =:

t2∫
t1

√
Ldt where we integrate along a curve γ where γ(t1) = x
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and γ(t2) = x+ dx. This L is also called the Lagrangian.
Supposing the curve is varied1, but with fixed end-points, a geodesic is now the path of extremal
length, so the variation would be zero. This leads to the Euler-Lagrange equation for a geodesic (if
dxµ/dt =: ẋµ):

∂L

∂xµ
− d

dt

∂L

∂ẋµ
. (A.7)

In [20] chapter 4.1.2, it is derived that, because L = gκλ(x)ẋκẋλ, we can express the Euler-Lagrange
equation as ẍρ + Γρκλẋ

κẋλ = 0.
This is the same equation as that of an autoparallel curve from chapter 1. Note that this only holds in
manifolds with a metric.

We will now derive Einstein equations by the variational principle, which depend on the Lagrangian
principle as well. Hilbert figured that the now called Einstein-Hilbert action SEH =

∫
Ld4x of the

gravitational field defined by the metric tensor should be the integral over spacetime of a Lagrange
density, which is a tensor density, written as

√
−g times a scalar. This g is the determinant of the

metric. The scalar we know that is connected to the metric and most easily calculated is the Ricci
scalar, so Hilbert then proposed the Lagrange density equal to:

LH =
c3

16πG

√
−gR, (A.8)

such that the Lagrangian L =
∫
LHd3x and the action is SEH =

∫
Ldt. The constants were a result

of correcting for dimensionality at the end of the run described below.
In vacuum, the gravitational field is the only object with an energy, so using the fact that δSEH = 0
should hold for an extremal configuration, we find that:

δSEH =
c3

16πG

∫
d4x[δ(

√
−g)R+

√
−gδR] = 0. (A.9)

We now need to prove some Lemma’s before we can further investigate this expression:

Lemma A.2.1. For the variation of the square root of −g where g is the determinant of the metric
tensor, it holds that:

δ(
√
−g) = −1

2

√
−ggµνδgµν (A.10)

Proof: Note that δg =
∂g

∂gµν
δgµν (when we use the chain rule, which also holds for partial derivatives

of tensors), and that the definition of the determinant is g =
∑

ν gµνMµν(−1)µ+ν , where Mµν is the
suitable determinant of a minor matrix, so:

∂g

∂gµν
= (−1)µ+νMµν = ggµν . (A.11)

Since
δ(gµνg

νσ) = δδσµ = 0

= δgµνg
νσ + gµνδg

νσ
(A.12)

1A variation of a curve γ is a smooth map ψ : [−ε, ε]× (−δ, δ)→M (δ > 0) such that ψ(t, 0) = γ(t) for all t ∈ [a, b].
It has fixed endpoints if ψ(−ε, s) = γ(−ε) and ψ(ε, s) = γ(ε).
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it holds that, when multiplying by gµρ:

δgρσ = −gµρgνσδgµν . (A.13)

This then implies δg = −ggµνδgµν , so indeed:

δ(
√
−g) = −1

2

√
−ggµνδgµν . (A.14)

�

Lemma A.2.2. (The Palatini Identity): It holds that:

δRµν = ∇λ(δΓλµν)−∇ν(Γλµλ). (A.15)

Proof: Note that:
Rµν = ∂λΓλµν − ∂νΓλµλ + ΓαµνΓλαλ − ΓλανΓαµλ. (A.16)

This implies that:
δRµν = δ∂λΓλµν − δ∂νΓλµλ + δΓαµνΓλαλ + ΓαµνδΓ

λ
αλ

− δΓλανΓαµλ − ΓλανδΓ
α
µλ.

(A.17)

We only need to prove that the right side of the identity is a tensor. This is seen by the fact that:

δΓλµν =
1

2
gλρ[δgµρ;ν + δgνρ;µ − δgµν;ρ]. (A.18)

This is a tensor, so its covariant derivative is as well.
The fact above is derived from:

δ
[
gλδGµνδ

]
= −gρλgσδδgρσΓµνδ + gλρδΓµνρ

=
1

2
gλρ
[
δgµρ,ν + δgνρ,µ − δgµν,ρ − 2Γσµνδgρσ

]
.

(A.19)

Now we can just expand the right side to show:

∇λ(δΓλµν)−∇ν(Γλµλ) = δ∂λΓλµν − δ∂νΓλµλ + δΓαµνΓλαλ + ΓαµνδΓ
λ
αλ

− δΓλανΓαµλ − ΓλανδΓ
α
µλ = δRµν .

(A.20)

�

Corollary. Because of the Palatini Identity it holds that:

δR = δgµνRµν + gµνδRµν = δgµνRµν +∇µ
(
gµνδΓαµν − gµαδΓλµλ

)
. (A.21)

Because the second term in this Corollary vanishes if you integrate it over the volume due to
Gauss’ Theorem, we find that:

δSEH =
c3

16πG

∫
d4x
√
−g[Rµν −

1

2
gµνR]δgµν = 0. (A.22)

This then implies that:
Gµν = 0. (A.23)
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This is Einstein’s equation in vacuum.

If there is matter present, we need also to study δSM , the variation in the action of the matter.
This action is characterized by the well-known Euler-Lagrange equations, that generalize to curved
spacetime as mentioned before. We also use the result from Lemma A.2.1. We find:

δSM =

∫
d4x
√
−g
[
∂LM

∂gµν
− 1

2
LMgµν

]
δgµν . (A.24)

Here LM is the Lagrangian density of the matter fields. When defining the stress-energy tensor as
above:

Tµν = −2c

[
∂LM

∂gµν
− 1

2
LMgµν

]
. (A.25)

We find by stating δS = δSEH + δSM = 0 that:

Gµν =
8πG

c4
Tµν . (A.26)

These are Einstein equations again. The dimensionality of the equations is correct due to the way
Hilbert defined his Lagrangian density and how the stress-energy tensor is defined.
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A.3 Chapter 3

A.3.1 Proof of the expression for N2

We begin with our definition of N as the root mean squared value of ŝ when h = 0:

N2 = [〈ŝ2〉 − 〈ŝ〉2]h(t)=0 = [〈ŝ2〉 − S2]h=0 = [〈ŝ2〉]h=0

=

∞∫
−∞

∞∫
−∞

K(t)K(t′)〈n(t)n(t′)〉dtdt′

=

∞∫
−∞

∞∫
−∞

K(t)K(t′)

∞∫
−∞

∞∫
−∞

〈ñ(f)ñ(f ′)〉e−2πi(tf+t′f ′)dfdf ′dtdt′

=

∞∫
−∞

∞∫
−∞

K(t)K(t′)

∞∫
−∞

∞∫
−∞

〈ñ(f)ñ∗(f ′)〉e−2πi(tf−t′f ′)dfdf ′dtdt′

=

∞∫
−∞

∞∫
−∞

K(t)K(t′)

∞∫
−∞

∞∫
−∞

1

2
Sn(f)δ(f − f ′)e−2πi(tf−t′f ′)dfdf ′dtdt′

=
1

2

∞∫
−∞

∞∫
−∞

K(t)K(t′)

∞∫
−∞

Sn(f)e−2πif(t−t′)dfdtdt′

=
1

2

∞∫
−∞

Sn(f)

∞∫
−∞

∞∫
−∞

K(−t)K(t′)e2πf(t+t′)dtdt′df

=
1

2

∞∫
−∞

Sn(f)K̃(−f)K̃(f)df =
1

2

∞∫
−∞

Sn(f)K̃∗(f)K̃(f)df

=

∞∫
−∞

1

2
Sn(f)|K̃(f)|2df.

(A.27)

This indeed proves the expression given in chapter 4 for N2.
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