Coronagraphs ATI 2017 - Lecture 11

Matthew Kenworthy // Leiden Observatory

Solar Corona

Solar eclipses revealed wealth of structure in outer layers of Sun

http://celebrating200years.noaa.gov/breakthroughs/coronagraph/welcome.html

Bernard Lyot

Bernard Lyot sitting at his
Coronagraph at the Pic du Midi observatory in France ca. 1939.

French astronomer and instrument maker

Wanted to study the Sun's corona without waiting for an eclipse

Invented the CORONAGRAPH in 1939 to block sunlight and take photos of the corona.

First circumstellar disk imaged in 1984

Smith and Terrile 1984

Fomalhaut Debris Disk

Image Credit: NASA, ESA, P. Kalas and J. Graham (University of California, Berkeley) and M. Clampin (NASA/GSFC)

AU Mic

Paul Kalas 1990

First Brown Dwarf

Discovered in 1994 from Palomar 60 inch telescope

Gliese 229B - taken with HST

Credit: S. Kulkarni (Caltech), D.Golimowski (JHU) and NASA

...to planets
 HR 8799

b

c 1 November 2009, L' band

Marois et al. (2010)

Orbital Motion seen over several years

b

Atmospheric Transmission

We'd like to see...

10^{9} to 10^{6} times brighter

both are unresolved sources (maybe not the star though...)

Telescopes - VLT in Chile

Large Binocular Telescope

Large Binocular Telescope

The Lingo

Inner Working Angle (IWA) and Outer Working Angle (OWA):

Specify in units of lambda/D the range of angles that the coronagraph effectively works with $\mathbf{> 5 0 \%}$ planet transmission

Contrast (specified in delta magnitudes or number of decades): this is the RAW contrast as seen in the PSF.
Space based coronagraphs aim for 10 decades, ground based fo 5 to 6 decades.

Null order (specified as 2nd, 3rd, 4th, 5th....):
expresses how sensitive the coronagraph is to tip tilt error with the star Higher orders are more immune to tip tilt, but have larger IWAs

Subtracting off a reference image leaves "speckles"

the telescope and and camera "flex"

An ideal contrast curve

Coronagraphs are angular filters

They apodize the telescope PSF ("apodization" is Greek for 'chopping off the foot')

Lenses are Fourier Transform machines

Detector signal \propto Energy $\propto B^{2}$

...and you go from Pupil Plane to Image Plane and back again

Pupil Plane => FFT => Focal Plane $\quad \Rightarrow$ I FFT =>
Pupil Plane

Layout of a basic coronagraph

Telescope pupil

Focal plane mask
Science Camera

Classical/Apodized Lyot Coronagraph

Lyot Stop

By 2007, many types of coronagraph developed

(adapted from Olivier Guyon's slides)

Can be split by method

 Interferometric

Phase Lyot - 4 Quadrant Phase Mask (4QPM)

PHASE CORONAGRAPH WITH FOUR QUADRANTS. I. 148
Phase shift

2nd order null

Fig. 2.-Numerical simulation illustrating the principle of the four-quadrant coronagraph. A companion 15 mag fainter (flux ratio of 10°) is locate λ / D away from the star. The individual images show (a) the shape of the phase mask (white for 0 phase shift, black for π phase shift), (b) the Airy patten played in intensity, (c) the complex amplitude of the star phase shifted by the mask, (d) the exit pupil, (e) the exit pupil through the Lyot stop 95% of th pil diameter) and (f) the coronagraphic image where the companion is clearly visible. Images are displayed with nonlinear scale.

Amplitude Lyot - Band Limited Mask Lyot (BL4, BL8)

A focal plane mask that moves star light into thin crescents at edge of pupil

c) Pupil

b) Conjugate of Mask Function

d) Lyot Stop

Kuchner and Traub 2002
Kuchner 2005

Fig. 4.-Simplest band-limited mask, analogous to a single-baseline nulling interferometer. (a) Mask ITF $\sin ^{4}(x)$ multiplied by a slow taper. Dark areas are opaque. (b) Conjugate of the mask ATF (eq. [13]). This occulting mask can be used with any aperture shape, but for the circular aperture shown in (c), the corresponding Lyot stop is (d).

External Occulter - Flying Sunshades

Cash et al. 2005 SPIE 5899274
Cash 2006, Nature

A paper by Olivier Guyon in 2006 changed the development of coronagraphs. Guyon et al. (2006) ApJSS 16781

The Astrophysical Journal Supplement Series, 167:81-99, 2006 November
C 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A.

THEORETICAL LIMITS ON EXTRASOLAR TERRESTRIAL PLANET DETECTION WITH CORONAGRAPHS
O. Guyon, ${ }^{1}$ E. A. Pluzhnik, ${ }^{1}$ M. J. Kuchner, ${ }^{2}$ B. Collins, ${ }^{3}$ and S. T. Ridgway ${ }^{4}$ Received 2006 May 25; accepted 2006 July 7

Abstract

Many high-contrast coronagraph designs have recently been proposed. In this paper, their suitability for direct imaging of extrasolar terrestrial planets is reviewed. We also develop a linear algebra based model of coronagraphy that can both explain the behavior of existing coronagraphs and quantify the coronagraphic performance limit imposed by fundamental physics. We find that the maximum theoretical throughput of a coronagraph is equal to 1 minus the nonaberrated noncoronagraphic PSF of the telescope. We describe how a coronagraph reaching this fundamental limit may be designed, and how much improvement over the best existing coronagraph design is still possible. Both the analytical model and numerical simulations of existing designs also show that this theoretical limit rapidly degrades as the source size is increased: the "highest performance" coronagraphs, those with the highest throughput and smallest inner working angle (IWA), are the most sensitive to stellar angular diameter. This unfortunately rules out the possibility of using a small IWA $(<\lambda / d)$ coronagraph for a terrestrial planet imaging mission. Finally, a

Small IWA means we are looking closer to the stars OR

We can use a smaller telescope aperture

Coronagraph	Abbreviation	Reference
"Interferometric" Coronagraphs		
Achromatic Interferometric Coronagraph.	AIC	Baudoz et al. (2000)
Common-Path Achromatic Interferometer-Coronagraph .	CPAIC	Tavrov et al. (2005)
Visible Nulling Coronagraph, X-Y shear (fourth-order null) ${ }^{\text {a }}$	VNC	Mennesson et al. (2003)
Pupil Swapping Coronagraph.	PSC	Guyon \& Shao (2006)
Pupil Apodization		
Conventional Pupil Apodization and Shaped-Pupil ${ }^{\text {b }}$	CPA	Kasdin et al. (2003)
Achromatic Pupil Phase Apodization..	PPA	Yang \& Kostinski (2004)
Phase Induced Amplitude Apodization Coronagraph	PIAAC	Guyon (2003)
Phase Induced Zonal Zernike Apodization..	PIZZA	Martinache (2004)

Improvement on the Lyot Concept with Amplitude Masks

Apodized Pupil Lyot Coronagraph.	APLC	Soummer et al. (2003a, 2003b)
Apodized Pupil Lyot Coronagraph, N steps	APLCN	Aime \& Soummer (2004)
Band-limited, fourth-order ${ }^{\text {a }}$	BL4	Kuchner \& Traub (2002)
Band-limited, eighth-order.	BL8	Kuchner et al. (2005)

Improvement on the Lyot Concept with Phase Masks

Phase Mask	PM	Roddier \& Roddier (1997)
4 Quadrant Phase Mask	4QPM	Rouan et al. (2000)
Achromatic Phase Knife Coronagraph	APKC	Abe et al. (2001)
Optical Vortex Coronagraph, topological charge m.	OVCm	Palacios (2005)Guyon et al. (2006)
Angular Groove Phase Mask Coronagraph	AGPMC	Mawet et al. (2005)
Optical Differentiation ..	ODC	Oti et al. (2005)

Guyon developed the idea of a 'theoretical limit' coronagraph

...but nearby stars are not point sources

...and many lose their effectiveness rapidly

Guyon et al. (2006)

We now focus on a much smaller family which can give high contrast at IWA of less than 5 diffraction widths

Figure 4. The family tree of small-angle coronagraphs (representative cases included). DPM: disk phase mask. DZPM: dual zone phase mask. FQPM/8OPM: four-quadrant phase mask, 8 octant phase mask. OVC: optical vortex coronagraph. HBL: hybrid band-limited. PIAAC: phase induced amplitude apodization. APP: apodizing phase plate. CIA: "coronagraphe interferentiel achromatique". VNC: visible nuller coronagraph. PFN: Palomar fiber nuller. Common to all these concepts is some sort of phase manipulation, either in the focal plane or in the pupil plane, or both. Three main families can be pointed out: phase masks, phase/amplitude pupil apodization + focal plane masks (phase and/or amplitude), and interferometers.

Classical Pupil Apodization

Apodization is done with an optic and lens to form a focused image

Guyon 2003

Phase Induced Amplitude Apodization

Two shaped mirrors redistribute the flux to form a gaussian beam

Guyon 2003

Phase Induced Amplitude Apodization

offset $=0$
Peak $=1.0$

$$
\begin{aligned}
& \text { offset }=3 \lambda / \mathrm{d} \\
& \text { Peak }=0.77
\end{aligned}
$$

On-axis PSF is GAUSSIAN

Off-axis is very aberrated

> offset $=6 \lambda / \mathrm{d}$
> Peak $=0.51$

$$
\begin{aligned}
& \text { offset }=9 \lambda / \mathrm{d} \\
& \text { Peak }=0.38
\end{aligned}
$$

Guyon 2003

Phase Induced Amplitude Apodization

Mask off the central PSF and then an inverse PIAA recombines the planet images

Guyon 2003

Phase Induced Amplitude Apodization

 Mask off the central PSF and then an inverse PIAA recombines the planet images

Guyon 2003

Four Quadrant Phase Mask (4QPM)

Destructive interference at Airy disk

PSF with 2 and 4 Quadrant Mask

Fig. 3.-Two-quadrant (left) and four-quadrant (right) images of residuals for HD 32305 obtained in the K_{s} band. The intensity scale is not identical on both images. For comparison, the PSF peak attenuation is 3.9 on the twoquadrant image and 8.1 on the four-quadrant image.

Problems: PSF has blank edges

4QPM on a double star

Fig. 9.-HIP 1306 PSF (left) and FQPM image (right). The exposure time is 60 s for the coronagraphic image and 4 s for the PSF. Not a linear intensity scale $\left(I^{0.5}\right)$. FOV is $1^{\prime \prime} .25$. North is up.

4QPM measured performance

Anne-Lise Maire PhD Thesis (2012)
Observatoire de Paris
Characterisation des exoplanetes par imagerie depuis le sol et l'espace

Imaging Disks

Boccaletti et al. (2012)

Annular Groove Phase Mask

 Mawet et al. (2005)

Add a continuous ramp of phase in the focal plane

Focal plane coronagraphs are sensitive to telescope shake

Telescope pupil

Focal plane mask
Science Camera

Telescope Vibrations

Girard et al. (2012) SPIE

Telescope Vibrations

Pupil plane coronagraphs are NOT sensitive to shake!

Telescope pupil

They modify the shape of the telescope PSF to have a dark region

Classical Pupil Apodization

Modify the telescope pupil through AMPLITUDE and/or PHASE to remove the effects of diffraction

ASA pupil

Classical Pupil Apodization

Most have very low throughput ($\mathbf{0 . 1}$ to 0.3) and limited field of view Jacquinot \& Roizen-Dossier 1964

Pupil

$$
\begin{equation*}
|y|<R \times\left(\mathrm{e}^{-\left(\frac{\alpha x}{R}\right)^{2}}-\mathrm{e}^{-\alpha^{2}}\right) \tag{7}
\end{equation*}
$$

where R is the radius of the pupil, x and y are the D coordinates in the pupil plane, and $\alpha=2$. The pupil transmission is equal to 0 everywhere else.

Optimized Pupil Apodizations

Developed by Carlotti, Vanderlei and Kasdin

Pupil

PSF

Carlotti 2011 JOSA

APP Coronagraph

Codona et al. (2004), Kenworthy et al. (2010)

APP Coronagraph performance not degraded by tip-tilt vibrations or pupil wander

VLT/NaCo 4 microns at real time speed

Direct Imaging at VLT in 2005

Detection of β Pic b
(Lagrange et al. 2009)

Apodizing Phase Plate at VLT

Detection of β Pic b
03 April 2010
(cf. Lagrange et al. 2010)

20 minutes versus 2 hours

Quanz et al. (2010)

What do we want?

The instrumental PSF for each Science Camera Image

Approximating the Science PSF

Approximating the Science PSF

LOCI
 Locally Optimised Combination of Images

LOCI

Locally Optimised Combination of Images

Optimization region geometry a challenge

Stars and Planets

Typically 1 e4 to 1 e9 times brighter than planet

Spatially separate from the star Photons are incoherent from the stellar photons

Diversity and Algorithms

Diversity: The property that differentiates planets from speckles
(e.g. Angular, Temporal, Spectral....)

and

Algorithm: The method used to combine the images to make a PSF based on the Diversity
(e.g. LOCI, PCA)

Diversity and Algorithms

So you can have:
ADI-LOCI, SDI-KLIP, and combinations of different diversities as well!

Diversity and Algorithms

Name	Diversity/Algorithm	Paper
ADI	Angular Differential Imaging	Marois 2006
LOCI	Locally Optimised Combination of Images	Lafreniere 2007
ANDROMEDA		Mugnier 2008
SOSIE	ADI/SSDI/RSDI and LOCI	Marois 2010
PynPoint	Principal Component Analysis	Amara 2012
KLIP	Principal Component Analysis	Soummer 2012
DLOCI	Damped LOCI	Pueyo 2012
TLOCI	Template LOCI	Marois 2014
MLOCI	Matched LOCI	Wahhaj 2015
SADI	SDI+ADI	Rameau 2015

Diversity

$$
I_{n} \text { where } n=1,2,3, \ldots, N
$$

Angular Diversity

$$
I_{n}=I\left(\theta_{n}, t_{n}\right)
$$

The telescope optics are fixed with respect to the science detector and the sky rotates around

Angular Diversity

$$
I_{n}=I\left(\theta_{n}, t_{n}\right)
$$

The telescope optics are fixed with respect to the science detector and the sky rotates around

Angular Diversity

$$
I_{n}=I\left(\theta_{n}, t_{n}\right)
$$

The telescope optics are fixed with respect to the science detector and the sky rotates around

Spectral Diversity

$$
I_{1}=I\left(\lambda_{1}\right)
$$

PSF scales as $\frac{\lambda}{D_{t e l}}$ but the planet remains in the same position

Spectral Diversity

$$
I_{2}=I\left(\lambda_{2}\right)
$$

PSF scales as $\frac{\lambda}{D_{t e l}}$ but the planet remains in the same position

Spectral Diversity

PSF scales as $\frac{\lambda}{D_{t e l}}$ but the planet remains in the same position

PSF Library

$I_{1}=I($ Star 1$) \quad I_{2}=I($ Star 2$) \quad I_{3}=I($ Star 3$)$

Use other stars in the same field of view AND/OR in the same night

Algorithms

We want the science PSF for all images \mathbf{m}

$I_{(m, \text { science PSF })} \quad$ for $\quad m=1,2,3, \ldots, N$
...but that doesn't exist as there's a planet/ disk in all the images!

We approximate by linearly combining all the PSF images and the challenge is to find the best coefficients so that

$$
\begin{gathered}
I_{(m, \text { science PSF })} \approx I_{(m, \text { PSF estimate })} \\
I_{(m, \mathrm{PSF} \text { estimate })}=a_{(1, m)} \cdot I_{1}+a_{(2, m)} \cdot I_{2}+a_{(3, m)} \cdot I_{3}+\ldots
\end{gathered}
$$

A linear combination of all the PSFs

$$
I_{(m, \text { science PSF })} \approx I_{(m, \mathrm{PSF} \text { estimate })}
$$

where

$I_{(m, \mathrm{PSF} \text { estimate })}=a_{(1, m)} \cdot I_{1}+a_{(2, m)} \cdot I_{2}+a_{(3, m)} \cdot I_{3}+\ldots$.
...or more compactly....

$$
I_{(m, \mathrm{PSF} \text { estimate })}=\sum_{N}^{n=1} a_{(n, m)} \cdot I_{n}
$$

We need to determine all the values of $a_{(n, m)}$

Locally Optimised Combination of Images (LOCI) ${ }^{\text {Latenenere eat. (2007) }}$

PSF is cut into small radial and azimuthal wedges
A linear combination of all the science PSFs is chosen to minimise the R.M.S. within a small area

Example of 9 wedges at a given radius around a central star

LOCI

For each wedge subsection S^{T}

LOCI

and Optimisation subsection O^{T}

$$
\begin{equation*}
A=N_{A} \pi\left(\frac{W}{2}\right)^{2}, \tag{1}
\end{equation*}
$$

where W is the full width at half-maximum (FWHM) of the PSF; N_{A} thus corresponds to the number of "PSF cores" that fit in the optimization subsection.

Size of $\mathbf{O}^{\wedge} \mathrm{T}$ is determined by how many diffraction patches can fit in it - minimises the selfsubtraction problem

Linear combination
 You determine what a coefficients will minimise

The reference PSF for the optimization subsection is then constructed according to

$$
\begin{equation*}
O^{R}=\sum_{k \in K} c^{k} O^{k} \tag{3}
\end{equation*}
$$

where the coefficients c^{k} are to be determined by the algorithm. They are computed by minimizing the sum of the squared residuals of the subtraction of O^{R} from O^{T}, which is given by

$$
\begin{equation*}
\sigma^{2}=\sum_{i} m_{i}\left(O_{i}^{T}-O_{i}^{R}\right)^{2}=\sum_{i} m_{i}\left(O_{i}^{T}-\sum_{k} c^{k} O_{i}^{k}\right)^{2} \tag{4}
\end{equation*}
$$

where i denotes a pixel in the optimization subsection and m is a

Multiple parameters to "tune up"

TABLE 1
Parameter Values Used for Optimization

Parameter	Trial Values	Adopted Value	
N_{δ}	$0.25,0.5,0.75,1.0,1.5,2.0$	0.5	FWHM shift
N_{A}................	50, 100, 150, 300, 500	300	\# of FWHM
g....................	0.5, 1.0, 2.0	1.0 ratio	io of width to height
$d r$..................	$1.5,3,6,9,15,(1.5-15)^{\text {a }}$	(1.5-15) ${ }^{\text {a }}$	Width of annuli

${ }^{\text {a }}$ We use $d r=1.5$ for separations less than $60 \lambda / D$ and $d r=15$ for larger separations.

> LOCI has several parameters that need to be optimised for each data set and for each planet radial distance. This is a BIG parameter space to explore.

Self-subtraction

LOCI gain over ADI

Statistical distribution of LOCI pixels is closer to Gaussian

Approximating the Science PSF

PynPoint / KLIP

Amara and Quanz 2012 / Soummer et al. 2012
Any science image can be thought of as a linear combination of an orthogonal basis set formed from all the science images.

$$
\begin{equation*}
I(\vec{x})=\sum a_{i} \phi_{i}(\vec{x}) \tag{1}
\end{equation*}
$$

where $I(\vec{x})$ is the image of the PSF, $\phi(\vec{x})$ is a given basis and a_{i} is the coefficient for each basis function.

Instead of small wedges, the whole stack of images is taken and a Principal Component Analysis (PCA) is performed on it.

Singular Value Decomposition (SVD)

Take stack of input images, and subtract off the mean from all of them, then form a 2-D array S where each row i is the unravelled version of image i.
means that \mathbf{S} has dimensions $\mathbf{M} \times \mathbf{N}$, where \mathbf{N} is the number of pixels in an image and \mathbf{M} is the number of images in a stack. We calculate the SVD such that

$$
\begin{equation*}
\mathbf{S}=\mathbf{U W} \mathbf{V}^{\mathbf{T}} \tag{4}
\end{equation*}
$$

where \mathbf{W} is a diagonal matrix with positive (or zero) elements. In this decomposition, \mathbf{V} is a matrix containing the PCA elements that form an orthogonal basis set (\mathbf{U} and \mathbf{V} are column-orthogonal matricies).

SVD example

Input is a set of images of faces:

http://www.eos.ubc.ca/research/cdsst/Tad home/eigenfaces.html

Produce orthogonal eigenmodes

After SVD, output looks like this:

http://www.eos.ubc.ca/research/cdsst/Tad home/eigenfaces.html

eigenfaces!

Can now use the eigenfaces and linearly fit them to any of the original data using just a few coefficients

http://www.eos.ubc.ca/research/cdsst/Tad home/eigenfaces.html

PynPoint / KLIP

Amara and Quanz 2012 / Soummer et al. 2012

Now linearly fit each image with just a few of the lowest PCA components (typically 2 to 10)

$$
\begin{equation*}
I(\vec{x})=\sum a_{i} \phi_{i}(\vec{x}) \tag{1}
\end{equation*}
$$

where $I(\vec{x})$ is the image of the $\operatorname{PSF}, \phi(\vec{x})$ is a given basis and a_{i} is the coefficient for each basis function.

PynPoint

Amara and Quanz 2012

