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Astronomers want as much spatial 
resolution as possible

Diffraction limited by the telescope’s primary mirror: ⇡ �

Dtel

Hubble Space Telescope      Credit: NASA

⇡ 0.5µm

2.4m
= 0.2µrad

⇡ 43 milliarcsec

for the Hubble Space Telescope



Exposure times in DL scale as D4

as sky background remains 
constant but Airy disk shrinks

from the increase of the telescope mirror areaF / D2

APSF = �dPSF /
✓

1

D

◆2

Double the telescope diameter, 4 
times the flux and 4 times smaller 

Airy disk area



Io with and without Keck AO
Io taken with Keck AO at 2.2 microns Io from Galileo orbiter

Io from the ground
without AO



Spiral arms and star forming structure seen in 
NGC 7469

cfao.ucolick.org/ao/why.php	



Image motion with increasing D
Ground based telescopes do not reach the diffraction 

limit for diameters larger than 0.1m

Atmospheric turbulence smears diffraction 
limited images into seeing limited images 

typically 1 arcsecond in diameter

Increasing Diameter



Air heated next to the ground in the day starts to mix with cooler 
air, starting at large outer scales (30 to 100 m) and cascades 

down to an inertially damped inner scale (a few mm).

Recap: The Atmosphere

Several dominant boundary layers are responsible for most of 
the seeing introduced

Temperature differences lead to refractive index differences in 
the air and to distortion of the incoming wavefronts



Temperature differences in the atmosphere 
lead to changes in refractive index

P = pressure in mbar
T = temperature in Kelvins

n = index of refraction
Wavelength in microns

NOTE: n is almost independent of wavelength!

N ⌘ (n� 1)⇥ 106 = 77.6
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◆Refractivity of air:

Temperature fluctuations lead to index fluctuations..



Atmosphere is modelled with:

Recap: The Atmosphere

Thin layers of frozen turbulence at 2 to 5 different altitudes

An outer and inner scale length, and a power spectrum of index 
fluctuations between them

Each layer described with three parameters:

r0, ⇥0 and �0



Fried length

Equal to diameter of 1rad2 error variance in phase

r0 / �6/5

r0

Atmospheric time constant �0 = 0.31
r0
v

v ⇠ 10 m.s�1

r0 ⇠ 10� 20cm

⌧0 ⇠ 1� 10 ms
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Seeing / �

r0
⇠ ��1/5

….typically quoted at 500nm



The Lyot Project http://lyot.org/

http://lyot.org


Zernike Polynomials
2D structure of circular aperture can be represented by 

an infinite series of orthogonal functions

One such basis set are the Zernike polynomials:

Zernike polynomials and atmospheric turbulence*
Robert J. Noll

The Perkin-Elmer Corporation, Norwalk, Connecticut 06856
(Received 3 October 1975)

This paper discusses some general properties of Zernike polynomials, such as their Fourier transforms, integral
representations, and derivatives. A Zernike representation of the Kolmogoroff spectrum of turbulence is given
that provides a complete analytical description of the number of independent corrections required in a wave-
front compensation system.

INTRODUCTION

The use of Zernike polynomials for describing the
classical aberrations of an optical system is well
known. 1 Fried2 used a form of these polynomials to
describe the statistical strength of aberrations pro-
duced by atmospheric turbulence, while Bradley and
Herrmann 3 described atmospheric thermal blooming
effects. Bezdid'ko4 has discussed the advantages of
Zernike polynomials in solving many optical problems.

In this paper, a review of Zernike polynomials is
undertaken with an emphasis on nomenclature. Some
new Zernike polynomial properties such as integral
representations and derivatives are discussed. Finally,
the work of Fried2 is extended by developing a Zernike
representation of the Kolmogoroff spectrum of turbu-
lence, which permits all the statistical aberration
strengths to be calculated analytically.

ZERNIKE POLYNOMIALS

Zernike polynomials are a set of polynomials de-
fined on a unit circle. It is convenient to use polar
coordinates so that the polynomials are a product of
angular functions and radial polynomials. The angular
functions are the basis functions for the two-dimen-
sional rotation group, and the radial polynomials are
developed from the well known Jacobi polynomials. 1
The polynomials used in this paper are slightly dif-
ferent than the usual set1 in that a different normaliza-
tion is used. The normalization chosen is convenient
for statistical analysis. Because of this normalization
difference, the polynomials used in this paper are tech-
nically a modified set of Zernike polynomials. For
convenience, in this paper the modified Zernike poly-
nomials are simply called Zernike polynomials. The
polynomials are defined here by

Zeven j = n+1 R (r)V2cos m 0

Zdd j = /n+1 R' (r)V sinm 0f

Zj= In+ Ro (r),
where

m •0

m=0

(1)

(n-m)/2

R-(r)= E(-1) (n s). 2Rn r= s![(n+m)/2-s]![(n -m)/2-s]-! (2

The values of n and m are always integral and satisfy
m c n, n - I m I = even. The index j is a mode ordering
number and is a function of n and m. A convenient or-
dering of the modes is shown in Table I. The defini-
tion in Eq. (1) is convenient because it gives a logical
ordering to the modes and allows the modal orthog-
onality relation to be written
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f d 2r W(r) Z, Z,1 = 6w,, (3)

where5

W(r)= 1/Tr r• 1

=0 r>1.

Typical interest in Zernike polynomials centers
around a polynomial expansion of an arbitrary wave
front over a circular aperture of arbitrary radius (R).
Thus, if c(r, 0) is some arbitrary function, its poly-
nomial expansion over a circle of radius (R) is given by

O (Rp, 0)=ZajZj(p, 0) , (4)
j

with p = r/R and the coefficients aj being given by

a,=f =dpW(p)O(Rp, 0)Zj(p, 0) (5)

or

a j= (1/RI)f d 2 r W(r/R)O (r, 0)Zj (r/R, 0) . (6)

The first few polynomials are shown in Table I along
with the classical aberration with which they are as-
sociated. 1

PROPERTIES OF ZERNIKE POLYNOMIALS
Let Qj(k, 4) be the Fourier transform of Zj (p, 0) so

that

W(p)z(p, 0)= f d2 k Qj (k, p)e 2
7ik-P (7)

The transform Qj (k, O) can be written1 from Eq. (1) as

Q even j ( k, O) =

Q0 dd (k, O)= tn+1 J,.j(2irk)

Q1(k /) = irk
(8)

where J, (x) is the Ith order Bessel function of the first
kind. If Eq. (8) is substituted back into Eq. (7), an in-
tegral representation for the radial function R', is found

) to be

Rn(p)= 2ir(- 1)(n")/2 dkJn Fi(27rk)Jm(21rkp) -
0

(9)

ZERNIKE DERIVATIVES

The integral representation for the function R'(p)
provides a good starting point for calculating deriva-
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. . , \ ,9 - .

(-I)W-m)t2i-V2 COS MO I

( -1) (n-m)/2 im ,f-2-sin m 0 ,

(_ 1)nl2 , (M = 0)
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Lowest orders match optical aberrations

https://www.comsol.com/release/5.2a/ray-optics-module



Atmospheric turbulence in Zernikes

Noll 1976 JOSA 66 3

tained by evaluating the covariance of the expansion
coefficients in Eq. (4). The coefficients aj can be con-
sidered to be Gaussian random variables with zero
mean so that the covariance is, from Eq. (5),

(asajs )=f dpf dp'W(p)W(p')Zj(p, 0)

XC(RpC Rp')Zh.(P', a r )a , (22)

where C(Rp, Rp') is the phase covariance function

C(Rp, Rp')=(P(Rp)(A(Rp')) . (23)

Equation (22) can also be written in Fourier space as

(agaj,)=JJdkdkk iQ(k)4(k/Rk'/R)Qj,(kJ),

where

c1(.k/R, k'/R)= O. 023(R/ro)5/ 3k"1/ 36(k - k').

Substituting Eq. (8) into Eq. (24) yields

(24)

(aj a,,) = (0. 046/7T)(R/ro)' / 3 [(n +1l)( n,+ 1)]1 /2
X(- 1)0+0-2n)/26mmI

x k-8/3 jn+1(27Tk)Jnal+(2 Trk) (5x f dk kz(25)

which is a Zernike matrix representation of the Kolmo-
goroff phase spectrum. This representation has the
advantage that the integrals that appear in Eq. (25) can
be evaluated in closed form (see Appendix).

DEGREES OF CORRECTION
If the lowest order aberrations in the random wave

front are corrected, one is interested in knowing how
much wave-front distortion remains. This question is
easily addressed with Zernike polynomials. If the first
J modes are corrected, the correction can be written

J
Oc=EajZj (26

j=1

The mean square residual error can be defined as

A= J dp W(p) ([ (P(Rp) - Oc(Rp)]2 ) * (27

Substituting Eq. (26) into (27) and remembering that
(aj )=O yields

J

Aej=(¢2)- ( aj I'), (28
J=1

where (42) is the phase variance, which is infinite for
the Kolmogoroff spectrum. This infinity is contained
solely in the piston mode (see Appendix) of the spec-
trum so that Al is finite. The first few values of Ar
are shown in Table IV. When J is large (J > 10), Eq.
(28) can be approximated by6

A1 , 0. 2944J -I/2(D/ro)5 / 3[rad2 ] . (29)

Fried2 calculated the first few values of A by a very
laborious technique. His results compaire with tLhose
in Table IV. The advantage of the Fourier representa-
tion of the Zernike polynomials is therefore the ease
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TABLE IV. Zernike-Kolmogoroff residual errors (A1 ). (D
is the aperture diameter.)

A,= 1.0299 (D/ro)5'"
A2 = 0.582 (Dir 0 )5 /3

A3 =0.134 (D/r0 )5 /3

A4 = 0.0111 (Dr 0)
513

A = 0.0880 (D/rO) 5/3

A6 =0.0648 (D/ro)51/3
A7 =0.0587 (D/r0 )5/3

A8 =0.0525 (D/ro)51 3

A,=0.0463 (D/ro)51/3

A1 0 = 0.0401 (Diro)5 /3

A12 = 0.0352 (D/r0 )I/3

A 3, = 0.0328 (Diro) 5 /3

A14 = 0.0304 (D/ro)I/ 3

Ai 5 =0. 0279 (Dir 0 )5 /3

A16 = 0. 0267 (DIro)~'3

A17 = 0.0255 (Diro)5 /3

A, 8 = 0.0243 (D/ro) 5/3

A13 = 0.0232 (D/ro) 5/3

A20 = 0. 0220 (D/ro)5/1 3

A21 = 0. 0208 (Diro) 51 3

A,,= 0.0377 (D/ro) 5 /3

A, -0.2944 J,3/2 (D/ro) 5/ 3 (For large J)

by which all the A, can be calculated.

CONCLUSION
The properties of Zernike polynomials have been re-

viewed. In particular, rules for computing the de-
rivatives of these polynomials as a linear combination
of the polynomials themselves have been given.

Derivatives of Zernike polynomials can be useful
whenever the gradient of a wave front is required.
Wave-front gradients occur in some geometrical optics
problems as well as direct measurements in an elec-
tronic Hartmann Test. 7

An application of Zernike polynomials to the problem
of atmospheric wave-front correction is discussed. It
is found that the Zernike polynomials permit an analytic
evaluation of the residual wave-front error for any
number of independent corrections.

In general, the optimum correction would be obtained
from a set of orthonormal functions that make the ma-
trix defined by Eq. (22) a diagonal matrix. These func-
tions are eigenfunctions of the covariance matrix and
constitute the basis for a Karhunen-Loeve expansion
of the wave front. For the Kolmogoroff spectrum of
turbulence, the Karhunen-Loeve functions are not anal-
ytic functions. The advantage of Zernike polynomials
as a basis is not only that results can be obtained in
closed form, but also that the first few modes repre-
sent the classical aberrations familiar to opticians.
Comparison of the Zernike with a Karhunen-Loeve ex-
pansion8 suggests that the Zernike expansion is near
optimum.

APPENDIX
Evaluation of the integral I,,,,

In this section the integral in Eq. (25), I,, is eval-
uated:

I= rdkk_813 Jn..(k)Jn,.(k) (Al)

This integral is tabulated in most standard integral ta-
ble handbooks of Bessel function integrals:
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…is the r.m.s. residual of the wavefront 

after correction of J Zernike terms

Free atmosphere can be described as a 
Zernike expansion 



Atmospheric Transmission

Wavelength (microns) Source: HITRAN model Wikipedia
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Figure 3: Optical-IR night sky spectrum. For λ < 1µm the spectrum is that presented in
Fig. 2 while for λ > 1µm the synthetic model used in Gemini Exposure Time Calculator
was adopted.

that there is no strong dependency on the geomagnetic latitude, at variance with what happens
for auroral activity.
As far as the satellite observations are concerned, the data provided by the Improved Strato-
spheric and Mesospheric Sounder on the UARS satellite show no differences (within the er-
rors) between high and mid-latitudes in the average intensities of OH nightglow [22]. Also,
the ground-based measurements of OH emission between 837.5 nm and 856.0 nm obtained
at Davis, Antarctica (68 degrees south) do not show significant differences with respect to
low-latitude sites (see [10] and references therein).
The conclusion of my search in the literature is that there is no clear indication of a geomagnetic
latitude dependency of the airglow, while this is more firmly established for auroral emission.
In this respect, it is worth noting that two experiments are being setup at Dome C, namely
Gattini and Nigel (J. Storey and A. Moore, private communication). Those instruments are
going to provide spectrophotometry both during twilight and night time.
As far as the site dependency of IR background is concerned, the situation is less clear. The
background at 1.7 µm on Paranal has been reported to be a factor 4 brighter than in Mauna
Kea [6]. Since at this wavelength the thermal emission is still negligible (see Fig. 7), the
difference is indeed difficult to explain. However, this is in conflict with the values reported by
UKIRT1, which are in good agreement with those measured at Paranal2.

2.1.1 The case of NaI D lines

While all night sky emission lines are indeed hindering astronomical observations, there is one
remarkable exception, namely the Sodium D lines (5890, 5896 Å), on which the whole LGS

1See http://www.jach.hawaii.edu/UKIRT/astronomy/sky/skies.html
2See http://www.eso.org/gen-fac/pubs/astclim/paranal/skybackground/

4

Wavelength (microns) Source: Gemini Exposure Time Calc
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Atmospheric Emission



The atmosphere limits diffraction limited 
imaging

Diffraction limited by the turbulent atmosphere:

Hubble Space Telescope      Credit: NASA

Typically for professional observatories:

⇡ �

r0

⇡ 0.5µm

10 cm
= 5µrad

⇡ 1 arcsec



If telescope is similar to Fried length,
cheap AO can be done with tip tilt removal

�/r0

Image size in 

10

1

0.1

Long exposure

Diffraction Limit
Short 

Exposure
Image motion only

1 10 100

Telescope aperture in D/r0



The achromaticity of the 
atmospheric OPD is exploited in AO

Measuring the wavefront at shorter wavelengths means that you
can correct for the atmosphere at longer wavelengths

Many systems measure in the visible and provide 
correction for red and infra-red wavelengths

Measure in the blue Correction in the red



AO makes spectrographs smaller

Spectrographs disperse the image of the slit...

...but larger telescope means either larger spectrograph collimator or lower resolution

AO decouples image size from telescope!



Natural Guide Stars



Layout of an AO System



WFS measures wavefront and commands 
the deformable mirror to compensate

- but it’s not perfect!



Several errors combine in quadrature to 
make imperfect correction

�2
total

= �2
fit

+ �2
tau

+ �2
phot

+ �2
iso

+ �2
focal

+ �2
other

Fitting error

Temporal error

Photon error

Isoplanatic error

Focal isoplanatic



Error due to time lag

You have to run your loop about 10x faster than 

�2
tau = 28.4

✓
⌧

⌧0

◆5/3

�2
tau < 1, ⌧ < 0.13⌧0

Credit: crowforsaken

⌧0



Error due to fitting

Your deformable mirror cannot match perfectly the wavefront

�2
fit = µ

✓
d

r0

◆5/3

Subaperture diameter d

µ = 0.14

Segmented mirror with 
tip, tilt and piston:

Continuous face sheet:

µ = 0.28



Isoplanatic Angle

Ground Layer

Mid-level

Jet Stream

�0 = 0.31
r0
h

✓0 h ⇠ 5 km



Error due to anisoplanatism

Your guide star doesn’t see the same atmosphere as the science target

Theta is the angular distance between star and target

�2
iso

=

✓
✓

✓0

◆5/3



Split pupil into      patches and measure 
tip tilt of each patch

r0



Wavefront Sensing
Signals added along...

Rows

Columns

Star drifting in RA Star off in both RA
and Dec

Image of Guide Star

Star centred in tip−tilt sensor

WFS Image from 6.5m MMT

Lenslet Array
Image of Telescope Mirror

Shone on Lenslet Array

Many tip−tilt sensors side by side



Wavefront Sensor (WFS)



Measuring the influence matrix

slope of mirror surface and Shack-Hartmann star 
positions are proportional to actuator position

linear relationship between actuator a and star position 
c:

combine equations for each spot position n into matrix equation:

C = BA

cn =
NX

k=1

akbnk

C = star positions
A = actuator positions
B = influence matrix describing influence of specific actuator position on star 

positions

There are  N total spot positions from the SH WFS and actuator displacement/voltage a



Measuring the influence matrixMeasuring	the	Influence	Matrix	

•  measure	centroid	posi/ons	in	subapertures	for	
different	se3ngs	of	actuator	k	

•  for	actuator	k	and	subaperture	n,	slope	of	best	fit	line	
is	element	(n,	k)	of	influence	matrix	B	

Actuator 1, Trial 1, Spot 17 (horizontal)    r = .988

-1.5

-1

-0.5

0

0.5

1

1.5

0.E+00 2.E+04 4.E+04 6.E+04 8.E+04
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Sp
ot

 O
ff

se
t (

pi
xe

ls
)

9 May 2016 Astronomical Observing Techniques 2016: Adaptive Optics 22 



Determining the Control Vector
•  	Influence	matrix	B	is	known,	C	from	wavefront	sensor	
•  	Find	control	vector	A	to	correct	for	error	in	wavefront	
•  	Matrix	inversion	of	B?	

A = B�1C

This is an overdetermined system:
more centroid measurements than actuators

No exact solution for A exists
B is rectangular and noninvertible

Singular Value Decomposition can approximate
the inverse of B



Natural Guide Star (NGS)

Ground Layer

Mid-level

Jet Stream

Larger telescope needs 
more WFS subapertures



Image quality is quoted in Strehl Ratio

Strehl ratio increases with wavelength for a given AO 
system and gain

1 micron: S=10%

S = Strehl ratio =

peak of flux normalised measured PSF

peak of flux normalised DL image PSF

2 microns: S=40% 5 microns: S=90%



Diffraction Limit

LBT AO System



Bigger telescopes see more 
turbulent cells....

...so that the limiting magnitude of many AO systems is 
the same (to an order of magnitude)

Better QE/read noise of cameras

More efficient optical 
train for AO system

Better WFS designs - 
Pyramid, curvature....



Mostly at the largest telescopes, 
where there is the best payoff

• Keck 10m LGS systems

• VLT 8.4m (LGS soon)

• Gemini 8.2m NGS and LGS

• Subaru 8.2m NGS and LGS

• MMT 6.5m NGS and LGS



Deformable 
Secondary Mirrors



Leads to less than optimal paths and lower
observing efficiency

Most AO systems are added as an 
afterthought to classical telescopes



Using a deformable secondary mirror (DSM) 
improves sensitivity

Two warm surfaces
Minimal thermal background

MMT 6.5m telescope with the world’s first DSM 



Deformable Secondary 
Mirror

2mm thick by 640 mm diameter

336 voice coil actuators

Undersized pupil
for IR observations
(effective D=6.35m)



Deformable Secondary Mirror

Fixed zerodur spherical reference body

Thin aluminized glass shell
with 336 Nb magnets stuck on inside surface

640mm diameter



100 micron air gap makes viscous damping

Reference body

Nb magnet

100 micron gap

Capacitative sensor ring 
around every actuator hole
in a closed loop at 40kHz

Solenoid
electromagnet



Deformable Secondary Mirror



Deformable Secondary Mirror



Deformable Secondary Mirror



Deformable Secondary Mirror



Thermal IR Performance

• 7% emissivity compared to Keck’s 25-50%

• Very clean pupil, ideal for 5 micron and longer 
wavelengths



Current and planned DSM facilities

Credit: David Steele, AP

Large Binocular Telescope

Very Large Telescope

G. Hüdepohl/ESO

MMTO TelescopeMagellan 6.5m

LCO Website
H. Lester/MMTO

Giant Magellan Telescope



Isoplanatic Angle
✓
iso

10-20 arcsec for IR

2-4 arcsec for visible



Not enough Natural Guide Stars for 
complete sky coverage



Not enough Natural Guide Stars for 
complete sky coverage
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Laser Guide Stars



Sodium Laser Guide Star

Ground Layer

Mid-level

Jet Stream

70-80 km

Unsensed turbulence



Sodium Laser Guide Star

Ground Layer

Mid-level

Jet Stream

70-80 km

Unsensed turbulence



Real data:  
Kumar et al. 2007  

Rayleigh goes as exponential ATM pressure

Mesospheric Sodium 
scattering

Rayleigh scattering



Looking up at Na LGS at Keck

Mesospheric Sodium scattering

Rayleigh scattering

Credit: Claire Max at CfAO



Na varies with season 
and location....

Rayleigh scattering

Credit: Claire Max at CfAO



...and on smaller timescales

Rayleigh scattering

From Pfrommer et al. Credit: Claire Max at CfAO



LGS still needs a Tip Tilt NGS

TT is the same going
up and going down for LGS

 Credit: Tokovinin / Claire Max at CfAO

Only TT sensing needed,
so guide star can be fainter



Keck Observatory LGS

Credit: Claire Max at CfAO



Keck LGS Science of the Galactic Centre

Credit: Claire Max at CfAO

Andrea Ghez Group at UCLA

Best NGSLGS



Keck AO Performance
Keck NGS

Keck LGS



MMT Rayleigh LGS 
Slides: Michael Hart, Steward Observatory



Rayleigh Laser Guide Star 

Ground Layer

Mid-level

Jet Stream

10-20 km



Multiple Rayleigh Laser Guide Stars 

Ground Layer

10-20 km

MMTO 6.5m
GLAO

System

Native seeing: 0.70” GLAO image width: 0.30”

Globular 
Cluster
M3 at

K band



Five lasers on the sky

Laser type 2 x doubled YAG (15 W each)

Wavelength 532 nm

Pulse rep rate 5.2 kHz

Average power 30 W

Launch telescope location Behind secondary mirror

Number of beacons 5, arranged as a regular pentagon

Enclosed field of view 2 arcminutes

Beacon type Rayleigh scattering

Range gate 20-29 km with dynamic refocusing



Dynamic refocus in operation

• The lasers are pulsed at 5 kHz 

• Each laser pulse is tracked as it 
rises through the atmosphere by 
refocusing the telescope very fast 

• If we didn’t do that, the pulses 
would appear on the wavefront 
sensor as streaks, and all useful 
information would be lost



MMT results: M3

Open loop, 2.2 µm filter, seeing 0.70” 
Logarithmic scale

110”



MMT results: M3

Closed loop, 2.2 µm filter, seeing 0.30” 
Logarithmic scale

110”



MMT results: M3 zoomed in

Open loop, 2.2 µm filter, seeing 0.70” 
Linear scale

27”



MMT results: M3 zoomed in

Closed loop, 2.2 µm filter, seeing 0.30” 
Linear scale

27”

Ks = 18



Telescope Vibrations
Figure 4: Layout of the AO system and relevant parts of the MMT.

Primary Mirror
Secondary Hub

Deformable Mirror

Reference Body
and cooling plate

Hexapod

Crate electronics

Dichroic

Top
Box

Scientific Light Path

A B

C

Wafefront Sensor

Earlier investigations at the telescope during an f/9 secondary mirror run showed that
the pillar vent fan did not contribute measurable vibration to the telescope. On the night
that we took f/15 data, there was no wind on top of the mountain for the entire night -
the unusual result of a cold front passing over the telescope the afternoon before. We
concentrated our investigation on these three remaining sources of vibrations.

2.2 Rotation and translation estimates for the Deformable Mirror
We have calculated the required motions needed to cause a 20mas displacement of a
stellar image at the focal plane of the MMTAO system, and these values are listed in
Table 1. Most notable is that a rotation about a point where the optical axis of the
telescope intersects the DM mounting plate/hexapod interface gives a nearly identical
result to that of a simple tilt on the DM. The system is relatively insensitive to decenter.

3 Data Acquisition
All data presented here were taken on the night of 13 October 2003. The weather was
clear, and there was no significant wind flow on the top of the mountain for the entire
night. All times are reported in UT, which is 7 hours of Mountain Standard Time. Each
time data was taken, the orientation of the telescope was noted, along with the state of
various vibration producing systems on and around the telescope. In many cases, data
were taken during the switching on or off of a given device.

In a few cases, data were taken simultaneously with 1) accelerometers on the sec-
ondary hub, 2) wavefront sensor data when the AO system was in closed loop on a
given star, and 3) from the telescope control system mount. These data were saved as
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Figure 1: The reconstructed tip-tilt open loop data from closed loop data taken at 550
Hz frame rate. The plots span times between appx. 9:06 and 9:40 UT on October 13,
2003. NOTE: the number in brackets after the UT date is the r.m.s. amplitude summed
between 15 and 25 Hz, and as such represents the r.m.s. amplitude in milliarcseconds
on the WFS. Each data set is approximately 7 seconds long.
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Figure 9: A zoom of Figure 8
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