Telescopes

ATI Lecture 07 2017 Keller and Kenworthy

Dutch Telescopes

1608

Hans Lipperhey

Dutch Telescopes

1609

Dutch Telescopes

Chromatic aberration

Magnification requires stabilisation and guiding

Weight goes as D³

Lick refractor 36 inch lens

Long telescope tubes

Glass sags under gravity

If one shapes the lens so that it brings light to a focus properly when standing on its edge ...

http://spiff.rit.edu/classes/phys301/lectures/optical_tel/optical_tel.html

Glass sags under gravity

... then gravity will distort the lens as it is moved to look straight up.

Glass homogeneity is difficult to maintain

Newtonian Telescope

Newtonian Telescope

1668 1842

Introducing a Secondary Mirror

Primary focus is awkward to get to

(c) Amanda Bauer

Adding a secondary mirror can relay the focus to a more convenient location!

All these curves can be parameterised with one equation:

$$y^2 - 2Rz + (1 - e^2)z^2 = 0$$

Conic constant K is defined as:

$$K = -e^2$$

focal distance with r

For all conics, the rays come to a focus at distance z:

$$z = \frac{R}{1+K} \left[1 - \left(1 - \frac{r^2}{R^2} (1+K) \right)^{1/2} \right]$$

focal distance with r

You can expand the power series and keep only the first two terms:

$$f = \frac{R}{2} - \frac{(1+K)r^2}{4R} - \frac{(1+K)(3+K)r^4}{16R^3} - \dots$$

unless K=-1, the focal distance f changes with radius r and you have SPHERICAL ABERRATION

One focus at infinity, concave mirror - paraboloid

$$e = 1, K = -1$$

Two finite foci, concave mirror - ellipsoid

$$0 < e < 1, -1 < K < 0$$

$$e > 1, K < -1$$

Two finite foci, convex mirror - hyperboloid

Gregorian Telescope

Normalized Parameters for Two-Mirror telescopes

Normalized Parameters for Two-Mirror telescopes

```
k = y_2/y_1 = ratio of ray heights at mirror margins \rho = R_2/R_1 = ratio of mirror radii of curvature m = -s_2'/s_2 = f/f_1 =transverse magnification of secondary f_1\beta = D\eta = back focal distance, or distance from vertex of primary mirror to final focal point \beta and \eta, back focal distance in units of f_1 and D, respectively F_1 = |f_1|/D = primary mirror focal ratio W = (1-k)f_1 = distance from secondary to primary mirror = location of telescope entrance pupil relative to the secondary when the primary mirror is the aperture stop mkf_1 = distance from secondary to focal surface F = |f|/D = system focal ratio, where f is telescope focal length
```

$$m = \frac{\rho}{\rho - k}$$
 $\rho = \frac{mk}{m - 1}$ $k = \frac{1 + \beta}{m + 1}$

Cassegrain Telescope

Short telescope with long focal length

Effective focal length:

$$f_{eff} = \frac{f_1 f_2}{f_1 - f_2 - d}$$

Secondary magnification:

$$m = f_{eff}/f_1 = s_2'/s_2$$

And so....

$$f_{eff} = d + b + md$$

Field curvature in all two-mirror telescopes

$$\frac{1}{r_f} = \frac{1}{R_1} - \frac{1}{R_2}$$

Concave focal plane towards the sky

Classical Cassegrain

Classical Cassegrain balances $\,K_1\,{\rm and}\,\,K_2\,$ to remove SPHERICAL ABERRATION

$$K_1 = -1$$

$$K_2 = -\left(\frac{m+1}{m-1}\right)^2$$

Paraboloidal primary

Hyperboloidal secondary

...but still coma and astigmatism

Classical Cassegrain

Classical Cassegrain balances $\,K_1\,{\rm and}\,\,K_2\,$ to remove SPHERICAL ABERRATION

VLT as classical Cassegrain

$$K_1 = -1$$

 $K_2 = -1.62$

Gregorian astronomical telescopes

Classical Gregorian uses elliptical secondary Much longer than equivalent Cassegrain! So why use it?

intermediate

Gregorian solar telescopes

Much longer than equivalent Cassegrain! So why use it?

Focus at primary mirror means that you can have a HEAT STOP

Ritchey-Chrétien Telescope

Infinite combination of K_1 and $\ K_2$ for zero spherical

Can cancel spherical and coma with the right values

$$K_1 = -1 - \frac{2(1+\beta)}{m^2(m-\beta)}$$

and:

$$K_2 = -\left(\frac{m+1}{m-1}\right)^2 - \frac{2m(m+1)}{(m-\beta)(m-1)^3}$$

Ritchey-Chrétien Telescopes

Ritchey-Chrétien Telescope

Infinite combination of K_1 and K_2 for zero spherical

Making the conics

Conic	Testing	Why?
Spherical	Very easy	Single conjugate point easy for interferometer
Paraboloidal	Easy	Double pass with a mirror can test like spherical
Ellipsoidal	Easy	Two foci, but one mirror to get back to conjugate
Hyperboloidal	Difficult	Need a Hindle sphere test - no accessible focus

Two Mirror Telescope aberrations

On-axis aberrations are SPHERICAL

Off-axis aberrations include: coma, astigmatism, and field distortion

Wide field telescopes

Schmidt corrector plate widens the field of view

Wide field telescopes

Three Mirror Anastigmat (TMA)

fixes spherical, coma, astigmatism with three conic constants

Wide field telescopes

M1 and M3 polished out of same blank!

Wide field telescopes

James Webb Space Telescope (JWST)

Largest Monolithic Mirrors

Spin-casting mirrors in Arizona

Glass loaded into the mold

SOML Spinning Oven

GMT mirror 4 in 2015

John Hill / University of Arizona

Segmented Primary Mirrors

Individual mirrors easy to manufacture

Keck I and II

Segmented Primary Mirrors

Individual mirrors easy to manufacture

E-ELT: 984 1.4-m segments

Equatorial Mounts

Only one axis to guide

• equatorial (RA, dec)

Hale 200" @ Palomar

Alt-Az mounts

Computer controllers make this preferred option

Zenith inaccessible due to azimuth drive speed

Herschel 1789

E-ELT (2026)

Derotation

Sky rotates with hour angle

Rotation speed is variable

Sky rotates with hour angle

- δ = source declination
- φ = telescope lattitude
- alt-az at Cassegrain focus:

$$\cos \vartheta_{\text{Cass}} = \frac{\sin \varphi - \sin(alt) \sin \delta}{\cos(alt) \cos \delta}$$

alt-az at Nasmyth (or Coudé) platform:

$$\theta_{\text{Nasmyth}} = alt - \theta_{\text{cass.}} (-az)$$

Derotating the field of view

Sky rotates with hour angle

- rotate entire instrument
- derotator
 - K-mirror
 - Dove prism
 - anything rotatable with an odd number of reflections

Fixed elevation telescopes

Coelostat

Only one mirror to steer across sky

LAMOST (China)

Coelostat

Only one mirror to steer across sky

LAMOST (China)

Focal stations

Sky rotates with hour angle

Outside air cools much faster than large telescope mirrors

Warm mirror and cold night air mix to form 'mirror seeing'

Temperature control with air jet cooling

Arizona Mirror Laboratory

ZERODUR from SCHOTT

One of the lowest Coefficient of Thermal Expansions (CTEs)

Temperature

Ultra-Low Expansion (ULE) glass

Fused silica doped with titanium to make CTE close to 0 at room temps (Corning) some 20 times lower CTE than regular float glass

Thermal Expansion

https://www.corning.com/media/worldwide/csm/documents/7973%20Product%20Brochure%202015_07_21.pdf

Lightweighting with Silicon Carbide

Operating range: 0 to 200 K

Ideal for space based operations

Difficult to polish

Comparison of CTEs

