Lecture 4: Polarization

Content

- Polarized Light in the Universe
(2) Polarization Ellipse
© Jones Formalism
(9) Stokes and Mueller Formalisms
- Poincaré Sphere
(0) Polarizers
© Retarders

Polarized Light in the Universe

Polarization indicates anisotropy \Rightarrow not all directions are equal
Typical anisotropies introduced by

- geometry (not everything is spherically symmetric)
- temperature gradients
- density gradients
- magnetic fields
- electrical fields

13.7 billion year old temperature fluctuations from WMAP

BICEP2 results and Planck Dust Polarization Map

I map 1 deg resolution

$$
\xi 1
$$

Scattering Polarization 2

The Power of Polarized Light Measurements

T Tauri in intensity
MWC147 in intensity

T Tauri in Linear Polarization

Solar Magnetic Field Maps from Longitudinal Zeeman Effect

Summary of Polarization Origin

- Plane Vector Wave ansatz $\vec{E}=\vec{E}_{0} e^{i(\vec{k} \cdot \vec{x}-\omega t)}$
- spatially, temporally constant vector \vec{E}_{0} lays in plane perpendicular to propagation direction \vec{k}
- represent \vec{E}_{0} in 2-D basis, unit vectors \vec{e}_{x} and \vec{e}_{y}, both perpendicular to \vec{k}

$$
\vec{E}_{0}=E_{x} \vec{e}_{x}+E_{y} \vec{e}_{y}
$$

E_{x}, E_{y} : arbitrary complex scalars

- damped plane-wave solution with given ω, \vec{k} has 4 degrees of freedom (two complex scalars)
- additional property is called polarization
- many ways to represent these four quantities
- if E_{x} and E_{y} have identical phases, \vec{E} oscillates in fixed plane
- sum of plane waves is also a solution

Polarization Ellipse

Polarization Ellipse

Polarization

$$
\begin{aligned}
& \vec{E}(t)=\vec{E}_{0} e^{i(\vec{k} \cdot \vec{x}-\omega t)} \\
& \vec{E}_{0}=\left|E_{x}\right| e^{i \delta x} \vec{e}_{x}+\left|E_{y}\right| e^{i \delta_{y}} \vec{e}_{y} \\
& \text { - wave vector in } z \text {-direction } \\
& \text { - } \vec{e}_{x}, \vec{e}_{y}: \text { unit vectors in } x, y \\
& \text { - }\left|E_{x}\right|,\left|E_{y}\right|: \text { (real) amplitudes } \\
& \text { - } \delta_{x, y}:(\text { real) phases }
\end{aligned}
$$

Polarization Description

- 2 complex scalars not the most useful description
- at given \vec{x}, time evolution of \vec{E} described by polarization ellipse
- ellipse described by axes a, b, orientation ψ

$$
m \bar{m} \bar{m}
$$

Jones Formalism

Jones Vectors

$$
\vec{E}_{0}=E_{x} \vec{e}_{x}+E_{y} \vec{e}_{y}
$$

- beam in z-direction
- \vec{e}_{x}, \vec{e}_{y} unit vectors in x, y-direction
- complex scalars $E_{x, y}$
- Jones vector

$$
\vec{e}=\binom{E_{X}}{E_{y}}
$$

- phase difference between E_{x}, E_{y} multiple of π, electric field vector oscillates in a fixed plane \Rightarrow linear polarization
- phase difference $\pm \frac{\pi}{2} \Rightarrow$ circular polarization

Summing and Measuring Jones Vectors

$$
\vec{E}_{0}=E_{x} \vec{e}_{x}+E_{y} \vec{e}_{y}, \quad \vec{e}=\binom{E_{x}}{E_{y}}
$$

- Maxwell's equations linear \Rightarrow sum of two solutions again a solution
- Jones vector of sum of two waves = sum of Jones vectors of individual waves if wave vectors \vec{k} the same
- waves must have the same wave vector and direction of propagation
- addition of Jones vectors: coherent superposition of waves
- elements of Jones vectors are not observed directly
- observables always depend on products of elements of Jones vectors, i.e. intensity $I=\vec{e} \cdot \vec{e}^{*}=e_{x} e_{x}^{*}+e_{y} e_{y}^{*}$

Jones matrices

- influence of medium on polarization described by 2×2 complex Jones matrix J

$$
\vec{e}^{\prime}=J \vec{e}=\left(\begin{array}{ll}
J_{11} & J_{12} \\
J_{21} & J_{22}
\end{array}\right) \vec{e}
$$

- assumes that medium not affected by polarization state
- different media 1 to N in order of wave direction \Rightarrow combined influence described by

$$
\mathrm{J}=\mathrm{J}_{N} \mathrm{~J}_{N-1} \cdots \mathrm{~J}_{2} \mathrm{~J}_{1}
$$

- order of matrices in product is crucial
- Jones calculus describes coherent superposition of polarized light

Linear Polarization

- horizontal: $\binom{1}{0}$
- vertical: $\binom{0}{1}$
- $45^{\circ}: \frac{1}{\sqrt{2}}\binom{1}{1}$

Notes on Jones Formalism

- Jones formalism operates on amplitudes, not intensities
- coherent superposition important for coherent light (lasers, interference effects)
- Jones formalism describes 100\% polarized light

Stokes and Mueller Formalisms

Stokes Vector

- formalism to describe polarization of quasi-monochromatic light
- directly related to measurable intensities
- Stokes vector fulfills these requirements

$$
\vec{I}=\left(\begin{array}{c}
I \\
Q \\
U \\
V
\end{array}\right)=\left(\begin{array}{c}
E_{x} E_{x}^{*}+E_{y} E_{y}^{*} \\
E_{x} E_{x}^{*}-E_{y} E_{y}^{*} \\
E_{x} E_{y}^{*}+E_{y} E_{x}^{*} \\
i\left(E_{x} E_{y}^{*}-E_{y} E_{x}^{*}\right)
\end{array}\right)=\left(\begin{array}{c}
\left|E_{x}\right|^{2}+\left|E_{y}\right|^{2} \\
\left|E_{x}\right|^{2}-\left|E_{y}\right|^{2} \\
2\left|E_{x}\right|\left|E_{y}\right| \cos \delta \\
2\left|E_{x}\right|\left|E_{y}\right| \sin \delta
\end{array}\right)
$$

Jones vector elements $E_{x, y}$, real amplitudes $\left|E_{x, y}\right|$, phase difference $\delta=\delta_{y}-\delta_{x}$

- $I^{2} \geq Q^{2}+U^{2}+V^{2}$
- can describe unpolarized $(Q=U=V=0)$ light

Stokes Vector Interpretation

$$
\vec{I}=\left(\begin{array}{c}
I \\
Q \\
U \\
V
\end{array}\right)=\left(\begin{array}{c}
\text { intensity } \\
\text { linear } 0^{\circ}-\operatorname{linear} 90^{\circ} \\
\text { linear } 45^{\circ}-\operatorname{linear} 135^{\circ} \\
\text { circular left }- \text { right }
\end{array}\right)
$$

- degree of polarization

$$
P=\frac{\sqrt{Q^{2}+U^{2}+V^{2}}}{I}
$$

1 for fully polarized light, 0 for unpolarized light

- summing of Stokes vectors = incoherent adding of quasi-monochromatic light waves

Linear Polarization

- horizontal: $\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right)$
- vertical: $\left(\begin{array}{c}1 \\ -1 \\ 0 \\ 0\end{array}\right)$
- $45^{\circ}:\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right)$

Mueller Matrices

- 4×4 real Mueller matrices describe (linear) transformation between Stokes vectors when passing through or reflecting from media

$$
\begin{gathered}
\overrightarrow{l^{\prime}}=\mathrm{M} \vec{l}, \\
\mathrm{M}=\left(\begin{array}{llll}
M_{11} & M_{12} & M_{13} & M_{14} \\
M_{21} & M_{22} & M_{23} & M_{24} \\
M_{31} & M_{32} & M_{33} & M_{34} \\
M_{41} & M_{42} & M_{43} & M_{44}
\end{array}\right)
\end{gathered}
$$

- N optical elements, combined Mueller matrix is

$$
\mathrm{M}^{\prime}=\mathrm{M}_{N} \mathrm{M}_{N-1} \cdots \mathrm{M}_{2} \mathrm{M}_{1}
$$

Rotating Mueller Matrices

- optical element with Mueller matrix M
- Mueller matrix of the same element rotated by θ around the beam given by

$$
\mathrm{M}(\theta)=\mathrm{R}(-\theta) \mathrm{MR}(\theta)
$$

with

$$
R(\theta)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos 2 \theta & \sin 2 \theta & 0 \\
0 & -\sin 2 \theta & \cos 2 \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Relation to Stokes Vector

- fully polarized light: $R^{2}=Q^{2}+U^{2}+V^{2}$
- for $I^{2}=1$: sphere in Q, U, V coordinate system
- point on Poincaré sphere represents particular state of polarization
- graphical representation of fully polarized light

Polarizers

- polarizer: optical element that produces polarized light from unpolarized input light
- linear, circular, or in general elliptical polarizer, depending on type of transmitted polarization
- linear polarizers by far the most common
- large variety of polarizers

Jones Matrix for Linear Polarizers

- Jones matrix for linear polarizer: $J_{p}=\left(\begin{array}{cc}p_{x} & 0 \\ 0 & p_{y}\end{array}\right)$
- $0 \leq p_{x} \leq 1$ and $0 \leq p_{y} \leq 1$, real: transmission factors for x, y-components of electric field: $E_{x}^{\prime}=p_{x} E_{x}, \quad E_{y}^{\prime}=p_{y} E_{y}$
- $p_{x}=1, p_{y}=0$: linear polarizer in $+Q$ direction
- $p_{x}=0, p_{y}=1$: linear polarizer in $-Q$ direction
- $p_{x}=p_{y}$: neutral density filter

Mueller Matrix for Linear Polarizers

$$
M_{\text {horizontal }}=\frac{1}{2}\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), M_{\text {vertical }}=\frac{1}{2}\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Mueller Matrix for Ideal Linear Polarizer at Angle θ

$$
M_{\text {pol }}(\theta)=\frac{1}{2}\left(\begin{array}{cccc}
1 & \cos 2 \theta & \sin 2 \theta & 0 \\
\cos 2 \theta & \cos ^{2} 2 \theta & \sin 2 \theta \cos 2 \theta & 0 \\
\sin 2 \theta & \sin 2 \theta \cos 2 \theta & \sin ^{2} 2 \theta & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Poincare Sphere

- polarizer is a point on the Poincaré sphere
- transmitted intensity: $\cos ^{2}(I / 2), I$ is arch length of great circle between incoming polarization and polarizer on Poincaré sphere

Wire Grid Polarizers

- parallel conducting wires, spacing $d \lesssim \lambda$ act as polarizer
- electric field parallel to wires induces electrical currents in wires
- induced electrical current reflects polarization parallel to wires
- polarization perpendicular to wires is transmitted
- rule of thumb:
- $d<\lambda / 2 \Rightarrow$ strong polarization
- $d \gg \lambda \Rightarrow$ high transmission of both polarization states (weak polarization)

Polaroid-type Polarizers

- developed by Edwin Land in $1938 \Rightarrow$ Polaroid
- sheet polarizers: stretched polyvynil alcohol (PVA) sheet, laminated to sheet of cellulose acetate butyrate, treated with iodine
- PVA-iodine complex analogous to short, conducting wire
- cheap, can be manufactured in large sizes

Crystal-Based Polarizers

- crystals make highest-quality polarizers
- precise arrangement of atom/molecules and anisotropy of index of refraction separate incoming beam into two beams with precisely orthogonal linear polarization states
- work well over large wavelength range
- many different configurations
- calcite most often used in crystal-based polarizers because of large birefringence, low absorption in visible
- many other suitable crystals

Indices of Refraction of Crystal

- in anisotropic material: dielectric constant is a tensor
- Maxwell equations imply symmetric dielectric tensor

$$
\epsilon=\epsilon^{T}=\left(\begin{array}{ccc}
\epsilon_{11} & \epsilon_{12} & \epsilon_{13} \\
\epsilon_{12} & \epsilon_{22} & \epsilon_{23} \\
\epsilon_{13} & \epsilon_{23} & \epsilon_{33}
\end{array}\right)
$$

- symmetric tensor of rank $2 \Rightarrow$ Cartesian coordinate system exists where tensor is diagonal
- 3 principal indices of refraction in coordinate system spanned by principal axes

$$
\vec{D}=\left(\begin{array}{ccc}
n_{x}^{2} & 0 & 0 \\
0 & n_{y}^{2} & 0 \\
0 & 0 & n_{z}^{2}
\end{array}\right) \vec{E}
$$

Uniaxial Materials

- anisotropic materials:

$$
n_{x} \neq n_{y} \neq n_{z}
$$

- uniaxial materials: $n_{x}=n_{y} \neq n_{z}$
- optic axis is axis that has different index of refraction, also called c or crystallographic axis
- ordinary index: $n_{o}=n_{x}=n_{y}$
- extraordinary index: $n_{e}=n_{z}$
- fast axis: axis with smallest index
- rotation of coordinate system around z has no effect
- most materials used in polarimetry are (almost) uniaxial, e.g. calcite

Plane Waves in Anisotropic Media

- no net charges,
$\nabla \cdot \vec{D}=0 \Rightarrow \vec{D} \cdot \vec{k}=0 \Rightarrow \vec{D} \perp \vec{k}$
- $\vec{D} \nVdash \vec{E} \Rightarrow \vec{E} \not \perp \vec{k}$
- scalar μ, no current density $\Rightarrow \vec{H} \| \vec{B}$
- $\nabla \cdot \vec{H}=0 \Rightarrow \vec{H} \perp \vec{k}$
- $\nabla \times \vec{H}=\frac{1}{c} \frac{\partial \vec{D}}{\partial t} \Rightarrow \vec{H} \perp \vec{D}$
- $\nabla \times \vec{E}=-\frac{\mu}{c} \frac{\partial \vec{H}}{\partial t} \Rightarrow \vec{H} \perp \vec{E}$
- \vec{D}, \vec{E}, and \vec{k} all in one plane
- \vec{H}, \vec{B} perpendicular to that plane
- Poynting vector $\vec{S}=\frac{c}{4 \pi} \vec{E} \times \vec{H}$

H,B
 general) not parallel to \vec{k}

- energy (in general) not transported in direction of wave vector \vec{k}

Wave Propagation in Uniaxial Media

- two solutions to wave equation with orthogonal linear polarizations
- ordinary ray propagates as in isotropic medium with index n_{0}
- extraordinary ray sees direction-dependent index of refraction

$$
n_{2}(\theta)=\frac{n_{0} n_{e}}{\sqrt{n_{o}^{2} \sin ^{2} \theta+n_{e}^{2} \cos ^{2} \theta}}
$$

n_{2} direction-dependent index of refraction of the extraordinary ray
n_{0} ordinary index of refraction
n_{e} extraordinary index of refraction
θ angle between extraordinary wave vector and optic axis

- for $\theta=0 n_{2}=n_{0}$, for $\theta=90^{\circ} n_{2}=n_{e}$

Energy Propagation in Uniaxial Media

- ordinary ray propagates along wave vector \vec{k} with electric field perpendicular to c-axis
- extraordinary ray and wave vector make dispersion angle α

$$
\tan \alpha=\frac{\left(n_{e}^{2}-n_{o}^{2}\right) \tan \theta}{n_{e}^{2}+n_{o}^{2} \tan ^{2} \theta}
$$

- dispersion angle $\alpha=0$ for $\theta=0$ or $\theta=90^{\circ}$
- extraordinary electric field in plane of wave vector and optic axis

Crystal-Based Polarizing Beamsplitter

- one linear polarization goes straight through as in isotropic material (ordinary ray)
- perpendicular linear polarization propagates at an angle (extraordinary ray)
- different optical path lengths
- crystal aberrations

Brewster Angle Polarizer

- $r_{p}=\frac{\tan \left(\theta_{i}-\theta_{t}\right)}{\tan \left(\theta_{i}+\theta_{t}\right)}=0$ when $\theta_{i}+\theta_{t}=\frac{\pi}{2}$
- corresponds to Brewster angle of incidence of $\tan \theta_{B}=\frac{n_{2}}{n_{1}}$
- occurs when reflected wave is perpendicular to transmitted wave
- reflected light is completely s-polarized
- transmitted light is moderately polarized

Total Internal Reflection (TIR)

- Snell's law: $\sin \theta_{t}=\frac{n_{1}}{n_{2}} \sin \theta_{i}$
- high-index to lower index medium (e.g. glass to air): $n_{1} / n_{2}>1$
- right-hand side >1 for $\sin \theta_{i}>\frac{n_{2}}{n_{1}}$
- all light is reflected in high-index medium \Rightarrow total internal reflection
- transmitted wave has complex phase angle \Rightarrow damped wave along interface

Total Internal Reflection (TIR) in Crystals

- $n_{o} \neq n_{e} \Rightarrow$ one beam can be totally reflected while other is transmitted
- principal of most crystal polarizers
- calcite at $632.8 \mathrm{~nm}: n_{o}=1.6558$, $n_{e}=1.4852$
- requirement for total reflection $\frac{n_{2}}{\sin } \theta>1$
- entrance: extraordinary ray not refracted, two rays propagate according to indices n_{0}, n_{e}
- exit: rays (and wave vectors) at 40° to surface
- for $\theta=40^{\circ}$ extraordinary ray is
 transmitted, ordinary ray undergoes TIR

Wollaston Prism

Savart Plate

Foster Prism

Linear Retarders or Wave Plates

- uniaxial crystal, optic axis parallel to surface $\left(\theta=90^{\circ}\right)$
- fast axis (f) has lowest index, slow axis (s) has highest index
- example: halfwave retarder

Phase Delay between Ordinary and Extraordinary Rays

- ordinary and extraordinary wave propagate in same direction
- ordinary ray propagates with speed $\frac{c}{n_{0}}$
- extraordinary beam propagates at different speed $\frac{c}{n_{e}}$
- \vec{E}_{o}, \vec{E}_{e} perpendicular to each other \Rightarrow plane wave with arbitrary polarization can be (coherently) decomposed into components parallel to \vec{E}_{o} and \vec{E}_{e}
- 2 components will travel at different speeds
- (coherently) superposing 2 components after distance $d \Rightarrow$ phase difference between 2 components $\frac{\omega}{c}\left(n_{e}-n_{o}\right) d$ radians
- phase difference \Rightarrow change in polarization state
- basis for constructing linear retarders

Retarder Properties

- does not change intensity or degree of polarization
- characterized by two (not identical, not trivial) Stokes vectors of incoming light that are not changed by retarder \Rightarrow eigenvectors of retarder
- depending on polarization described by eigenvectors, retarder is
- linear retarder
- circular retarder
- elliptical retarder
- linear, circular retarders are special cases of elliptical retarders
- circular retarders sometimes called rotators since they rotate the orientation of linearly polarized light
- linear retarders by far the most common type of retarder
- retardation depends strongly on wavelength
- achromatic retarders: combinations of different materials or the same materials with different fast axis directions

Jones Matrix for Linear Retarders

- linear retarder with fast axis at 0° characterized by Jones matrix

$$
J_{r}(\delta)=\left(\begin{array}{cc}
e^{i \delta} & 0 \\
0 & 1
\end{array}\right), \quad J_{r}(\delta)=\left(\begin{array}{cc}
e^{i \frac{\delta}{2}} & 0 \\
0 & e^{-i \frac{\delta}{2}}
\end{array}\right)
$$

- δ : phase shift between two linear polarization components (in radians)
- absolute phase does not matter

Mueller Matrix for Linear Retarder

$$
M_{r}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \cos \delta & -\sin \delta \\
0 & 0 & \sin \delta & \cos \delta
\end{array}\right)
$$

Quarter-Wave Plate on the Poincaré Sphere

- retarder eigenvector (fast axis) in Poincaré sphere
- points on sphere are rotated around retarder axis by amount of retardation

Phase Change on Total Internal Refilection (TIR)

- TIR induces phase change that depends on polarization
- complex ratios:
$r_{s, p}=\left|r_{s, p}\right| e^{i \delta_{s, p}}$
- phase change $\delta=\delta_{s}-\delta_{p}$
$\tan \frac{\delta}{2}=\frac{\cos \theta_{i} \sqrt{\sin ^{2} \theta_{i}-\left(\frac{n_{2}}{n_{1}}\right)^{2}}}{\sin ^{2} \theta_{i}}$
- relation valid between critical angle and grazing incidence
- at critical angle and grazing incidence $\delta=0$

Variable Retarders

- sensitive polarimeters requires retarders whose properties (retardance, fast axis orientation) can be varied quickly (modulated)
- retardance changes (change of birefringence):
- liquid crystals
- Faraday, Kerr, Pockels cells
- piezo-elastic modulators (PEM)
- fast axis orientation changes (change of c-axis direction):
- rotating fixed retarder
- ferro-electric liquid crystals (FLC)

Liquid Crystals

- liquid crystals: fluids with elongated molecules
- at high temperatures: liquid crystal is isotropic
- at lower temperature: molecules become ordered in orientation and sometimes also space in one or more dimensions
- liquid crystals can line up parallel or perpendicular to external electrical field

Liquid Crystal Retarders

- dielectric constant anisotropy often large \Rightarrow very responsive to changes in applied electric field
- birefringence δn can be very large (larger than typical crystal birefringence)
- liquid crystal layer only a few $\mu \mathrm{m}$ thick
- birefringence shows strong temperature dependence

