Lecture 1: Foundations of Optics

Outline

- Electromagnetic Waves
- Material Properties
- Electromagnetic Waves Across Interfaces

Electromagnetic Waves in Matter

- *Maxwell's equations* ⇒ electromagnetic waves
- optics: interaction of electromagnetic waves with matter as described by *material equations*
- polarization of electromagnetic waves are integral part of optics

Maxwell's Equations in Matter	Symbols
$\nabla \cdot \vec{D} = 4\pi\rho$ $\nabla \times \vec{H} - \frac{1}{c} \frac{\partial \vec{D}}{\partial t} = \frac{4\pi}{c} \vec{j}$ $\nabla \times \vec{E} + \frac{1}{c} \frac{\partial \vec{B}}{\partial t} = 0$ $\nabla \cdot \vec{B} = 0$	\vec{D} electric displacement ρ electric charge density \vec{H} magnetic field c speed of light in vacuum \vec{j} electric current density \vec{E} electric field \vec{B} magnetic induction t time

Linear Material Equations

$$egin{aligned} ec{D} &= \epsilon ec{E} \ ec{B} &= \mu ec{H} \ ec{j} &= \sigma ec{E} \end{aligned}$$

Symbols

- € dielectric constant
- μ magnetic permeability
- σ electrical conductivity

Isotropic and Anisotropic Media

- isotropic media: ϵ and μ are scalars
- anisotropic media (e.g. crystals): ϵ and μ are tensors of rank 2

Wave Equation in Matter

- static, homogeneous medium with no net charges: $\rho = 0$
- for most materials: $\mu = 1$
- combine Maxwell, material equations ⇒ differential equations for damped (vector) wave

$$\nabla^{2}\vec{E} - \frac{\mu\epsilon}{c^{2}}\frac{\partial^{2}\vec{E}}{\partial t^{2}} - \frac{4\pi\mu\sigma}{c^{2}}\frac{\partial\vec{E}}{\partial t} = 0$$
$$\nabla^{2}\vec{H} - \frac{\mu\epsilon}{c^{2}}\frac{\partial^{2}\vec{H}}{\partial t^{2}} - \frac{4\pi\mu\sigma}{c^{2}}\frac{\partial\vec{H}}{\partial t} = 0$$

- damping controlled by conductivity σ
- \vec{E} and \vec{H} are equivalent \Rightarrow sufficient to consider \vec{E}
- interaction with matter almost always through \vec{E}
- but: at interfaces, boundary conditions for \vec{H} are crucial

Plane-Wave Solutions

- Plane Vector Wave ansatz $\vec{E} = \vec{E}_0 e^{i(\vec{k}\cdot\vec{x}-\omega t)}$
 - \vec{k} spatially and temporally constant wave vector
 - \vec{k} normal to surfaces of constant phase
 - \vec{k} wave number
 - \vec{x} spatial location
 - ω angular frequency (2π× frequency ν)
 - t time
 - \vec{E}_0 (generally complex) vector independent of time and space
- could also use $\vec{E} = \vec{E}_0 e^{-i(\vec{k}\cdot\vec{x}-\omega t)}$
- damping if \vec{k} is complex
- \vec{E}_0 describes polarization and absolute phase
- real electric field vector given by real part of \vec{E}
- sum of solutions is also a solution

Complex Index of Refraction

temporal derivatives ⇒ Helmholtz equation

$$\nabla^{2}\vec{E} + \frac{\omega^{2}\mu}{c^{2}}\left(\epsilon + i\frac{4\pi\sigma}{\omega}\right)\vec{E} = 0$$

• spatial derivatives \Rightarrow *dispersion relation* between \vec{k} and ω

$$\vec{k} \cdot \vec{k} = \frac{\omega^2 \mu}{c^2} \left(\epsilon + i \frac{4\pi\sigma}{\omega} \right)$$

complex index of refraction

$$\tilde{n}^2 = \mu \left(\epsilon + i \frac{4\pi\sigma}{\omega} \right), \quad \vec{k} \cdot \vec{k} = \frac{\omega^2}{c^2} \tilde{n}^2$$

 split into real (n: index of refraction) and imaginary parts (k: extinction coefficient)

$$\tilde{n} = n + ik$$

Transverse Waves

plane-wave solution must also fulfill Maxwell's equations

$$ec{E}_0\cdotec{k}=0,\ ec{H}_0\cdotec{k}=0,\ ec{H}_0=rac{ ilde{n}}{\mu}rac{ec{k}}{ec{k}ec{k}} imesec{E}_0$$

 isotropic media: electric, magnetic field vectors normal to wave vector ⇒ transverse waves

- \vec{E}_0 , \vec{H}_0 , and \vec{k} orthogonal to each other, right-handed vector-triple
- conductive medium \Rightarrow complex \tilde{n} , \vec{E}_0 and \vec{H}_0 out of phase
- \vec{E}_0 and \vec{H}_0 have constant relationship \Rightarrow consider only \vec{E}

Energy Propagation in Isotropic Media

• time-averaged Poynting vector

$$\left\langle ec{S}
ight
angle = rac{c}{8\pi} {
m Re} \left(ec{E}_0 imes ec{H}_0^*
ight)$$

- Re real part of complex expression
 - * complex conjugate
- $\langle . \rangle \,$ time average
- energy flow parallel to wave vector in isotropic media

$$\left< ec{S} \right> = rac{c}{8\pi} rac{|ec{n}|}{\mu} |E_0|^2 rac{ec{k}}{|ec{k}|}$$

- energy flow is proportional to index of refraction!
- in anisotropic materials (e.g. crystals), energy propagation and wave vector are not parallel!

Quasi-Monochromatic Light

- monochromatic light: purely theoretical concept
- monochromatic light wave always fully polarized
- real life: light includes range of wavelengths ⇒ quasi-monochromatic light
- quasi-monochromatic: superposition of mutually incoherent monochromatic light beams whose wavelengths vary in narrow range $\delta\lambda$ around central wavelength λ_0

$$rac{\delta\lambda}{\lambda}\ll$$
 1

 measurement of quasi-monochromatic light: integral over measurement time t_m

Polychromatic Light or White Light

- wavelength range comparable wavelength $(\frac{\delta\lambda}{\lambda} \sim 1)$
- incoherent sum of quasi-monochromatic beams that have large variations in wavelength
- cannot write electric field vector in a plane-wave form
- must take into account wavelength-dependent material characteristics
- intensity of polychromatic light is given by sum of intensities of constituting quasi-monochromatic beams

Material Properties

Index of Refraction

complex index of refraction

$$\tilde{n}^2 = \mu \left(\epsilon + i \frac{4\pi\sigma}{\omega} \right), \quad \vec{k} \cdot \vec{k} = \frac{\omega^2}{c^2} \tilde{n}^2$$

- no electrical conductivity \Rightarrow real index of refraction
- transparent, dielectric materials: real index of refraction
- conducting materials (metal): complex index of refraction
- also transparent, conducting materials, e.g. Indium-Tin-Oxide (ITO)
- index of refraction depends on wavelength (dispersion)
- index of refraction depends on temperature
- index of refraction roughly proportional to density

Glass Dispersion

en.wikipedia.org/wiki/File:Dispersion-curve.png

Lecture 1: Foundations of Optics

Wavelength Dependence of Index of Refraction

- tabulated by glass manufacturer
- various approximations to express wavelength dependence with a few parameters
- typically index increases with decreasing wavelength
- Abbé number:

$$\nu_d = \frac{n_d - 1}{n_F - n_C}$$

- n_d: index of refraction at Fraunhofer d line (587.6 nm)
- n_F: index of refraction at Fraunhofer F line (486.1 nm)
- n_C: index of refraction at Fraunhofer C line (656.3 nm)
- low dispersion materials have high values of v_d
- Abbe diagram: ν_d vs n_d

Glasses

Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

Lecture 1: Foundations of Optics

14

Empirical Models of Index of Refraction

- tabulated, measured index as function of wavelength
- approximations to express smooth wavelength dependence
- most common: Sellmeier equation and coefficients:

$$n^{2}(\lambda) = 1 + \frac{B_{1}\lambda^{2}}{\lambda^{2} - C_{1}} + \frac{B_{2}\lambda^{2}}{\lambda^{2} - C_{2}} + \frac{B_{3}\lambda^{2}}{\lambda^{2} - C_{3}}$$

- reflects resonances that drive index variation with wavelength
- only applicable over a limited wavelength range
- BK7: B₁ =1.03961212, C₁ =6.00069867e-3, B₂ =2.31792344e-1, C₂ =2.00179144e-2, B₃ =1.01046945, C₃ =1.03560653e2

Internal Transmission

Typical Transmission of LITHOSIL® (10 mm path length)

Transmission including Fresnel reflection losses/internal Transmission without Fresnel reflection

- internal transmission per cm
- typically strong absorption in the blue and UV
- almost all glass absorbs above 2 μm

Metal Reflectivity

Electromagnetic Waves Across Interfaces

Introduction

- classical optics due to interfaces between 2 different media
- from Maxwell's equations in integral form at interface from medium 1 to medium 2

$$\begin{pmatrix} \vec{D}_2 - \vec{D}_1 \end{pmatrix} \cdot \vec{n} = 4\pi\Sigma \begin{pmatrix} \vec{B}_2 - \vec{B}_1 \end{pmatrix} \cdot \vec{n} = 0 \begin{pmatrix} \vec{E}_2 - \vec{E}_1 \end{pmatrix} \times \vec{n} = 0 \begin{pmatrix} \vec{H}_2 - \vec{H}_1 \end{pmatrix} \times \vec{n} = -\frac{4\pi}{c}\vec{K}$$

- \vec{n} normal on interface, points from medium 1 to medium 2
- Σ surface charge density on interface
- \vec{K} surface current density on interface

Fields at Interfaces

- $\Sigma = 0$ in general, $\vec{K} = 0$ for dielectrics
- *complex* index of refraction includes effects of currents $\Rightarrow \vec{K} = 0$
- requirements at interface between media 1 and 2

$$\begin{pmatrix} \vec{D}_2 - \vec{D}_1 \end{pmatrix} \cdot \vec{n} = 0 \begin{pmatrix} \vec{B}_2 - \vec{B}_1 \end{pmatrix} \cdot \vec{n} = 0 \begin{pmatrix} \vec{E}_2 - \vec{E}_1 \end{pmatrix} \times \vec{n} = 0 \begin{pmatrix} \vec{H}_2 - \vec{H}_1 \end{pmatrix} \times \vec{n} = 0$$

- normal components of \vec{D} and \vec{B} are continuous across interface
- tangential components of \vec{E} and \vec{H} are continuous across interface

Plane of Incidence

- plane wave onto interface
- incident (ⁱ), reflected (^r), and transmitted (^t) waves

$$\vec{E}^{i,r,t} = \vec{E}_0^{i,r,t} e^{i(\vec{k}^{i,r,t}\cdot\vec{x}-\omega t)}$$
$$\vec{H}^{i,r,t} = \frac{c}{\mu\omega}\vec{k}^{i,r,t}\times\vec{E}^{i,r,t}$$

- interface normal $\vec{n} \parallel z$ -axis
- spatial, temporal behavior at interface the same for all 3 waves

$$(ec{k}^i \cdot ec{x})_{z=0} = (ec{k}^r \cdot ec{x})_{z=0} = (ec{k}^t \cdot ec{x})_{z=0}$$

interface

• valid for all \vec{x} in interface \Rightarrow all 3 wave vectors in one plane, *plane* of incidence

plane of incidence

Snell's Law

• spatial, temporal behavior the same for all three waves

$$(\vec{k}^i \cdot \vec{x})_{z=0} = (\vec{k}^r \cdot \vec{x})_{z=0} = (\vec{k}^t \cdot \vec{x})_{z=0}$$

•
$$\left|\vec{k}\right| = \frac{\omega}{c}\tilde{n}$$

- ω , *c* the same for all 3 waves
- Snell's law

$$\tilde{n}_1 \sin \theta_i = \tilde{n}_1 \sin \theta_r = \tilde{n}_2 \sin \theta_t$$

Monochromatic Wave at Interface

 $\vec{H}_0^{i,r,t} = \frac{c}{\omega\mu} \vec{k}^{i,r,t} \times \vec{E}_0^{i,r,t}, \quad \vec{B}_0^{i,r,t} = \frac{c}{\omega} \vec{k}^{i,r,t} \times \vec{E}_0^{i,r,t}$

• boundary conditions for monochromatic plane wave:

$$\begin{pmatrix} \tilde{n}_{1}^{2}\vec{E}_{0}^{i}+\tilde{n}_{1}^{2}\vec{E}_{0}^{r}-\tilde{n}_{2}^{2}\vec{E}_{0}^{t} \end{pmatrix} \cdot \vec{n} = 0 \\ \begin{pmatrix} \vec{k}^{i}\times\vec{E}_{0}^{i}+\vec{k}^{r}\times\vec{E}_{0}^{r}-\vec{k}^{t}\times\vec{E}_{0}^{t} \end{pmatrix} \cdot \vec{n} = 0 \\ \begin{pmatrix} \vec{E}_{0}^{i}+\vec{E}_{0}^{r}-\vec{E}_{0}^{t} \end{pmatrix} \times \vec{n} = 0 \\ \begin{pmatrix} \frac{1}{\mu_{1}}\vec{k}^{i}\times\vec{E}_{0}^{i}+\frac{1}{\mu_{1}}\vec{k}^{r}\times\vec{E}_{0}^{r}-\frac{1}{\mu_{2}}\vec{k}^{t}\times\vec{E}_{0}^{t} \end{pmatrix} \times \vec{n} = 0 \end{cases}$$

4 equations are not independent

 only need to consider last two equations (tangential components of *E*₀ and *H*₀ are continuous)

Two Special (Polarization) Cases

- electric field parallel to plane of incidence ⇒ magnetic field is transverse to plane of incidence (TM)
- electric field particular (German: senkrecht) or transverse to plane of incidence (TE)
 - general solution as (coherent) superposition of two cases
 - choose direction of magnetic field vector such that Poynting vector parallel, same direction as corresponding wave vector

Electric Field Perpendicular to Plane of Incidence

- electric field also perpendicular to interface normal \vec{n}
- $\left(\vec{E}_0^i + \vec{E}_0^r \vec{E}_0^t\right) \times \vec{n} = 0$ becomes (with $E_0^{i,r,t}$ instead of $\vec{E}_0^{i,r,t}$)

$$E_0^i + E_0^r - E_0^t = 0$$

• $\left(\vec{k}^{i} \times \vec{E}_{0}^{i} + \vec{k}^{r} \times \vec{E}_{0}^{r} - \vec{k}^{t} \times \vec{E}_{0}^{t}\right) \times \vec{n} = 0$ becomes

 $\tilde{n}_1 E_0^i \cos \theta_i - \tilde{n}_1 E_0^r \cos \theta_r - \tilde{n}_2 E_0^t \cos \theta_t = 0$

Electric Field Perpendicular to Plane of Incidence

• from previous slide:

$$\tilde{n}_1 E_0^i \cos \theta_i - \tilde{n}_1 E_0^r \cos \theta_r - \tilde{n}_2 E_0^t \cos \theta_t = 0$$

•
$$\vec{k}^{i,r,t} \times \vec{E}_0^{i,r,t}$$
 in direction of $\vec{H}_0^{i,r,t}$

- Poynting vector in same direction as wave vector ⇒ flip sign of tangential component of magnetic field vector of reflected wave
- reason for minus sign for reflected component in above equation
- $\cos \theta_{i,r,t}$ terms from projecting $\vec{k}^{i,r,t} \times \vec{E}_0^{i,r,t}$ onto interface plane

Electric Field Perpendicular to Plane of Incidence

•
$$\theta_r = \theta_i$$

ratios of reflected and transmitted to incident wave amplitudes

$$r_{s} = \frac{E_{0}^{t}}{E_{0}^{t}} = \frac{\tilde{n}_{1}\cos\theta_{i} - \tilde{n}_{2}\cos\theta_{t}}{\tilde{n}_{1}\cos\theta_{i} + \tilde{n}_{2}\cos\theta_{t}}$$
$$t_{s} = \frac{E_{0}^{t}}{E_{0}^{t}} = \frac{2\tilde{n}_{1}\cos\theta_{i}}{\tilde{n}_{1}\cos\theta_{i} + \tilde{n}_{2}\cos\theta_{t}}$$

Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

Lecture 1: Foundations of Optics

Electric Field in Plane of Incidence

•
$$\left(\vec{E}_0^i + \vec{E}_0^r - \vec{E}_0^t\right) \times \vec{n} = 0$$
 becomes
 $E_0^i \cos \theta_i - E_0^r \cos \theta_r - E_0^t \cos \theta_t = 0$.

 flip tangential component of electric field vector to align Poynting and wave vectors

• $\cos \theta_{i,r,t}$ terms are due to the cross products $\vec{E}_0^{i,r,t} \times \vec{n}$

Electric Field in Plane of Incidence

•
$$\left(\vec{k}^i \times \vec{E}_0^i + \vec{k}^r \times \vec{E}_0^r - \vec{k}^t \times \vec{E}_0^t\right) \times \vec{n} = 0$$
 becomes
 $\tilde{n}_1 E_0^i + \tilde{n}_1 E_0^r - \tilde{n}_2 E_0^t = 0$
• $\vec{k}^{i,r,t} \times \vec{E}_0^{i,r,t}$ is in direction of $\vec{H}_0^{i,r,t}$

Electric Field in Plane of Incidence

• ratios of reflected and transmitted to incident wave amplitudes

$$r_{p} = \frac{E_{0}^{r}}{E_{0}^{r}} = \frac{\tilde{n}_{2}\cos\theta_{i} - \tilde{n}_{1}\cos\theta_{t}}{\tilde{n}_{2}\cos\theta_{i} + \tilde{n}_{1}\cos\theta_{t}}$$
$$t_{p} = \frac{E_{0}^{t}}{E_{0}^{i}} = \frac{2\tilde{n}_{1}\cos\theta_{i}}{\tilde{n}_{2}\cos\theta_{i} + \tilde{n}_{1}\cos\theta_{t}}$$

Summary of Fresnel Equations

- eliminate θ_t with Snell's law $\tilde{n}_2 \cos \theta_t = \sqrt{\tilde{n}_2^2 \tilde{n}_1^2 \sin^2 \theta_i}$
- $\mu_1/\mu_2 \approx 1$ for most materials
- electric field amplitude transmission *t_{s,p}*, reflection *r_{s,p}*

$$t_{s} = \frac{2\tilde{n}_{1}\cos\theta_{i}}{\tilde{n}_{1}\cos\theta_{i} + \sqrt{\tilde{n}_{2}^{2} - \tilde{n}_{1}^{2}\sin^{2}\theta_{i}}}$$

$$t_{p} = \frac{2\tilde{n}_{1}\tilde{n}_{2}\cos\theta_{i}}{\tilde{n}_{2}^{2}\cos\theta_{i} + \tilde{n}_{1}\sqrt{\tilde{n}_{2}^{2} - \tilde{n}_{1}^{2}\sin^{2}\theta_{i}}}$$

$$r_{s} = \frac{\tilde{n}_{1}\cos\theta_{i} - \sqrt{\tilde{n}_{2}^{2} - \tilde{n}_{1}^{2}\sin^{2}\theta_{i}}}{\tilde{n}_{1}\cos\theta_{i} + \sqrt{\tilde{n}_{2}^{2} - \tilde{n}_{1}^{2}\sin^{2}\theta_{i}}}$$

$$r_{p} = \frac{\tilde{n}_{2}^{2}\cos\theta_{i} - \tilde{n}_{1}\sqrt{\tilde{n}_{2}^{2} - \tilde{n}_{1}^{2}\sin^{2}\theta_{i}}}{\tilde{n}_{2}^{2}\cos\theta_{i} + \tilde{n}_{1}\sqrt{\tilde{n}_{2}^{2} - \tilde{n}_{1}^{2}\sin^{2}\theta_{i}}}$$

Consequences of Fresnel Equations

- complex index of refraction \Rightarrow *t_s*, *t_p*, *r_s*, *r_p* (generally) complex
- real indices \Rightarrow argument of square root in Snell's law $\tilde{n}_2 \cos \theta_t = \sqrt{\tilde{n}_2^2 - \tilde{n}_1^2 \sin^2 \theta_i}$ can still be negative \Rightarrow complex t_s , t_p , r_s , r_p
- only ratio of refractive indices is relevant ⇒ can arbitrarily set index of air to 1; use indices of media measured relative to air
- real indices, arguments of square roots positive (e.g. dielectric without total internal reflection)
 - therefore t_{s,p} ≥ 0, real ⇒ incident and transmitted waves will have same phase
 - therefore $r_{s,p}$ real, but become negative when $n_2 > n_1 \Rightarrow$ negative ratios indicate phase change by 180° on reflection by medium with larger index of refraction

Other Form of Fresnel Equations

using trigonometric identities

$$\begin{array}{lll} t_{s} = & \frac{2\sin\theta_{t}\cos\theta_{i}}{\sin(\theta_{i}+\theta_{t})} \\ t_{p} = & \frac{2\sin\theta_{t}\cos\theta_{i}}{\sin(\theta_{i}+\theta_{t})\cos(\theta_{i}-\theta_{t})} \\ r_{s} = & -\frac{\sin(\theta_{i}-\theta_{t})}{\sin(\theta_{i}+\theta_{t})} \\ r_{p} = & \frac{\tan(\theta_{i}-\theta_{t})}{\tan(\theta_{i}+\theta_{t})} \end{array}$$

• refractive indices "hidden" in angle of transmitted wave, θ_t

Reflectivity

- Fresnel equations apply to electric field amplitude, not intensity
- time-averaged Poynting vector $\left\langle \vec{S} \right\rangle = \frac{c}{8\pi} \frac{|\tilde{n}|}{\mu} |E_0|^2 \frac{\vec{k}}{|\vec{k}|}$
- note: proportional to absolute value of complex index of refraction
- each wave propagates in different direction ⇒ consider energy of each wave passing through unit surface area on interface
- does not matter for reflected wave ⇒ ratio of reflected and incident intensities is independent of these two effects
- relative intensity of reflected wave (reflectivity)

$$R = rac{\left|E_{0}^{r}
ight|^{2}}{\left|E_{0}^{i}
ight|^{2}}, \ R_{p} = \left|r_{p}
ight|^{2}, \ R_{s} = \left|r_{s}
ight|^{2}$$

Transmissivity

- transmitted intensity: multiplying amplitude squared ratios with
 - ratios of indices of refraction (different speeds of light)
 - projected area on interface
- relative intensity of transmitted wave (transmissivity)

$$T = \frac{\left|\tilde{n}_{2}\right|\cos\theta_{t}\left|E_{0}^{t}\right|^{2}}{\left|\tilde{n}_{1}\right|\cos\theta_{i}\left|E_{0}^{i}\right|^{2}}$$

energy conservation ⇒ R + T = 1 for transparent materials (not for absorbing materials)

Arbitrary Polarization

- electric field vector of incident wave *E*ⁱ₀, length *E*ⁱ₀, at angle α to plane of incidence
- decompose into 2 components: parallel and perpendicular to interface

$$E_{0,p}^{i} = E_{0}^{i} \cos \alpha , \quad E_{0,s}^{i} = E_{0}^{i} \sin \alpha$$

 use Fresnel equations to obtain corresponding (complex) amplitudes of reflected and transmitted waves

$$E_{0,p}^{r,t} = (r_p, t_p) E_0^i \cos \alpha , \quad E_{0,s}^{r,t} = (r_s, t_s) E_0^i \sin \alpha$$

• reflectivity R and transmissivity T

$$R = |r_{p}|^{2} \cos^{2} \alpha + |r_{s}|^{2} \sin^{2} \alpha$$

$$T = \frac{|\tilde{n}_{2}| \cos \theta_{t}}{|\tilde{n}_{1}| \cos \theta_{t}} \left(|t_{p}|^{2} \cos^{2} \alpha + |t_{s}|^{2} \sin^{2} \alpha\right)$$

Reflection and Transmission

