Astronomical Telescopes and Instruments 2017:
 Exercises on Polarization
 (Due on 11 October 2017 at 13:30)

C.U.Keller

October 4, 2017

1 Rotating Retarder Polarimeter

A rotating retarder (or waveplate) polarimeter consists of a rotating linear retarder with retardance δ and position angle $\theta(t)$, a fixed linear polarizer, and a detector.

1.1 Modulation Signal

Show that the intensity I^{\prime} measured by the detector as a function of time for an incoming Stokes vector $(I, Q, U, V)^{T}$ is given by

$$
I^{\prime}=\frac{1}{2}\left(I+\frac{Q}{2}((1+\cos \delta)+(1-\cos \delta) \cos 4 \theta)+\frac{U}{2}(1-\cos \delta) \sin 4 \theta-V \sin \delta \sin 2 \theta\right)
$$

1.2 Uniform Modulation Amplitude

Show that the modulation amplitudes in Q, U, and V are identical for $\delta=127^{\circ}$.

1.3 Measurement Intervals

Assume that the detector measures the intensity signal in n equally long time intervals for every full rotation of the retarder. How large does n need to be to efficiently detect all components of the Stokes vector.

2 Mueller Matrix

The most general Jones matrix describing the interaction of monochromatic light with matter has eight independent parameters (four complex numbers). How many independent parameters does a Mueller matrix have that describes the same interaction of a polarized beam with matter?

3 Rotating Mirror Problem

The Mueller matrix for an ideal mirror at normal incidence is given by

$$
M=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

Calculate the Mueller matrix of a mirror as a function of the rotation angle α around its normal. What is wrong and why?

