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The second equation can be substituted into the first, to yield

finally

0 og® (5T _ 4an)s=0 (1.14)
| —— , AT p = 14
dt? dt a? R )

Substitution of the value of p in an E-dS universe produces
the corollary

d? 0 do $2G7 B_.oN o 5




The second term is due to damping by adiabatic expan-
sion (the same term we encountered earlier in the comoving
velocity); the third term describes oscillation or growth of the
perturbation. Obviously, oscillatory behaviour is determined
by the sign of the expression in brackets: if this is negative,
we get a runaway solution. The dividing line between oscilla-
tion and growth is then found by putting this term to exactly
zero. 'This gives

,, i . 1 /2
417G pa” / GM/a / Vfree
= 5 X
P, 2 2) :
g4 g4 S

(1.16)

This is the famous Jeans condition: if a perturbed mass
can fall freely more rapidly than pressure waves can travel,
then counterpressures inside always come too late to stabilize
the perturbed mass against gravitational collapse.



Let us suppose that we are well above the Jeans limit

given by this condition. Then the pressure term (i.e. the one
% ) ’

proportional to s°) can be neglected, and the perturbation

equation becomes

425 | 4 do 2, 5 5 18
dt2  3tdt 3t2 -

in which we have assumed an Einstein-De Sitter background.
This equation has two solutions:

Neia el 5ot (1.18)




We saw that small density perturbations obey

d=0 do s*g” ..o\ &
— +2H— + ‘, —H*)10=0 2.1
dt? dt < a° 2 ) ( (2.1)

Well above the Jeans limit, we can use s =~ 0, so that we get

. __
d=0 do 3

—~+2H— ——H* =0 (nonrelativistic)
dt= dt 2 |

» (2:2)
d? 5 do S

~+2H— —4H*§ =0 (relativistic)
dt= dt



(for the relativistic case see Weinberg p.588).
value of H in the two cases. one obtains

d?6 4 do 2 S — 0
e —0 =
dt? 3tdt  3t?

d?) 1 do ] S0
— + — — (0 =
dt? t dt {2

The growing solutions are

Q OC 4

Inserting the

(2.4)




Below the critical Jeans mass we have the other limiting
case of the perturbation equation, namely

d? o dé s%q®
~ 4+ 2H F——0 =10 2.6
i dt = a? (2.6)

This equation has constant amplitude oscillations in the rel-
ativistic regime, whereas after ¢, we find oscillations with a
slowly decreasing amplitude proportional to ¢~1/6. In the
Einstein-De Sitter case we have H = 2/3t = 2/3tyT, so that

6, 4dd . 5 550 ,
] = .*;‘)(1‘31‘())—_;)— =0 (2:7)

dr?  31dTt a




d?) 4 do 5 o _)i

dr2  3rdr % a2 0 (2.7)

The difficulty is the behaviour of s%¢?; because the Universe
expands, the speed of sound s is not a constant. For a given
wave number ¢, the effective propagation speed changes due
to the changing thermal conditions (mostly adiabatic expan-

sion, except during exothermic episodes of change).




Accord-

ing to the Friedmann Equations, the square of a velocity (or
| . ) .
an energy) evolves according to v* % Or else, knowing that
9 . : s e
s© 1s proportional to the temperature, we can use Wien’s Law:

9 S

) 1 an : ’ L)
s° o< T' < 1/a. Therefore we may write s* = =2 and we get

d?5 4 do o o o 0 d?5 4 do n? )
= B | s())q“)f())—. = i = | 1,)6:() (2.8)
dr?  37dTt as dr?  3rdr 14




d?) 4 do o 6 o O d?) 4 do D |
| +RBPB == L 25=0 (2.8)

dT? 37 dr a: dT? 3T dr T4

The solution of this equation can be found by noting that
the whole equation scales as the inverse second power of time,
which immediately suggests the Ansatz 0 oc 7. This leads
to a quadratic equation for a.

1 9 9 1 9
ala—1) + 3¢ +p° =0; pT = — 4+ w* (2.9)

which has the solutions

Hence. the overall solution 1s

6 = g7 V/6 cos(w logT+ ); 7=

_ . I
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planck The sky as seen by Planck
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Corrections for foreground emission







The Cosmic Microwauve Background as seen by Planck and WMAP




Multipole decomposition (power spectrum)
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Systematic differences between model and
observations




Influence of the gravitational lens effect
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Dark Stuff power spectrum

Multipole moment, L

> 10 100 500 1000 1500 2000
2.0 100G Hz
5 143GHz
S 15k 217GHz
[ ) MV
5
3
a 1.0F NG
=
7
£ 05 — i
o
b=
-
g -
o OO0 = F — - === = = ¢ ¢ e e e m e e e e m = === - E————— —r— o ——— —
E | |
O e
~0.5
90 10 > 0.5 0.2 0.1

Angular scale (degrees)




Unexplained residuals




Contributions of the first and third Friedmann term
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