Astronomische Waarneemtechnieken
(Astronomical Observing Technigues)

2nd Lecture: 15 September 2010
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Preface: Definition of the Angle

Babylonians: one degree = 1/360™ of a full circle
Better measure: © = (arc length s) / (radius of the circle r) in radian

Wikipedia: The solid angle (1 is the 2D angle in 3D space that an object
subtends at a point (the 2D analogon to a linear angle) [stereos = Greek
for solid].

It is a measure of how large that object appears to an observer looking
from that point.

In three dimensions, the solid angle in
steradians is the area it cuts out:
) = (surface area S) / (radius of the sphere r)

One steradian is the solid angle at the center of a
sphere of radius r under which a surface of area r?is seen:

A complete sphere = 4 sr.
1 sr = (180deg/m)? = 3282.80635 deg?.




1. Radiometry

Radiometry = the physical quantities associated with the energy
transported by electromagnetic radiation.

Photon energy: £, =hv = W

with A= Planck's constant [6.626-10-34 Js]

See also
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Emission (1): Radiance L or Intensity I

Consider a projected area of a surface
element dA onto a plane perpendicular
to the direction of observation dA cos®6.

@is the angle between both planes. ¢ (]

-

€ = solid angle

to
observer

dA cos®

The spectral radiance L, or specific intensity I, is the power /eaving a
unit projected area [m?] into a unit solid angle [sr] and unit frequency

interval [Hz].

It is measured in units of [W m=2 sr-! Hz '] in frequency space L,, or

[W m-3 sr-1] in wavelength space L,.

The radiance L or intensity I is the spectral radiance integrated
over all frequencies or wavelengths. Units are [W m=2 sr1],




Emission (2): Exitance or total Power M
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Exitance

The radiant exitance M is the integral of the radiance over
the solid angle ).

It measures the total power emitted per unit surface area.
Units are [W m-2].
£) = solid angle

For Lambertian sources (see below) we get: (o serve

72 s .‘w.
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Emission (3): Flux & and Luminosity L

The flux & or luminosity L emitted by the source is the product of

NZ

radiant exitance and total surface area of the source.
It is the power emitted by the entire source.

Units are [W] or [erg s!]

Example, a source of radius R (e.g., a star) has:

O =47R*M =471’ R°L

!

M =1L




The Field of View (FOV)

A detector system usually accepts radiation only
from a limited range of directions, determined by
the geometry of the optical system, the field of
view (FOV).

The relevant area of the source, which produces _ oo
a signal that can be observed depends on e
(/) FOV and (77) distance r.

The received power [W]is then:

_~source \._Ea of view defined by
/ extreme rays accepted
by optical system

Radiance L [W m-2 sr-!]
X
Source area A [m2] within FOV =
X e T Y
Solid angle €2 [sr] subtended by the .
optical system (as viewed from the source)

area of source
within field of view

Field of View (2)

_~—source \u field of view defined by
/ extreme rays accepted
by optical system

deteclor

area = a

area of source
within field of view

We assume that the entire source of radius R (on area mR?) lies within
the FOV.

’

The solid angle subtended by the detector systemis: Q= NN
r

where ais the area of the entrance aperture and ris the distance to

the source.

. . 6
For a circular aperture: Q = 47 sin”’ >

where 6 is the half angle of the right cone.




Reception (1): the Irradiance E

The irradiance E is the power received at a unit surface element from
the source.
Units are [W m-2].

To compute E:
1. multiply M (=m-L) by surface area A of the source to get flux &.
2. divide flux @ by the area of a sphere of radius r.

AL
4r?

That yields: E =

Reception (2): the Flux Density F,

The spectral irradiance E, or flux density F, is the irradiance per
unit frequency or wavelength interval:
Fo- AL,
o 4r?
Units are [W m=2 Hz!] in frequency space or
[W m-3] in wavelength space.

Note: 1026 W m2Hz! = 10-2% erg s''cm-?Hz! is also called 1 Jansky,

named after US radio astronomer Karl Guthe Jansky.
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Summary of Radiometric Quantities

Name

,J._:,.,._"...._._

radiunce
(frequency units)
Spectral

rachance
(wavelength units)

Radiance

Rudiani

exitance
Flux

Irradiance

Spectral

irradiance

Definition

Fower leaving unit projected

surface area inte unit solid angle

and unit frequeney interval

Power keaving unit |

surface area into unil ::_:_ angle

and unit wavelenath interval
Speetral radiance iniegrated
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Power emutied et Ll
surlice area

Total power cmined by
source of area A

Power received at unit
surface element: equation
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from the source at distance v

Power recetved at unit
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frequency or wavelength

interval
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Fundamental equation to describe the transfer of radiation from one

2 Radiative Transfer

surface to another in vacuum:

where:
L - net radiance (1 & 2)

>Hm

areas

dd =L

dA, cos 8,dA, cos 6,

p - line of sight distance
angles between surface normal and line of sight

012 -

2

0

0,

by

dA

2

dA, cos 6

Using the definition of the solid angle dQ,, =———
d® = LdZ

where dZis the differential throughput.
dZis also called the étendue (extent, size) or the A-Q product.

0

Note: L is property of the source, dZ a property of the geometry.

| ~m
_ dA

one can show that




Lambertian Emitters

The radiance of Lambertian emitters is independent of the direction
© of observation (i.e., isotropic).

I TddA
AT dd A,

When a Lambertian surface is viewed from |
an angle 6, then di2 is decreased by cos(6) |
but the size of the observed area A is

increased by the corresponding amount.

focos(d) dldA

9 I
P [ cos(§1] 4,

dlYg

dfly cos(8)

Example: the Sun is almost a perfect A
Lambertian radiator (except for the /imb)
with a uniform brightness across the disk.

Perfect black bodies obey Lambert's law (1760)

Johann Heinrich Lambert

3. Black Body Radiation

* A black body (BB) is an idealized object that absorbs all EM radiation
« BBs appear black when they are cold (no emitted or reflected light)

« At T >0 K BBs absorb and re-emit a characteristic EM spectrum

* Many astronomical sources emit close to a black body.

Example: COBE measurement of the cosmic background

Wavelength [mm]
2 1 0.67 0.5
I | I 1

400 FIRAS data with 4000 errorbars |

2.725 K Blackbody
300 -

200 - -

Intensity [MJy/sr]

100 - -

V [/lcm] Max Planck, Nobel Prize 1918




Temperature < Radiation
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* 234 5°C e ; NASA/IPAC

Black Body Emission

The specific intensity I, of a blackbody is given by Planck's law as:

3
)i SH 2hv 1 in units of [W m2sr1Hz1]
Y c’ hv
exp —1

kT

In terms of wavelength units this corresponds to:

N AN..v| NNNQN H
=S he in units of [W m-1sr-1]
exp| —— |—1
AKT

Note for the conversion of frequency < wavelength:

=S dl or di=Sdv

dv = pe 7




Kirchhoff's Law

Conservation of power requires that: - ) d N
a+p+r=1 . . DN

With a = absorptivity, p = reflectivity, and T = fransmissivity

Consider a cavity in thermal equilibrium with completely opaque sides:

Spherical
Mirror

T E=1-p

Isothermal

Vo

a=&

m._v__m__“.m\x::: L Spectral filter Q I_I b I_I Nl — H
7=0 This is Kirchhoff's law, which

Center J

e applies to a perfect black body

Scptum

A radiator with € = g¢(A) <~ 1 is often called a grey body

Useful Approximations

At high frequencies (hv>> kT) we get Wien's law:

At low frequencies (hv <« kT) we get Rayleigh-Jeans' law:

2
1)~ 2 ar =24
c A

The total radiated power per unit surface is proportional to the
fourth power of the temperature:
P P [[1,(0)avi = ot
Qv

0=567108 W m=2K* is the Stefan-Boltzmann constant.




Black Body "Peak” Temperatures

The temperature corresponding to the maximum specific intensity is
given by:

C -3 -3
—T=5.09-10"mK or 4 T=298-10" mK
<BNN T
r T=5500K
Hence, cooler BBs have their peak 800 |- ]
emission (effective femperatures) at i :
longer wavelengths and at lower T (. .
intensities: 5 | i
_ T=293K = 400 |- -
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Assuming BB radiation, astronomers often describe the emission from
objects via their effective femperature.

4. Magnitudes

This system has its origins in the Greek classification of stars according
to their visual brightness. The brightest stars were m = 1, the faintest
detected with the bare eye were m = 6.

Later formalized by Pogson (1856):
a 1t mag star is 100 times brighter than a 6™ mag star.

(Apparent) magnitude = re/ative measure of the monochromatic flux
density F(A) of a source:
F(4,)

m, =-2.5 _omﬂ =-2.5log F(4))+q;,
0

The constant g, defines magnitude zero.

Note: Magnitudes are units to describe unresolved (pointlike) objects.
When referring to surface brightness one uses mag/sr or mag/arcsec?.




Photometric Systems

In practice, measurements are done through a fransmission filter 1,(A)

that defines a finite bandwidth:

w0 ]
m, =-2. m_omT F(A)dA+2. m_omT AdAi+q, ey
apmﬁ \_\/\LD J 1
As filters Elmw there are many different \_%,_/
photometric systems: | |
0 T N P

« Johnson UBV system

Reference

Allen & Cragg (1983)
Elias et al. (1983)

Hunt et al. (1988)

Bessell & Brett (1988)

Elias et al. (1982)
Elias et al. (1983)

van der Bliek et al. (1996)

Koornneef (1983)

Persson et al. (1998)

UKIRT web site (2002)

McGregor (1994)

Carter (1990)
Carter & Meadows (1995)

° mc:: @1_N Photometric System
« USNO AAO
- SDSS -
*« 2MASS JHK nmw@ =
« HST filter system (STMAG) —
® ... Koornneef
« AB magnitude system o
MSSSO
M(AB) = -2.5 log(F [W/cm2/Hz]) - 48.60  saso
UKIRT

Hawarden et al. (2001)

Standard Photometry

Name Ao [um] Al [um] F, [Wm™? um™'] Jy]

U 0.36 0.068 4.35x10~° 1880 Ultraviolet
B 0.44 0.098 7.20x1078 4650 Blue

Vv 0.5 0.089 3.92x 10 3950 Visible
R 0.70 0.22 1.76x107°® 2870 Red

I 0.90 0.24 8.3x10~° 2240 Infrared
J 1.25 0.30 3.4x10°° 1770 Infrared
H 1.65 0.35 7x10 1Y 636 Infrared
K 2.20 0.40 3.9x107'° 629 Infrared
L 3.40 0.55 81x107 312 Infrared
M 5.0 0.3 2910~ 183 Infrared
N 10.2 5 1:23% 1012 43 Infrared
Q 21.0 8 6810~ 10 Infrared
1Jy= 1072 Wm 2 Hz~




Bolometric Magnitude

Bolometric magnitude = integral of the monochromatic flux over all

% F(A)da
wavelengths: m —=-25logl—F— with F,, = 2.52:10-8 W/m?
[0} Nﬂ@

ol

If the source radiates isotropically one gets:
L

m, , =—0.25+5logD—-2.5 _omh|
®

where L, = 3.827-1026 W is the luminosity of the Sun.

Absolute Magnitude and Color Indices

Absolute magnitude = apparent magnitude of the source if it were at a
distance of D = 10 parsecs.

Including a tferm A for interstellar absorption we get:

M =m+5-5logD—-A

Color indices = difference of magnitudes at different wavebands =
ratio of fluxes at different wavelengths.

Important:
* The color indices of an AO dwarf star are about zero longward of V.

* The color indices of a blackbody in the Rayleigh-Jeans tail are:
B-v=-046, U-B=-133, V-R=V-I=..=V-N=0.0




5. Coherence of Light

Coherence (from Latin cohaerere = to be connected) of EM waves
enables temporally and spatially constant interference.

Best case of an uni-directional monochromatic wave (perfect laser): it
is possible to define the relative phase at two arbitrary points along k.

Worst case (in ferms of coherence): black-body radiation.

Two types of coherence:

1. spatial coherence - image formation
2. temporal coherence - spectral analysis

First we consider the wave aspect of light...

Degree of Coherence

Consider a complex field V(t) as a stationary random process with
power spectrum S(v) and time average <V(t)> = 0.

Measure the fields at any two points in space V,(*) and V,(1). The
cross correlation between these measurements is given by

L, (2)=(V, (0, (1 +7))

whereas the mean intensity at point 1 can be described by
L,(0)=(V, (W, ()

The (mutual) degree of coherence can then be defined as:
[,(7)
V()= 2
OO &

Note that y;, includes both spatial (points 1,2) and temporal (7)
coherence.




Quasi-Monochromatic Radiation

It can be shown that the relation between spectral width Av and

temporal width 7, is: T AV =1

The coherence length / is the length over which the field retains the
memory of its phase - the distance beyond which the waves A and

2
AAA are out of stepby A [ =c7, um

=2inVyT

For /<« cT, it follows that: RNG.V ~ RMAOVQ
and the coherence is determined by y;,(0).

For purely monochromatic radiation, ris infinite.

Photon Statistics (1): Poissonian

Now we consider the particle aspect of light. There are several cases:

1. For any time rthe number of photons n obeys a Poissonian
distribution with variance and standard deviation c:

Abswvnmﬂ or o=+nr

Intensity
(classical)

puin N Inl

- Time

Constant classical intensity and photon events following a Poissonian distribution




Photon Statistics (2): Bose-Einstein

2. Quasi-monochromatic radiation (e.g., a spectral line) with finite
coherence time 7. ~ 1/Av (where Avis the line width). If 7> 1,
the photon fluctuation is affected by the Bose-Einstein

CL . 1
distribution: \Amvu%

and the photon statistics is given as:

1

WIKT _q

ADSNVHN&. H+m

Photon Statistics (3): Bunching

« Statistical fendency for multiple photons to arrive simultaneously

* Classical view: non-interacting particles should arrive independently of one another

* Quantum mechanics (wave effect): a property of all bosons (due to the Pauli exclusion
principle, fermions show the opposite effect)

« Experimentally known as Hanbury-Brown and Twiss effect (2intensity interferometer)
* > R.J. Glauber, Nobel Prize 2005

3. For thermal radiation, if 1< 1., the photons will no longer obey
Poissonian statistics but group tfogether (bunching) . This becomes
significant when: 1

b\»ﬂ
et —1

~1

4. For non-thermal radiation, if 72> 7, the bunching becomes more

S 1
significant as Qmmmsmwonv\a increases.
Q —_—

Classical intensity of a thermal source with a
photon distribution that combines a Poisson s o V v:_ : ‘
process, Bose-Einstein distribution, and bunching.

| | |

b Time




6. Polarization of Light

The wave vectors of the electric field are given by:

L

E =a,cos2avi—k-r+¢) \._.\m“v,./,.__ ®_ \lwm, |

E =a, oom@g —k-r+¢, v _u,__./Am\___u.\. h,_,.__vﬂ\

y

where g; are the amplitudes, vis the frequency, k=2n/A the wavevector,
and &, are the phases.

We also define &=, - &,

Three Types of Polarized Waves

linear circular elliptical

Type and degree of polarization is important as it carries information on
the properties of the source (magnetic fields, dust grain alignment, etc.).

But telescope, instrument optics and detector may alter the polarization!




The Stokes Parameter

Polarization can be defined by the four Stokes parameters I, Q, U, V
(1852) as follows: 4

2 2
— 2 2 _ Ip
=a; —a, =1cos2ycosy Dy

U =2a,a,cos¢=1cos2ysin 2y | U
V=2aa,sin¢g=1sin2y 2y

Generally, the degree of polarization of a wave is:
JO +U +V?
1

0=

A plane wave has TT = 1 and the Stokes parameters are related as:

I’=0°+U*+V?

Examples

Polarizers can be used to filter out e.g., reflected light




