Exercises Astronomical Observing Techniques, Set 10

7 November 2012

Exercise 1

a) For what wavelength range is a bolometer preferentially used? Why don't we use it at other wavelength ranges?

b) For which two reasons is the operation and production of a bolometer more difficult than the CCD?

c) When measuring continuum emission, the most important parameter is the bandwidth. Why is that?

d) The LABOCA instrument is a bolometer operating at 345 GHz with a bandwidth of 60 GHz. With which science requirement would you rather use an instrument with a narrower bandwidth? What kind of telescope do you use?

Exercise 2

a) A star is imaged using a CCD with a read out noise (RON) of 7e⁻, assuming that 1 photon corresponds to 1 e⁻. The CCD has a pixel size of 0.25 arcsec and a quantum efficiency of 80%. The flux from the star, integrated over the entrance aperture, is 1 photon s⁻¹, the background flux is 100 photons $\operatorname{arcsec}^{-2}$ s⁻¹. The seeing is 0.5 arcsec: you may assume that all the light detected from the star falls within a circle of 0.5" in diameter. Determine the exposure time needed to reach a signal to noise ratio (SNR) of 5 for the star. Assume that the dark current is zero and you use one read.

b) Explain why a low RON is important if we want to achieve a high SNR with a short exposure time. State also why this is less of an issue for long exposure times.

Exercise 3

Now we consider a single-pixel Si:As BIB detector, which is illuminated by a constant photon stream of 1,000,000 photons/s.

a) What is the resulting photo-current in Ampere that we would measure when we apply the right bias voltage? For simplicity we assume that the photo-conductive gain G = 0.5 and that the quantum efficiency is only reduced by reflection from the surface. (The refractive index of Si is 3.4 and the reflectivity is generally calculated by $R = ((n_0 - n_1)/(n_0 + n_1))^2$ for two materials with refractive indices n_0 and n_1). Is a pre-amplifier necessary?

b) For this detector we calculate now the main noise components. What are the G-R noisecurrent if we assume an integration time of 1 second, and the Johnson noise-current if we assume a read-out time of 10 millisecond, a resistance of R=1 G Ω and an operating temperature of 30 K?

c) What is the dominant noise component and how could the performance be improved?