Gamma-Ray Bursts

The accidental discovery and their current mysteries

Nadieh Bremer
24-11-2006
Table of contents

- Introduction; history
- Where do GRBs originate?
- What is a GRB?
 - energetics of GRBs
 - classification
- What causes them; progenitors
 - models
 - evidence
- Summary
History

- 1963: Vela satellites launched to look for nuclear explosions
- Nuclear explosions create gamma-rays
- Evidence for short bursts not due to nuclear reactions
- 1973: Results finally published
Where do they originate?

- Accurate position could not be found
- Not from our solar system
- Three possibilities:
 - in the disk of the Milky Way
 - diffuse halo around the Milky Way
 - distant galaxies

- GRO satellite with BATSE could find the location
Milky Way

- Probably found in the disk, concentrated at the buldge

http://spiff.rit.edu/classes/phys240/lectures/grb_his/grb_his.html
Halo/Distant galaxies

If GRB sources beyond the Milky Way

- Isotropic distribution

http://spiff.rit.edu/classes/phys240/lectures/grb_his/grb_his.html
Where do they originate?

- GRBs originate in distant galaxies:
 - afterglow emissions associated with distant galaxies
 - typical redshift of 1.0 (8 billion ly)
 - most distant GRB; 12.3 billion ly
What are GRBs?

- Lasting a few milliseconds to several minutes
- Most luminous events since the Big Bang
- Detected once a day
- GRBs are more than explosions of gamma rays

Wien’s law: \[\lambda_{\text{max}} = \frac{k}{T} \]

Energetics of GRBs

- Gamma-rays can be produced:
 - in nuclear explosions
 - when relativistic particles collide with low energy photons

\[E = h \nu = h c / \lambda \]

- If the explosion is uniform, energy release is:
 - 10^{47} J
 - solar mass converted into energy

- This is not possible!
Energetics of GRBs

- Energy release is along a narrow jet
- Opening angle varies greatly
- True energy release is constant at 10^{44} J
 - comparable to a supernova

- Consequence: we can’t see all the GRBs
 - 500 occur a day
Classification

- Short-duration bursts
 - few milliseconds to 2 seconds
- Long-duration bursts
 - 2 seconds to several minutes

- Spectra
 - short bursts have a ‘harder’ spectra
 - evolve differently over time

- Different sources!
Spectra of GRB

Progenitors of long bursts

- More information about long bursts
- Needed to find an “afterglow”
- 1997: BeppoSAX finds afterglow associated with distant galaxy

- Progenitor: Collapsar or hypernova
 - collapse of the core of a hypernova
Hypernova/Collapsar model

- Caused by Wolf-Rayet star
- Core collapses
- Black hole forms inside
- Accretion disk forms around the black hole
 - Angular momentum of the infalling matter
Accretion disk

MacFadyen & Woosley (1998)

http://www.ucolick.org/~andrew/
The jet

- A pair of jets gets driven out from the rotation axis
 - neutrino annihilation or magnetic forces can deposit energy over the disk poles
 - energy comes into contact with matter falling inward
 - matter gets heated up
 - expands in the direction with the lowest resistance
Gamma-ray burst

- Producting of gamma rays
 - collision between jet and matter
 - internal collisions in jet

- Jet accelerates as density decreases
- Stellar material collides with interstellar gas
 - this excites new emissions: “afterglow”
 - can last for days or weeks
Gamma-ray burst
Collapsar Model
Evidence

- Found in systems with abundant star formation
 - spiral arms of spiral galaxies
 - irregular galaxies
 - massive stars evolve and die rapidly

- Occurs more in younger galaxies
 - more star formation

- Detection of supernova almost immediately after GRB
GRB 030329

Image of Afterglow of GRB 030329 (VLT + FORS)

Visual Spectra of Hypernova in GRB 030329 (VLT + FORS)
Progenitors of short bursts

- 2005: Swift captured afterglow
 - GRB lasted 30 milliseconds
- Possible progenitors:
 - neutron star – neutron star merger
 - neutron star – black hole merger
- Binaries spiral together due to energy loss
- Over in a few seconds
Merger simulations

http://www.nasa.gov/vision/universe/watchtheskies/short_burst.html
Evidence

- Associated with old galaxies
 - no star formation

- Located at the edge of the host galaxy
 - neutron star formation ‘kicks’ the binary out

- Nearer than long bursts
 - older galaxies
 - these binaries need time to evolve
Summary

- Explosion of gamma-rays
- Followed by an afterglow
- Beamed in jet
- Long bursts
 - $t > 2$ seconds
 - core collapse of a hypernova
- Short bursts
 - $t < 2$ seconds
 - N+N or N+BH merger
- Birth of black hole
Questions?