Detection of Light: Exercise 8

Set: Thurs 30th Mar 2017, Due: Thurs 6th Apr 2017

1 Heterodyne Performance [10 marks]

We would like to design a heterodyne receiver for observations at $\lambda = 210 \,\mu\text{m}$. This incorporates a cylindrical diode photomixer made from HgCdTe ($\kappa = 10$) of diameter 85 μm and depletion region of width 1.5 μm , which may be modelled as a simple RC circuit. The input impedance of the amplifier is 140 Ω .

a Calculate the IF bandwidth of the receiver, assuming this is limited by the frequency response of the mixer.

[3 marks]

- b Calibration observations are made of two blackbodies with temperatures $T_1 = 3000 \text{ K}$ and $T_2 = 200 \text{ K}$, for which the receiver measures 3.7 V and 1.2 V respectively.
 - i) Calculate the effective noise temperature T_N of this receiver.
 - ii) In which noise regime is the receiver operating?
 - iii) Hence calculate the RMS amplifier noise current of our heterodyne receiver.

[3 marks]

- c We now wish to compare the performance of our receiver with that of a bolometer operating in the background limit, with $\eta = 0.55$, operated through a spectral band of width 15% of the central frequency.
 - i) Calculate the fractional S/N achieved by our heterodyne receiver with respect to the bolometer: which one performs better under the given conditions?
 - ii) At what spectral bandwidth Δv would the two detectors provide equal performance, and what spectral resolution does this correspond to?
 - iii) What is the critical assumption under which this trade-off is valid?

[4 marks]