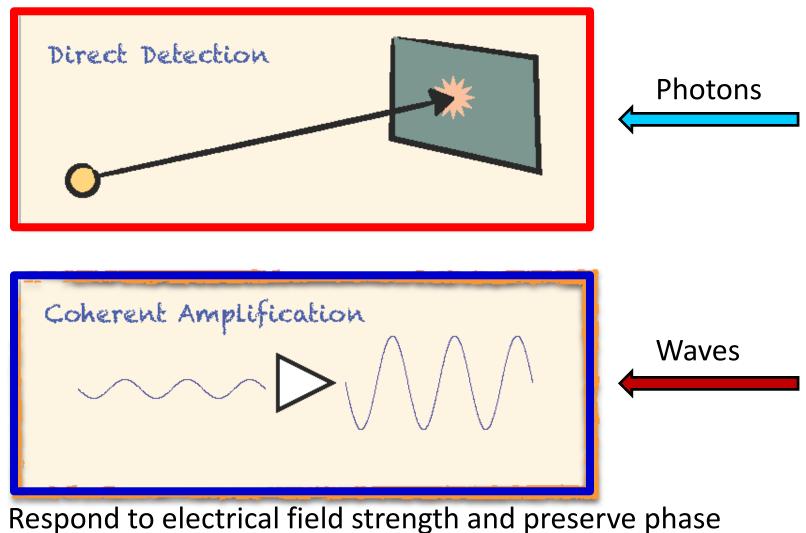
## **Detection of Light**

## XIII. Principle of Heterodyne Receivers XIV. Mixers for Heterodyne Detectors XV. Performance of Heterodyne Det.

This lecture course follows the textbook "Detection of Light" by George Rieke, Cambridge University Press

#### **Two Fundamental Principles of Detection**

Respond to individual photon energy



# Principle of Heterodyne Detectors

#### Problem with "conventional" Detection of Waves rather than Particles or heat

Consider a detector that responds linearly within a response time  $\mathcal{T}$  to measure the resulting field:

If  $\tau >> f$  the output will be zero on average

There may not be any detectors which have short enough response times au

| Wavelength  | Frequency (GHz) | Frequency (THz) | Response time (s) |
|-------------|-----------------|-----------------|-------------------|
| 10 metres   | 0.03            | 0.00003         | 3.33E-08          |
| 1 metre     | 0.3             | 0.0003          | 3.33E-09          |
| 10cm        | 3               | 0.003           | 3.33E-10          |
| 1cm         | 30              | 0.03            | 3.33E-11          |
| 1mm         | 300             | 0.3             | 3.33E-12          |
| 0.1mm       | 3000            | 3               | 3.33E-13          |
| 10 microns  | 30000           | 30              | 3.33E-14          |
| 1 micron    | 300000          | 300             | 3.33E-15          |
| 0.1 microns | 300000          | 3000            | 3.33E-16          |

#### Heterodyne Receivers

Heterodyning is a radio signal processing technique invented in 1901 by Canadian inventor-engineer Reginald Fessenden

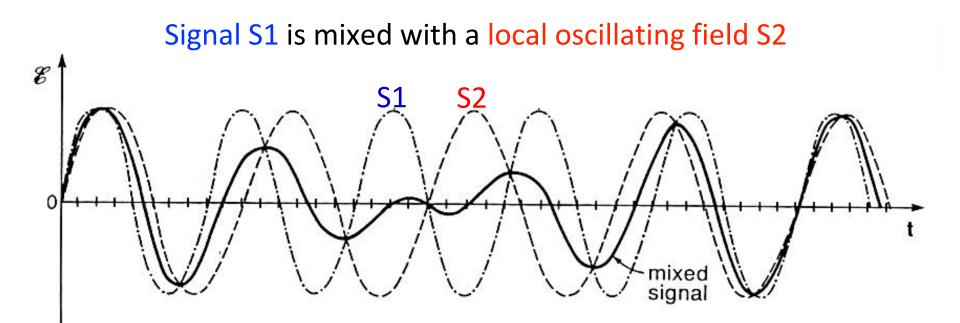


**Reginald Aubrey Fessenden** (1866 – 1932)

#### Heterodyning = new frequencies are created by combining or mixing two frequencies

## Mixing

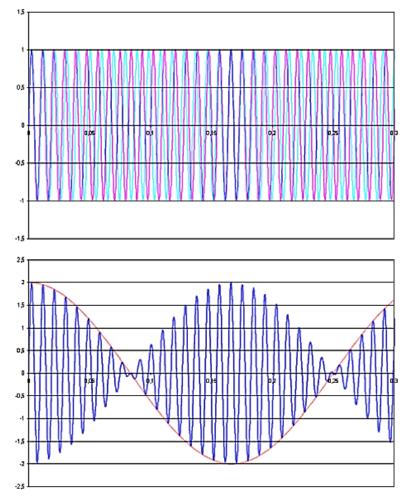
Directly mix incoming light with coherent light of *nearly* the same frequency:



### The Intermediate Frequency (IF)

The IF is the "beat frequency" and is the difference between the local oscillator and the signal frequency

The resultant mix produces a lower frequency envelope that we can measure.



By mixing two frequencies – of which one is known in amplitude and frequency – we can measure an unknown frequency which is much higher than the response time of our detector!

#### Why we can measure the Envelope

(1) Take two waves:  $V_{LO} \sin(\omega_{LO} t)$  and  $V_S \sin(\omega_S t)$ 

(2) Add them together and square for Power:

$$V(t)^{2} = [V_{LO} \sin(\omega_{LO}t) + V_{S} \sin(\omega_{S}t)]^{2}$$

$$V(t)^{2} = V_{LO}^{2} \sin^{2}(\omega_{LO}t) + V_{S}^{2} \sin^{2}(\omega_{S}t) + 2V_{LO}V_{S} \sin(\omega_{LO}t) \sin(\omega_{S}t)$$
(3) Use the trigonometric identity:  

$$\sin A \sin B \equiv \frac{1}{2} [\cos(A - B) - \cos(A + B)]$$
...and we get:  

$$V(t)^{2} = V_{LO}^{2} \sin^{2}(\omega_{LO}t) + V_{S}^{2} \sin^{2}(\omega_{S}t) + V_{LO}V_{S} \cos(\omega_{S} - \omega_{LO})t \cos(\omega_{S} + \omega_{LO})t]$$
Through a low pass filter, these terms average to zero

Remaining term:  $Power(t) \propto V_{LO}V_S \cos(\omega_S - \omega_{LO})t$ 

5-4-2018

Detection of Light – Bernhard Brandl

#### Advantages and Applications

#### Advantages:

- Direct encoding of the spectrum of the incoming signal over a given wavelength range
- Recording of phase allows for interferometers very long baseline interferometry (VLBI)
- Signals are down-converted to frequencies where low noise electronics can be used

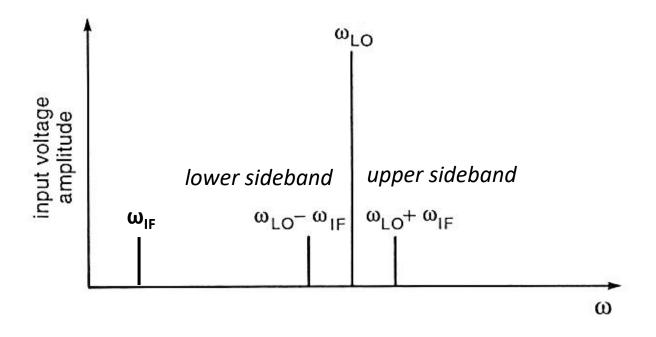
#### Applications:

- Very common for sub-mm receivers, where bolometers provide photometry and heterodyne techniques provide efficient spectroscopy
- Possible in optical/IR but cannot make large imaging arrays

## Sidebands

#### There are always two Sidebands (1)

The mixed signal is amplitude modulated at the intermediate frequency  $\omega_{IF} = |\omega_S - \omega_{LO}|$ .



But the mixer produces the same result at  $\omega_{IF}$  no matter if  $\omega_{S} > \omega_{LO}$  or  $\omega_{S} < \omega_{LO}$ .

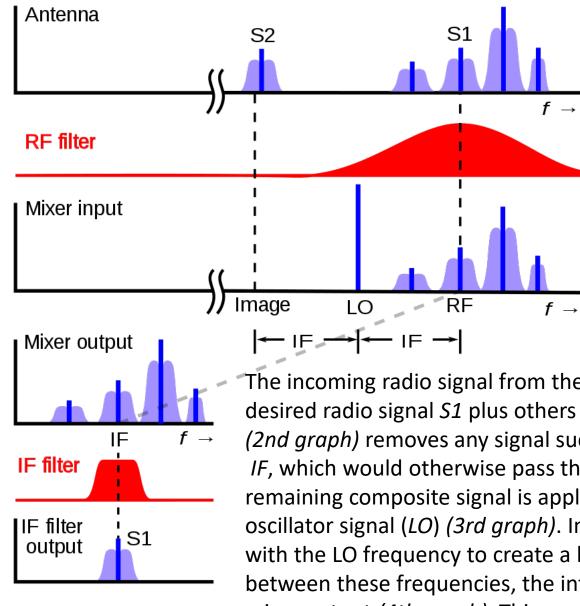
## There are always two Sidebands (2)

Same result at  $\omega_{IF}$  for both  $\omega_{S} > \omega_{LO}$  and  $\omega_{S} < \omega_{LO}$  – is this a problem?

- For continuum sources: not really, if they vary slowly with wavelength.
- For spectral lines: yes, big problem (if  $\omega_{line}$  is not known) !

#### SOLUTIONS:

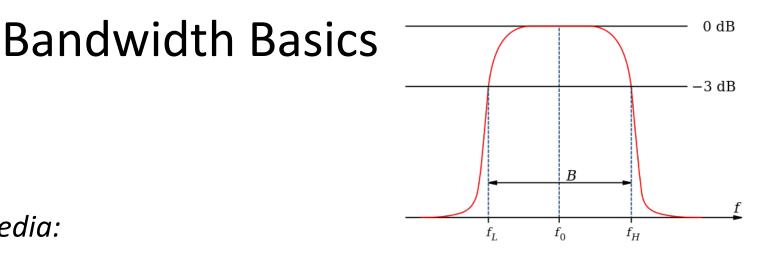
- 1. tune the mixer to remove the degeneracy
- 2. "Image rejection" narrowband filter in front of the receiver



**Wikipedia:** The horizontal axes are frequency *f*. The blue graphs show the voltages of the radio signals at various points in the circuit. The red graphs show the transfer functions of the filters in the circuit; the thickness of the red bands shows the fraction of signal from the previous graph that passes through the filter at each frequency.

The incoming radio signal from the antenna *(top graph)* consists of the desired radio signal *S1* plus others at different frequencies. The RF filter *(2nd graph)* removes any signal such as *S2* at the image frequency *LO* - *IF*, which would otherwise pass through the IF filter and interfere. The remaining composite signal is applied to the mixer along with a local oscillator signal *(LO) (3rd graph)*. In the mixer the signal *S1* combines with the LO frequency to create a heterodyne at the difference between these frequencies, the intermediate frequency (IF), at the mixer output *(4th graph)*. This passes through the IF bandpass filter *(5th graph)* is amplified and demodulated (demodulation is not shown). The unwanted signals create heterodynes at other frequencies *(4th graph)*, which are filtered out by the IF filter .

## Bandwidth

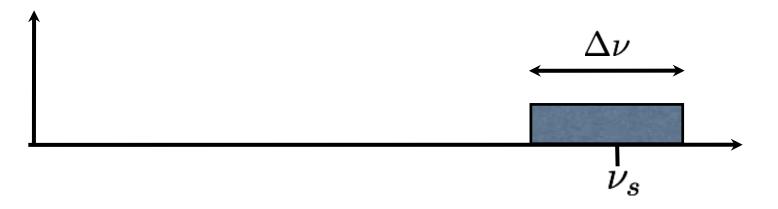


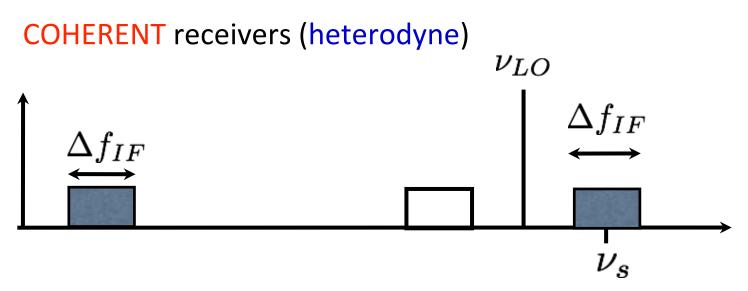
from Wikipedia:

- Bandwidth is the difference between high and low frequencies f<sub>H</sub> and f<sub>L</sub> in a continuous set of frequencies.
- Bandwidth is typically measured in Hertz [s<sup>-1</sup>]
- any band of a given width can carry the same amount of information, regardless of where that band is located in the frequency spectrum
- The equivalent to spectral resolution<sup>-1</sup>,  $R^{-1} = \Delta \lambda / \lambda$ , would be the percent bandwidth  $(f_H f_L) / f_C$ , which can be 200% at max.

#### **Comparison of Receiver Technologies**

**INCOHERENT** receivers (bolometer, photoconductor)





## The intermediate Frequency Bandwidth $\Delta_{IF}$

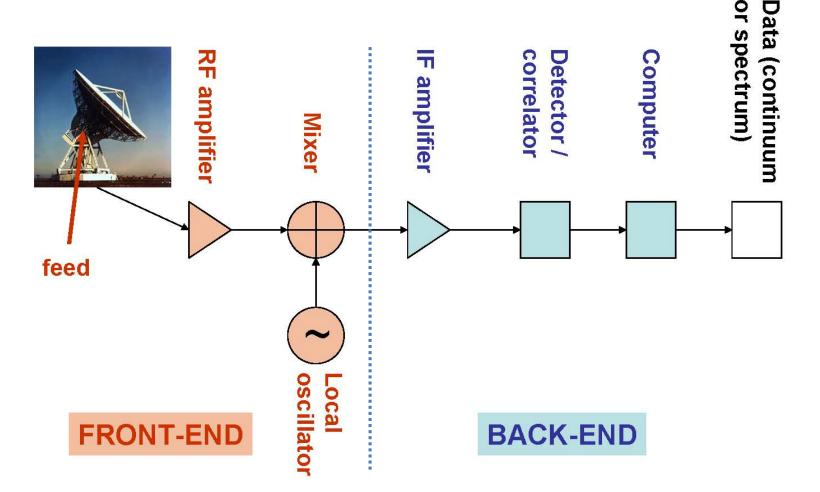
- The bandwidth of even the best photodiode mixers is usually small compared to the signal frequency, typically one part in 100 or 1000
- Heterodyne receivers operating at short wavelengths have poor S/N on continuum sources
- ...so their best use is spectral line measurement at extremely high resolutions
- If the bandwidth Δ<sub>IF</sub> is sufficiently wide the IF output can be sent to a set of parallel narrowband filters
- The time response of a heterodyne receiver is  $1/f_{IF}$  and can be as short as a few nanoseconds.

## The IF Bandwidth $\Delta_{IF}$ (2)

- The IF bandwidth  $\Delta f_{IF}$  depends on:
  - 1. frequency response of the mixer
  - 2. signal amplifier
  - 3. signal filter
- The  $\Delta f_{IF}$  provided by photoconductor mixers in the radio/submm are usually narrow  $\Delta f_{IF}$  < few  $\times$  10<sup>9</sup> Hz – limited by the carrier recombination time:
  - for Ge:  $\Delta f_{IF} < 10^8 \text{ Hz}$
  - for InSb (hot electron bolometers):  $\Delta f_{IF} < 10^6$  Hz
- $\Delta f_{IF}$  is even narrower in the infrared. Example: mixer at 10µm  $\rightarrow v = 3.10^{13}$  Hz,  $\Delta f_{IF} \sim 10^{9}$  Hz  $\rightarrow$  bandwidth is only 0.01% of  $\lambda$

# System Components I. Overview

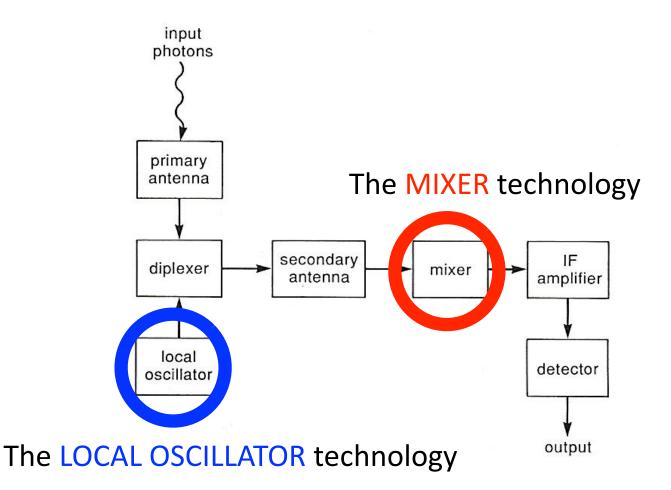
#### Setup of a Coherent Detection System I. Radio/Sub-mm Receivers



taken from Sandor Frey's Summer School presentation at http://www.vlti.org/events/assets/4/documents/RadioInterferometry-Frey.pdf

#### Setup of a Coherent Detection System II. Visible/Infrared Heterodyne Detection

The same principles from IR heterodyne apply to sub-mm, apart from...:



### **Differences in LO Technology**

The LO power can be fed to the mixer via a second waveguide or from a diplexer:

| 10mm              | 3mm                 | 1mm                 | $300 \mu m$       | $100 \mu m$       | $30 \mu m$         |  |
|-------------------|---------------------|---------------------|-------------------|-------------------|--------------------|--|
|                   |                     |                     |                   |                   |                    |  |
|                   |                     |                     |                   |                   |                    |  |
| $30~\mathrm{GHz}$ | $100 \mathrm{~GHz}$ | $300  \mathrm{GHz}$ | $1 \mathrm{~THz}$ | $3~\mathrm{THz}$  | $10 \mathrm{~THz}$ |  |
| $3	imes 10^{10}$  | $1 \times 10^{11}$  | $3	imes 10^{11}$    | $1 	imes 10^{12}$ | $3 	imes 10^{12}$ | $1 \times 10^{13}$ |  |

Low frequencies, use an electronic LO

High frequencies, use a continuous wave laser

+ easily tunable in frequency

 low output power at high frequencies + high output power

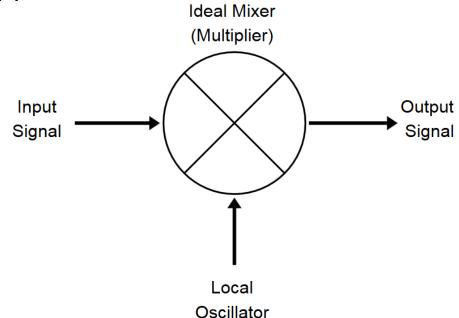
- discrete frequencies

# System Components II. Mixers

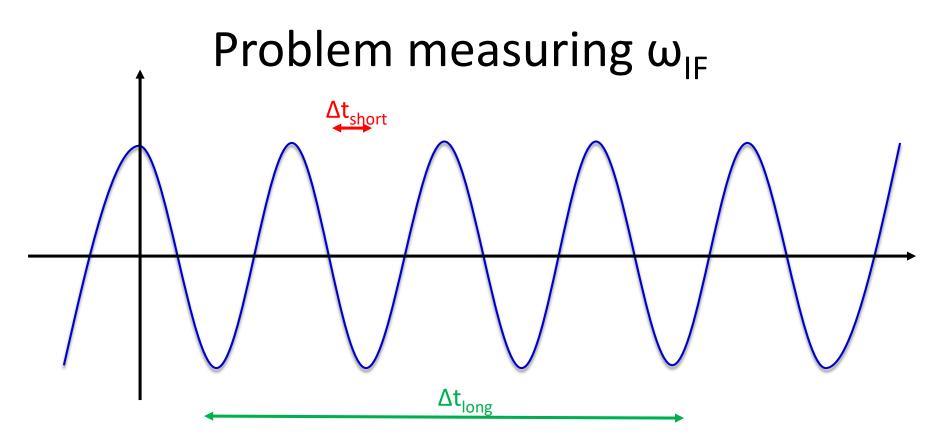
#### **Mixer Basics**

Wikipedia again:

a mixer is a nonlinear electrical circuit that creates new frequencies from two signals applied to it.

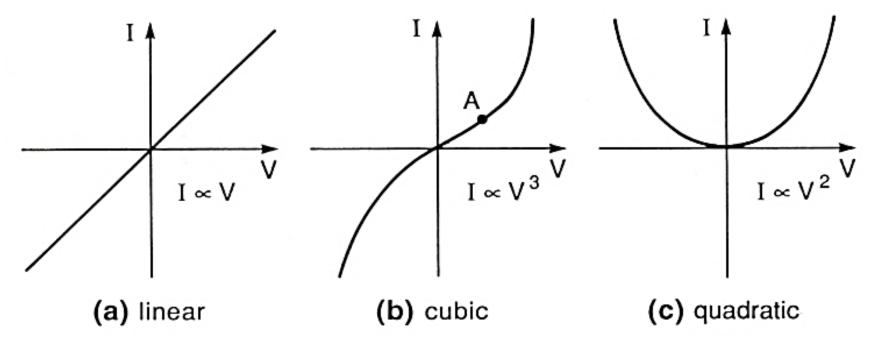


#### Why a *nonlinear* electrical circuit ?



- With a long time constant, the outer envelope is symmetric about zero and averages out to zero.
- With short time constant, you could trace the signal at high frequency but a device with linear response will also give zero response.

#### Linear and non-linear Devices



- As shown on the previous slide, if the mixer is linear (a) then the conversion efficiency is ZERO
- Even if it's an odd function of voltage about the origin (b) the conversion efficiency is zero (but biased above zero at A can work)
- The quadratic case (c) is called a square law device. 5-4-2018 Detection of Light – Bernhard Brandl

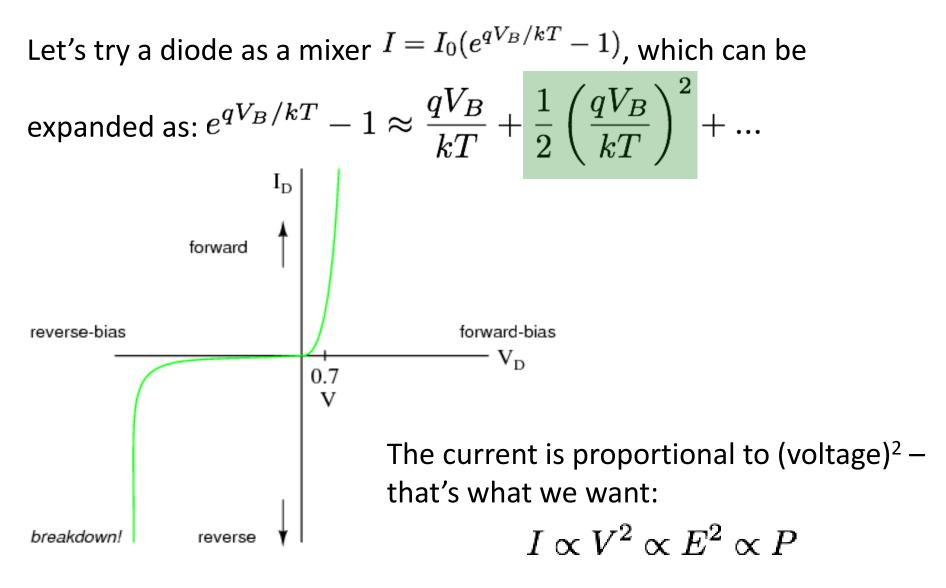
#### Mixer Math

Generally, a useful mixer has an I-V curve that can be approximated by a Taylor series around the operating voltage  $V_0$ :

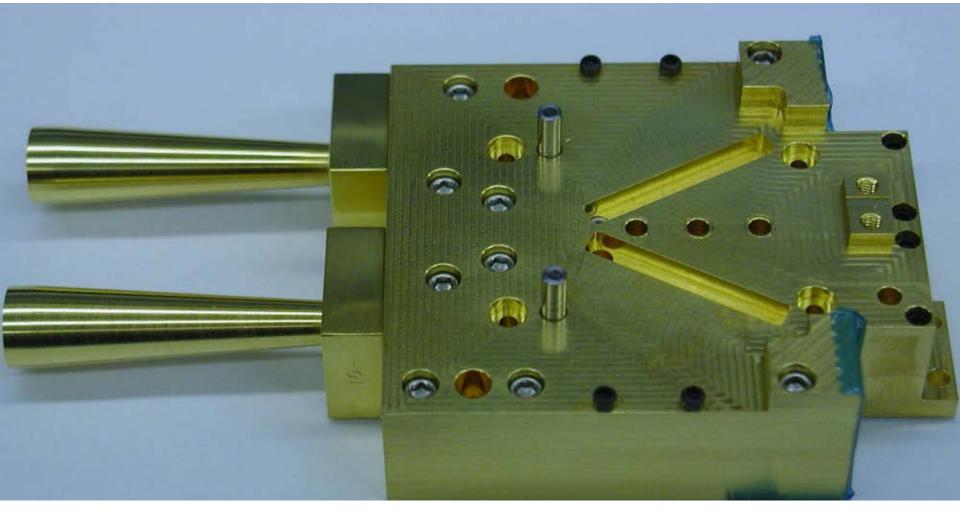
$$I(V) = I(V_0) + \left(\frac{dI}{dV}\right)_{V=V_0} dV + \frac{1}{2!} \left(\frac{d^2I}{dV^2}\right)_{V=V_0} dV^2 + \frac{1}{3!} \left(\frac{d^3I}{dV^3}\right)_{V=V_0} dV^3 + \frac{1}{4!} \left(\frac{d^4I}{dV^4}\right)_{V=V_0} dV^4 + \dots$$

$$DC \text{ Voltage Square law mixer Zero response Negligible if } dV = V - V_0 \text{ is small}}$$

#### A Diode as a Mixer



#### Example: 230 GHz Balanced Mixer



Mixer block hardware of the 180-280 GHz Balanced Mixer

http://www.submm.caltech.edu/cso/receivers/

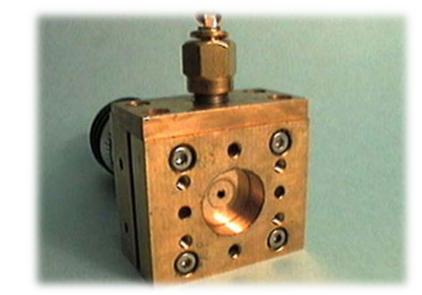
### More Example: Mixers

SIS front-end receiver for balloon heterodyne receiver TELIS



183 GHz fixed-tuned sub-harmonic mixer

http://www.sstd.rl.ac.uk/mmt/components\_mixers.php



2.5THz Schottky diode mixer



560 GHz micro-machined subharmonic mixer

#### Mixer Choices for Wavelengths $\lambda > 40 \mu m$

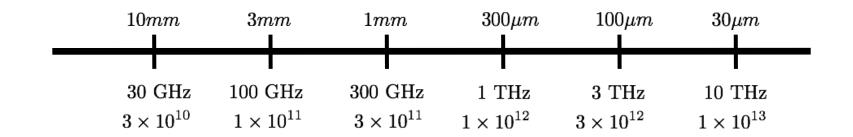
<u>Fast</u> photon detectors do *not* exist for wavelengths  $\lambda > 40 \mu m$ 

PHOTODIODE mixers have a frequency response limited to less than 1 GHz due to the recombination time of the charge carriers that have crossed the junction!

- $\rightarrow$  Common mixer devices:
- SIS junctions
- Schottky diodes
- Hot electron bolometers (HEB)

| Material | $\tau_{recombination}$ |  |  |
|----------|------------------------|--|--|
| Si       | 100 µs                 |  |  |
| Ge       | 10000 µs               |  |  |
| PbS      | 20 µs                  |  |  |
| InSb     | 0.1 µs                 |  |  |
| GaAs     | 1 µs                   |  |  |
| InP      | ~1 µs                  |  |  |

### **Mixer Technologies**

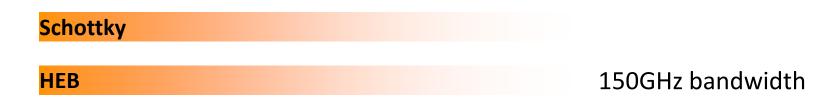


SIS Pb

#### SIS NbTiN

150GHz bandwidth

SIS, Schottky diodes and HEB all become less effective above 1THz

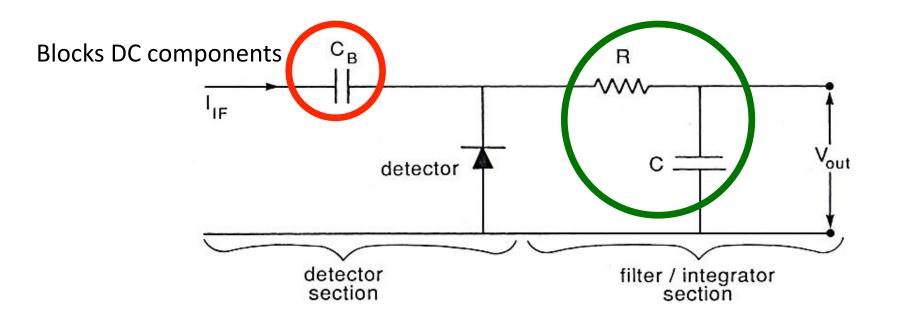


#### Superconducting HEB

# System Components III. Detectors

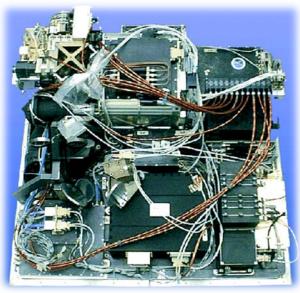
#### Tasks of a Detector Stage

The detector sends the signal through a low pass filter so that the output is a smooth, 'slowly' varying output.



#### **Filter Banks**

- If the IF signal contains important frequency ("color") components it should not be smoothed directly.
- Instead, the signal can be sent to a bank of narrow-band electronic filters, operating in parallel – with a smoothing detector for each filter output.
- Hence, the filter bank can provide a spectrum of the source. (A back-end spectrometer could consist of several filters tuned to different frequencies with detectors on their outputs.)



This spectral multiplexing is one of the most useful features of heterodyne receivers.

## Throughput

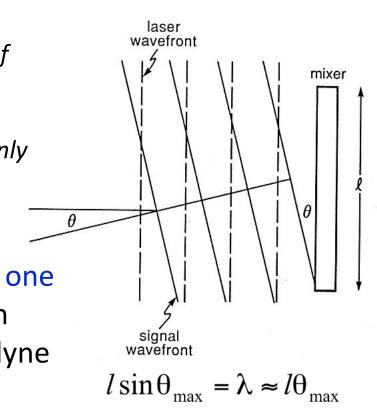
# Throughput (1)

Factors that limit the throughput of a heterodyne system:

1. Only components of the signal electric field vector parallel to the laser field can interfere (incl. polarization!)

The signal beam will strike the mixer in a range of angles relative to the LO (or laser) beam. The conditions for interference limit the maximum angular displacement. Full cancellation occurs only when the offset  $\sim \lambda$ 

Since the LO / laser field is polarized only one polarization component of the source can interfere and produce a signal so heterodyne receivers = single-mode detectors.



# Throughput (2) – Antenna Theorem

The angular diameter of the FOV on the sky is given by:

 $\Phi \approx \frac{\lambda}{D} \approx \text{Rayleigh criterion}$ 

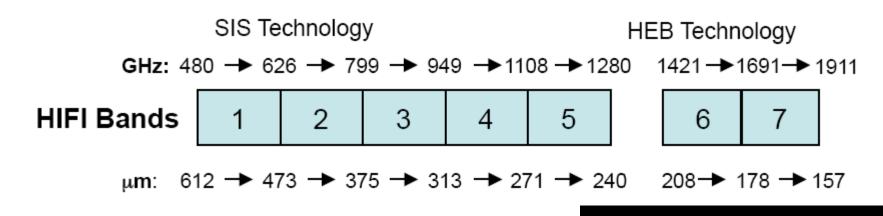
A coherent receiver should operate at the diffraction limit of the telescope. ← This is the "Antenna theorem" (applies to all heterodyne detectors).

- If the receiver only accepts a smaller FOV there is significant loss.
- If the receiver accepts much more it leads to a higher background and limited throughput (factor 1 above).

# Example: Herschel/HIFI

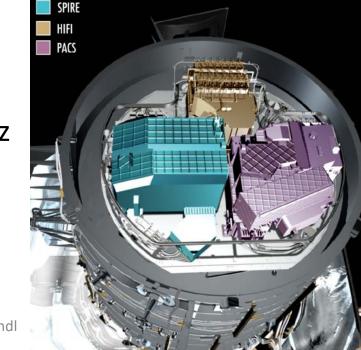
# Herschel / HIFI

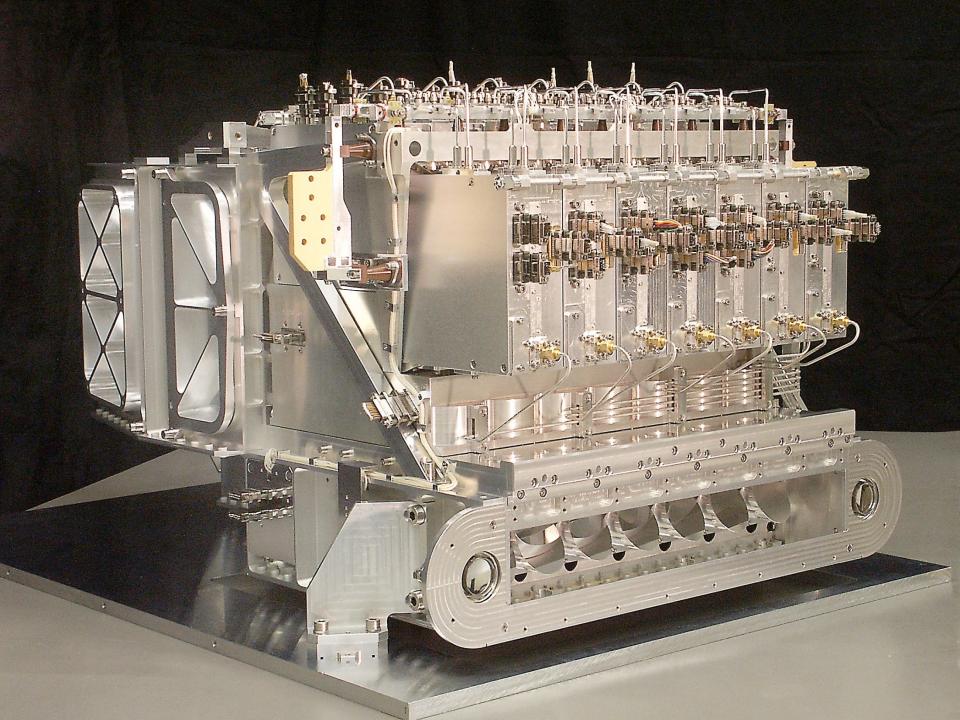
• Seven spectral bands:

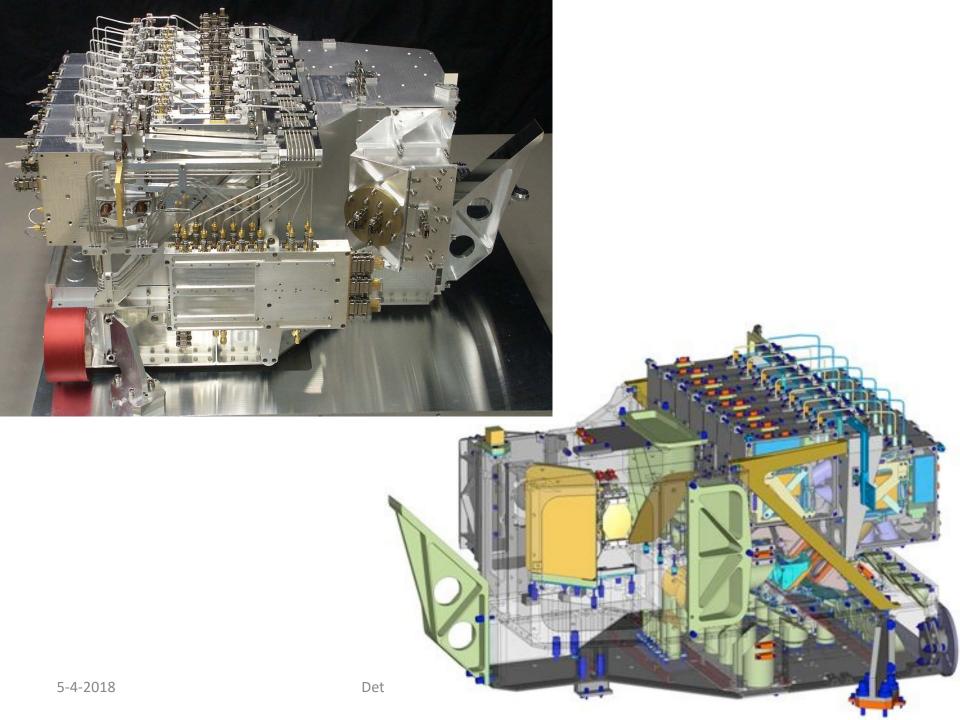


- two polarization components each
- resolving power up to 10<sup>7</sup>
- down-converted  $\omega_{IF}$  is centered at 6 GHz
- bandwidth  $\Delta \omega_{IF} = 4 \text{ GHz}$

$$d\lambda = \frac{c}{\nu^2} = \frac{3 \times 10^8 \text{ m.s}^{-1}}{(1920 \times 10^9 \text{ Hz})^2} = 4 \times 10^9 \text{ Hz} = 0.33 \mu m$$







# Signal-to-Noise

#### **Noise Sources**

There are *two types* of noise in heterodyne receivers:

1. Noise independent of the LO generated current  $I_{LO}$ 

Fundamental noise from the thermal background detected by the system

2. Noise dependent on the LO generated current *I*<sub>LO</sub>, which are fundamental noise limits for heterodyne receivers

*Noise in the mixer from the generation of charge carriers by the LO power* 

# S/N, Quantum and Thermal Limit

The S/N is given by (Rieke, p. 291):

$$\left(\frac{S}{N}\right)_{IF} = \frac{\eta P_S}{h\nu\Delta_{IF}\left[\frac{a}{G} + \frac{2\eta\varepsilon}{e^{h\nu/kT_B} - 1}\right]}$$

 $a \approx 1$  for a photodiode mixer and  $a \approx 2$  for a photoconductor; G = gain,  $\varepsilon = BB$  emissivity

We can distinguish two cases:

- QUANTUM LIMIT (hv >> kT<sub>B</sub>): G-R noise in the mixer dominates.
- THERMAL LIMIT (*hv* << *kT*<sub>B</sub>): noise from thermal background dominates.

The dividing line between the two cases is roughly at:

$$\frac{a}{G} \approx \frac{2\eta\varepsilon}{e^{h\nu/kT_B} - 1}$$

#### NEP

Remember: The noise equivalent power (NEP) is the signal that can be detected at a S/N of unity within unity frequency bandwidth  $\Delta f$ :

The NEP in the quantum limit is:

$$\operatorname{NEP}_{ql} = \frac{P}{\left(\frac{S}{N}\right)_{out} (\Delta f)^{1/2}} = \frac{h\nu a}{\eta G} (2\Delta f_{IF})^{1/2}$$

The NEP in the thermal limit is:

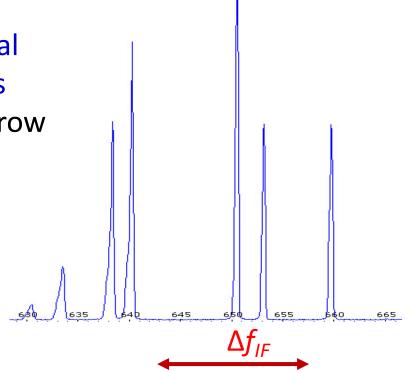
$$\operatorname{NEP}_{th} = \frac{P}{\left(\frac{S}{N}\right)_{out} (\Delta f)^{1/2}} = \frac{2h\nu\varepsilon}{e^{h\nu/kT_B} - 1} (2\Delta f_{IF})^{1/2}$$

# Noise Temperature

## NEP and Bandwidth

So far:  $NEP_H \propto \sqrt{2\Delta f_{IF}}$  implies that the NEP decreases (i.e., the S/N increases) when narrowing down the bandwidth!

However, this is only correct if all signal power falls within an interval, which is smaller than  $\Delta f_{IF}$ . This is given for narrow emission lines but not for continuum sources.



### The Noise Temperature

Let's define a noise temperature  $T_N$  such, that a matched blackbody at the receiver input at a temperature  $T_N$  produces a S/N = 1.

The concept of noise temperatures offers a convenient means to quantify the LO-independent components, such as amplifier noise.

This amplifier noise is usually Johnson noise:  $\langle I_A^2 \rangle = \frac{4kT_N \Delta f_{IF}}{R_A}$ ,

where  $R_A$  and  $T_N$  are the amplifier input resistance and noise temperature, respectively.

The lower limit for the noise temperature is given by  $T_N \approx \frac{h\nu}{k}$ 

- For an amplifier operating at 32 GHz  $T_N \approx 1.5$ K.
- For a good HEMT amplifier  $T_A \simeq 10$ K.

### Noise Temperatures at the Limits

First we estimate the noise temperature  $T_N$  in the *thermal* limit.

- If the BB emissivity  $\varepsilon = 1$  then:  $T_N = T_B$
- If the BB emissivity  $\varepsilon < 1$  then:  $T_N = \frac{h\nu}{k} \frac{1}{\ln(\varepsilon 1 + e^{h\nu/kT_B}) \ln \varepsilon}$
- Similarly, the noise temperature in the quantum limit (double sideband) is:  $T_N = \frac{h\nu}{k\ln\left(1 + \frac{2G\eta}{a}\right)} \approx \frac{h\nu}{k}$ Ideally:  $G = \eta = a = 1$

#### How to measure Noise Temperatures

Take two blackbody emitters with well spaced different temperatures  $T_{hot}$  and  $T_{cold}$ .

If V is the output voltage of the receiver we can define a "Y" factor: Y

$$Y = \frac{V_{hot}}{V_{cold}}$$

...which can be measured by alternately placing the blackbodies over the receiver input:

$$Y = \frac{T_{hot} + T_N}{T_{cold} + T_N}$$

...and solve it for the receiver noise temperature  $T_N$ :

$$T_{N} = \frac{T_{hot} - YT_{cold}}{Y - 1}$$

### Antenna or Source Temperature

Just like the noise temperature  $T_N$  describes the strength of the noise background, we can assign the source flux an antenna temperature  $T_s$ :

We get for a blackbody-type source in the Rayleigh-Jeans approximation ( $hv \ll kT$ ):  $A\Omega = \lambda^2 = \frac{c^2}{2}$ 

$$P_{S} = L_{\nu}T_{S}A\Omega\Delta f_{IF} = \frac{2kT_{S}\nu^{2}}{c^{2}}A\Omega\Delta f_{IF} \stackrel{\checkmark}{=} 2\Delta f_{IF}kT_{s}$$

where  $2\Delta f_{IF}$  is the frequency bandpass for a double sideband receiver.

 $\rightarrow$  The antenna temperature is linearly related to the input flux density:  $P_s \sim T_S$ 

# Coherent ⇔ Incoherent Receivers

#### Performance Ratio of In/coherent Receivers

The achievable S/N for a coherent receiver in terms of antenna and system noise temperatures is given by the Dicke radiometer equation:

$$\left(\frac{S}{N}\right)_{coh} \approx \frac{T_S}{T_N^{sys}} (\Delta f_{IF} \Delta t)^{1/2}$$

....so the signal to noise for an incoherent receiver operating at the diffraction limit is:

$$\left(\frac{S}{N}\right)_{inc} = \frac{2kT_S\Delta\nu_{inc}\Delta t^{1/2}}{\text{NEP}_{inc}}$$

Hence, the performance ratio between these two types of receivers is:

$$\frac{(S/N)_{coh}}{(S/N)_{inc}} = \frac{\text{NEP}_{inc}(\Delta f_{IF})^{1/2}}{2kT_N^{sys}\Delta\nu_{inc}}$$

#### Operation at the thermal (Background) Limit

Consider a bolometer operating at the background limit (BLIP) and a heterodyne receiver operating in the thermal limit:

$$\frac{(S/N)_{coh}}{(S/N)_{inc}} = \left[ \left(\frac{1}{\eta}\right) \left(\frac{\Delta f_{IF}}{\Delta \nu_{inc}}\right) \left(\frac{h\nu}{kT_B}\right) \right]^{1/2}$$

 $\rightarrow$  the bolometer will perform better unless  $\Delta f_{IF} >> \eta \Delta v$ 

The *latter case* ( $\Delta f_{IF} >> \eta \Delta v$ ) will be given for measurements at high spectral resolution, much higher than the *IF* bandwidth.

## **Operation at the Quantum Limit**

Consider a detector noise-limited bolometer and a heterodyne receiver operating at the quantum limit:

$$\frac{(S/N)_{coh}}{(S/N)_{inc}} = \frac{\text{NEP}_{inc}(\Delta f_{IF})^{1/2}}{2h\nu\Delta\nu_{inc}}$$

In the case of narrow bandwidth and high spectral resolution, the heterodyne receiver will outperform the bolometer

→ heterodyne receivers are best for high spectral resolution applications in the sub-mm!

If you keep the spectral resolution  $v/\Delta v$  constant (typically given) in the above equation, then the relative figure of merit goes as  $1 / v^2 \rightarrow$  transition from case favoring incoherent over coherent detectors is relatively abrupt.