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Basic Principle – Physics

9-2-2018 Detection of Light – Bernhard Brandl 3

Eγ lifts e- from valence into conduction band:



Basic Principle – Realization
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Applying an electric field 
causes electric charges to 
move in the material and 
register a signal as an electric 
current.

+ -



Practical Limitations
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• Wavelength cutoffs:

• Cleanliness and non-uniformity of material

• Problems to make good electrical contacts to pure Si

• Charge carriers are generated with both photons and thermal 
excitation (“dark current”).  We only measure the electrical 
conductivity!
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 Germanium: 1.85μm

 Silicon: 1.12μm

 GaAs: 0.87μm
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Schematics of a Detector 
Consider a pixel with physical dimensions d, l, w:

9-2-2018 Detection of Light – Bernhard Brandl 7



Resistivity, Resistance, and Conductivity

 Resistivity:
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Resistivity ρ [ Ω m ] ≡ intrinsic material property to oppose the flow 
of an electric current.

Resistance: 𝑅𝑅 ≡
𝑈𝑈
𝐼𝐼

; 𝑅𝑅 =
𝜌𝜌 � 𝑙𝑙
𝐴𝐴

=
𝜌𝜌 � 𝑙𝑙
𝑑𝑑 � 𝑤𝑤

𝜌𝜌 = 𝑅𝑅 �
𝑑𝑑 � 𝑤𝑤
𝑙𝑙

Conductivity is the inverse of the resistivity:
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Conductivity σ   Photon 
Flux
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Ohm’s law:

The conductivity σ [Ω-1 cm-1] is related to Rd via:

where:                                      (`th’ denotes the thermal (“dark”) current)

xcx vnqJ 0=The current density is:

where qc is the electrical charge and no the carrier density
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Electron Mobility
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Mean drift velocity
[ m / s ]

Electron mobility [ cm2 / (V s) ]

Electric field [ V / m ]
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Conductivity:



Electron Mobility = f{T}
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P-doped

As-doped

Low 
concentration

High 
concentration

Mobility ~ mean time between collisions 

@low T  impurities dominate 
ionized impurities: μn ~ T3/2

neutral impurities: μn ~ const

@high T  crystal lattice dominates 
μn ~ T–3/2

Astronomical detectors usually operate in the low T regime.



Typical Electron Mobility Numbers
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Generally, holes are less mobile than electrons
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Mean Lifetime for the Charge Carriers
Eventually, the electrons and holes recombine after a mean 
lifetime τ, releasing the energy as heat or light. 
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Conductivity σ   Photon Flux
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( )pnq pnph µµσ +=

To the total conductivity, both electrons and holes contribute:

(n and p are the negative and positive charge carrier concentrations)

Consider the incoming photon flux φ [γ/s]
 number of charge carriers in equilibrium is φητ, where η
is the quantum efficiency and τ is the mean lifetime before 
recombination.  Typically,  τ ~ (impurity concentration)–1

wdl
pn ϕητ
==Number of charge carriers per unit volume:

Hence, the resistance is:
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The Photoconductive Gain  (1)
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−=τ(1) Time for an e– to drift from one electrode to the other:
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−=µ(2) Recall the electron mobility:
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τ −=Combining (1) and (2) yields: 

l
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t

µτ
τ
τ ⋅
=≡ Define a photoconductive gain:  

where τ is the mean carrier lifetime before recombination.   
 The photoconductive gain is the ratio of carrier lifetime to 
carrier transit time. 

G quantifies the probability that a generated charge carrier will 
traverse the extent of the detector and reach an electrode.



The Photoconductive Gain  (2)
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t

G
τ
τ

=
The observed/detected photo current gets degraded by a factor:

G << 1   τt >> τ  charge carriers recombine before reaching an electrode  
G ~ 1     τt ~ τ  all charge carriers are likely to reach an electrode  
G > 1                             is possible if charge multiplication occurs.

The product ηG describes the probability that an incoming photon 
will produce an electric charge that will penetrate to an electrode.  

Options to optimize the gain G:
• make detector as this as possible
• increase the bias voltage (Ex)
• eliminate defects and impurities



Quantum Efficiency
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The quantum efficiency η is the percentage of photons hitting the 
detector surface that will produce an electron–hole pair.

Clear definition but difficult to measure.

η can be reduced by…:

1. reflection losses at the surface,

2. loss of photons that cross the 
crystal without interaction.

𝑅𝑅 =
𝑛𝑛 − 1 2

𝑛𝑛 + 1 2
𝑅𝑅𝐺𝐺𝐺𝐺 =

4 − 1 2

4 + 1 2 =
9

25
= 36%



Responsivity
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The responsivity S is the ratio between electrical signal at the 
detector output and incoming photon power.

Less elegant definition but easy accessible by measurement.



Quantum Efficiency  Responsivity
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The quantum efficiency η is 
independent of wavelength 
up to the cutoff at λc:

Ideal
Typical

The responsivity S increases 
proportionally to the wavelength: 
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Conductivity σ   Photon Flux
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electrical output signal
Responsivity S ≡

input photon power  

λ
ϕνϕ hchPph ==The “photon power” falling on the detector is:
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The responsivity S then becomes:
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This yields the photo current: GqP
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qGI phph ϕηηλ
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l
EG xτµ

≡Photoconductive Gain τ·μ/l = lifetime × mobility / pathlength

Ex = “amplifying” electric field
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Gaussian Distribution  (1)
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Gaussian noise is the noise following a Gaussian (normal) distribution:

It is often (incorrectly) called white noise, which refers to the uncorrelation of 
the noise.
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x is the actual value
μ is the mean of the distribution
σ is the standard deviation of the distribution

1-σ ~ 68%

2-σ ~ 95%

3-σ ~ 99.7%
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Gaussian Distribution  (2)
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Example: detector “dark frame” (readout 
without illumination)  

 from: http://www.microscopy-
analysis.com/editorials/editorial
-listings/digital-camera-
technologies-scientific-bio-
imaging-part-3-noise-and

Usually the dark frames show Gaussian behavior – but not always, 
in case of other, systematic noise sources (dead pixels, warm 
electrodes, etc. )



Poissonian Distribution  (1)
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Poisson noise is the noise following a Poissonian distribution:

( )
!

,
k
ekP

k λλλ
−

=

k is the number of occurrences of an event (probability)
λ is the expected number of occurrences 

Properties:

• the mean (average) of P(k,λ) is λ.

• the standard deviation of P(k,λ) is √λ.

P(k,λ) expresses the probability of a number of events occurring in a fixed 
period of time, provided that:
• these events occur with a known average rate λ, and 
• the arrival of one event is independent of the time since the last event



Poissonian Distribution  (2)
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Image from wikipedia

Tends towards Normal distribution

Example: fluctuations in the detected photon flux between time intervals Δti.  
Detected are k photons, while expected are, on average, λ photons.



Noise Bandwidth
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White noise has a wide frequency range, which we associate with 
an equivalent noise bandwidth B or ∆f = fH – fL.

τ4
1

=∆f

For a system – like our detector – with exponential response U~e-t/τ

we get

According to the Shannon Nyquist theorem, an output bandwidth of 
one hertz is equivalent to half a second of integration.

 signal integrated over time ∆tint:
int2

1
t

f
∆

=∆
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The G-R Noise Current
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Photoconductor absorbs N photons:   N = ηφ∆t

 create N conduction electrons and N holes  (but consider only e– since μe– »μp)

Randomly generated e– and randomly recombined e–  two random processes

Hence:  RMS noise ~ (2N)1/2.
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=−
22/12

( )
( )

GI
t
qG

t
qNG

t
q

t
GNqI phRG 







∆

=






∆








∆

=
∆

=−
222

2

22
2

GqI ph ϕη=

Now calculate the associated noise current:

With the mean photo-current 

one gets:

The noise current <I2
G-R> can now be rewritten as:
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Johnson (or kTC) Noise  (1)
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Consider a detector pixel as an RC circuit:

CR Vn

The energy stored in the 
capacitor is Est = ½CV2.

kTVC n 2
1

2
1 2 =

These fluctuations in Est result in a Johnson noise current IJ. 

This system has one degree of freedom:  Vn.  Fluctuations in Vn are 
associated with an average energy of ½ kT:

The charge on the capacitor is  Q = CV    <Q2> = C2V2 = kTC
Hence, this noise is also called kTC noise or reset noise.



Johnson (or kTC) Noise  (2)
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The power in IJ can thermodynamically also be expressed as:
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The Johnson (or kTC) noise is a fundamental thermodynamic noise 
due to the thermal (Brownian) motion of the charge carriers.



1/f Noise
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Most electronic devices have increased 
noise at low frequencies, often 
dominating the system performance.

However, there is no general physical 
understanding of it.

Empirically, 

May be caused by bad electrical contacts, temperature 
fluctuations, surface effects (damage), crystal defects, and 
junction field effect transistors (JFETs), etc.

.1,2         where2
/1 ≈≈∆∝ baf

f
II b

a

f

This type of noise is empirically termed 1/f noise.
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Total Noise
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The total noise in the system is 2
/1

222
fJRGN IIII ++= −

Note that all processes depend on the bandwidth  ∆f = 1/(2∆tint)

If the signal is Poisson distributed in time the relative error of the 
measurement is proportional to 1/√t  or  (∆f)½ (longer tint means 
smaller bandwidth means smaller relative errors)  

f
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f
R
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42

fGqI RG ∆=−
222 4 ϕηthe G-R or noise current

the Johnson noise

the 1/f noise



Background-limited Performance
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Ideally, we want the detector sensitivity not being limited by technical 
factors but by processes in nature (i.e., nothing we can do about).

2
/1

22
fJRG III +>>−That implies:

This is called background-limited performance (BLIP)

BLIP has significant impact on…:

• Detector design: e.g., MIR detectors for ground or space? ( Idark)

• Instrument design: e.g., pixel scale ( oversampling)

• Observation planning: e.g., exposure time ( long or short?) 



Noise Equivalent Flux Density (NEFD)
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The noise equivalent flux density (NEFD) is the flux density 

that yields an RMS S/N of unity in a system of Δf = 1 Hz.

NS
tE

NEFD S

/
2 int∆

=

...where ES [W m-2 Hz-1] is the measured flux density.

The NEFD usually refers to the entire system performance, 
including the camera optics.



Noise Equivalent Power (NEP)
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The noise equivalent power (NEP)  is the signal power 

that yields an RMS S/N of unity in a system of Δf = 1 Hz.

An equivalent, more practical definition is:

...where IN [W Hz-1/2] is the total noise current in the system, and 
S [A W-1] is the responsivity.



NEP for BLIP  kTC
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(1) BLIP:  2
/1

22
fJRG III +>>−

(The factor of ∆f disappears from <I2
G-R> as we use a “normalized” noise 

current in units of [A Hz-1].)

With                        and                                               one gets:

(2) kTC:  2
/1

22
fRGJ III +>> −

With                        and                                one gets:

Here, the NEP can be improved by increasing η, G, R or reducing T.
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