
ORIGINS AND EVOLUTION OF THE UNIVERSE - PROBLEM SET #2

DUE WEDNESDAY, NOVEMBER 14, 2018

This is the second problem set for this course. The solutions to the problems in this
set will be discussed on Wednesdsay November 14 from 13:30 in HL414. Your solutions
will be graded if they are received at or before that time. There are six exercises in this set.

1. During the period in which matter and radiation are decoupled, the matter temperature
Tm and the radiation temperature T evolve independently of each other. If the matter
component expands adiabatically in a homogeneous universe, and is assumed to be an
ideal gas of only hydrogen, thermodynamics dictates that
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(a) (5 points) Show that this implies that Tm = Tm,0(1+z)2, where Tm,0 is the present-day
temperature of the matter.

Before decoupling the matter and radiation are tightly coupled. The expression that
describes the adiabatic expansion of a gas of matter and radiation is
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(b) (5 points) Show that this implies that
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2. We now consider the decoupling temperature of neutrinos, which can be estimated
by comparing the typical interaction rate with the expansion rate H of the Universe.
To get used to the literature, we set c = h̄ = 1 in this question. The cross-section
for weak interactions depends on the momentum p (and hence temperature T ) and is
given by σ ' G2

F p
2, where GF = 1.17 × 10−5 GeV−2 is the Fermi coupling constant.

With c = h̄ = 1 the number density of relativistic species is n ' (kBT )3 (for the
temperatures we are interested in the coefficient happens to be close to unity).
(a) (5 points) Assuming that the neutrinos are highly relativistic with a characteristic

energy kBT , obtain an expression for Γ, the interaction rate per neutrino in terms of
the temperature. The Friedmann equation can be approximated as

H2 =
k4
BT

4

(1019GeV)2

(b) (5 points) Use this to show that neutrinos decouple at a temperature of around 1 MeV.
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3. Consider a universe with Ωm,0 = 3, ΩΛ,0 = 0, and Ωr,0 ∼ 0.
(a) (5 points) Consider the propagation of a pulse of light from four sources with coordinate

(r, θ, φ) = (0, 0, 0) at z = 0.2, z = 2, z = 20, and z = 2000 (4 cases) to z = 0. By
z = 0, the light will have propagated to different coordinates r0.2, r2, r20, r2000. What
are those coordinates?

(b) (3 points) If we represent the position of the light cone as a circle on the surface of
a sphere (with coordinates θ and r), illustrate on the surface of a sphere (drawn or
plotted) the coordinates where light from those sources would propagate by z = 0.

(c) (5 points) How would you answer to part (a) change if you considered a universe with
Ωm,0 = 2 or 10? Are there values of Ωm,0 where light emitted by a source at z = 2000
would be reobserved by the same source at z = 0? Are there values of Ωm,0 where light
emitted by a source at z = 2000 would reach the extreme opposite end of the universe
by z = 0? If yes, what are they?

4. Typical Grand Unified Theories predict that magnetic monopoles with masses MM∼
1015 GeV/c2 will form in the early Universe when the temperature kBTM ∼ MMc

2.
As discussed in class, on average one monopole will form per particle horizon volume
at that time. In this question we will quantify the monopole problem. We start by
examining how the temperature evolves in a flat radiation dominated Universe.
(a) (5 points) Show that in a flat radiation dominated Universe the temperature T evolves

as T (t) = At−1/2. Express A in terms of physical quantities.

(b) (3 points) What was the temperature five seconds after the Big Bang?

(c) (5 points) Derive the expression for the particle horizon at time t, i.e. the proper
distance at time t to the edge of the volume containing all particles that have been in
causal contact with the observer, for a flat radiation dominated Universe.

(d) (8 points) Assuming that one monopole forms in each horizon volume at the time
when the temperature is TM , use your expression for T (t) you derived in question (a)
to derive the number density of monopoles that are formed at this time. Express your
result in terms of physical quantities.

(e) (5 points) Recall that the photon number density at temperature T is

nγ =
2.4

π2

(
kBT

h̄c

)3

Calculate the ratio of the number density of monopoles to the photon number density
at the time when the monopoles form.

(f) (5 points) If this ratio of number densities does not evolve with time once the monopoles
have formed, calculate the present day mass density of monopoles. Compare this with
the present day critical density. Why is this a problem?
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5. Consider a universe that only contains matter and a cosmological constant. In the
previous problem set we derived that in this case the Friedmann equation is given by(
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where a is the scale factor, ρ(a) corresponds to the matter density, Λ is the value of
the cosmological constant, and k is the curvature.
(a) (3 points) Use the definition of the density parameter to show that at any epoch we

can write the matter density as

H2(z)Ωm(z)

(1 + z)3
= Ωm,0H

2
0 = constant.

(b) (3 points) Show that for spatially flat matter-dominated cosmologies with a cosmolog-
ical constant the Friedmann equation can be written as

H2(z) = H2
0 [1− Ωm,0 + Ωm,0(1 + z)3],

where H0 is the present day value of the Hubble parameter and Ωm,0 the present day
value of the density parameter Ωm(z).

(c) (3 points) Show that in a spatially flat matter-dominated cosmology the density pa-
rameter evolves as

Ωm(z) = Ωm,0
(1 + z)3

1− Ωm,0 + (1 + z)3Ωm,0
.

(d) (3 points) Show that for this cosmology the comoving distance to an object with
redshift z is given by

r0 =
c

H0

∫ z

0

dz

[1− Ωm,0 + Ωm,0(1 + z)3]1/2

(e) (3 points) For the special case of Ωm,0 = 1 derive the equation for the angular diameter
distance as a function of redshift.

(f) (3 points) Show that the Hubble parameter at decoupling (zdec ∼ 1000) can be ex-
pressed as

H(zdec)

H0
'
√

Ωm,0(1 + zdec)
3/2.

As the only important characteristic scale in the young Universe, the Hubble length
c/H gives the characteristic scale of the first peak in the microwave background. In
a spatially-flat cosmology with a cosmological constant, the present radial coordinate
distance to an object with z � 1 is given approximately by

r0 ≈
2c

H0
√

Ωm,0

(g) (3 points) Show that the angle subtended by the Hubble length at decoupling is ap-
proximately independent of Ωm,0 in spatially-flat cosmologies, and compute its value
in degrees.
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6. No observational probe can constrain all cosmological parameters by itself with very
high precision. Instead measurements from different methods are combined. This can
be particularly effective if we consider observations of distances that are sensitive to
different redshifts.

(a) (5 points) Consider observations of type Ia supernovae at low redshift. Show that the
joint constraints on Ωm,0 and ΩΛ,0 from such data are positively correlated (i.e. a
larger value of the matter density also implies a larger cosmological constant).

(b) (5 points) CMB measurements of the baryon acoustic oscillations probe very high
redshifts. Show that in this case, negatively correlated joint constraints on Ωm,0 and
ΩΛ,0 are expected.

Combining these measurements dramatically improves the precision with which the
basic cosmological parameters are determined, suggesting a flat geometry for our
Universe. In this case the Friedmann equation can be used to obtain
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(c) (5 points) Solve this differential equation to show that
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